PT - JOURNAL ARTICLE AU - Yuryev, Anton AU - Nesterova, Anastasia AU - Sozhin, Sergey AU - Shkrob, Maria TI - A disease model for Diffuse Intrinsic Pontine Glioma (DIPG) with mutations in TP53 and its application for drug repurposing AID - 10.1101/2022.06.22.22276788 DP - 2022 Jan 01 TA - medRxiv PG - 2022.06.22.22276788 4099 - http://medrxiv.org/content/early/2022/06/27/2022.06.22.22276788.short 4100 - http://medrxiv.org/content/early/2022/06/27/2022.06.22.22276788.full AB - Brain cancers are ones of most aggressive and difficult to treat cancers. Despite numerous studies of the cellular mechanisms of gliomas, it is difficult to stop tumor growth. A complex genetic and epigenetic nature of many gliomas and poorly known pathways of human neuron precursors maturation suggest turning to big data analysis to find new insights and directions for drug development. We developed in silico molecular models and predicted molecular switches in signaling cascades that maintain multipotency of neuronal precursor cells in diffuse intrinsic pontine glioma (DIPG) driven by the H3K27M mutation and mutations in the TP53 gene. Oncogenes and biomarkers were predicted based on transcriptomics and mutational genomics data from a cohort of 30 patients with DIPG analyzed using Elsevier artificial intelligence methods and a collection of manually curated cancer hallmark pathways. The molecular models of DIPG with mutations in TP53 and histone 3 gene describe the mechanism of oligodendrocyte dedifferentiation due to activation of transcriptional factors OLIG2, SOX2 and POU5F1, epithelial-to-mesenchymal transition via strong EGFR and TGFR signaling, enhanced cell response to hypoxia via HIF1A signaling, and enhanced angiogenesis by VEGFA overexpression. Using in silico analysis, we identified drugs capable of inhibiting mutant TP53: vorinostat, cisplatin, paclitaxel, and statins were top ranked drugs. The predicted drugs and oncogenes had individual patient-level differences that can be visualized with created DIPG model and may be useful for future research in the field of personalized medicine.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis study did not receive any fundingAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:https://www.ccdatalab.org/openpbtaI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).Yes I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data produced in the present work are contained or referred in the manuscript https://www.researchgate.net/publication/360212757_DIPG_disease_model_Supplemental_materials