PT - JOURNAL ARTICLE AU - Arafat, Youssef AU - Reyes-Aldasoro, Constantino Carlos TI - Computational Image Analysis Techniques, Programming Languages and Software Platforms Used in Cancer Research: A Scoping Review AID - 10.1101/2022.04.26.22274298 DP - 2022 Jan 01 TA - medRxiv PG - 2022.04.26.22274298 4099 - http://medrxiv.org/content/early/2022/06/14/2022.04.26.22274298.short 4100 - http://medrxiv.org/content/early/2022/06/14/2022.04.26.22274298.full AB - Background Cancer-related research, as indicated by the number of entries in Medline, the National Library of Medicine of the USA, has dominated the medical literature. An important component of this research is based on the use of computational techniques to analyse the data produced by the many acquisition modalities. This paper presents a review of the computational image analysis techniques that have been applied to cancer. The review was performed through automated mining of Medline/PubMed entries with a combination of keywords. In addition, the programming languages and software platforms through which these techniques are applied were also reviewed.Methods Automatic mining of Medline/PubMed was performed with a series of specific keywords that identified different computational techniques. These keywords focused on traditional image processing and computer vision techniques, machine learning techniques, deep learning techniques, programming languages and software platforms.Results The entries related to traditional image processing and computer vision techniques have decreased at the same time that machine learning and deep learning have increased significantly. Within deep learning, the keyword that returned the highest number of entries was convolutional neural network. Within the programming languages and software environments, Fiji and ImageJ were the most popular, followed by Matlab, R, and Python. Within the more specialised softwares, QuPath has had a sharp growth overtaking other platforms like ICY and CellProfiler.Conclusions The techniques of artificial intelligence techniques and deep learning have grown to overtake most other image analysis techniques and the trend at which they grow is still rising. The most used technique has been convolutional neural networks, commonly used to analyse and classify images. All the code related to this work is available through GitHub: https://github.com/youssefarafat/Scoping-Review.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis study did not receive any fundingAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data produced are available online at GitHub: https://github.com/youssefarafat/Scoping-Review https://github.com/youssefarafat/Scoping-Review