RT Journal Article SR Electronic T1 Developing A Deep Learning Natural Language Processing Algorithm For Automated Reporting Of Adverse Drug Reactions JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2021.12.11.21267504 DO 10.1101/2021.12.11.21267504 A1 McMaster, Christopher A1 Chan, Julia A1 Liew, David FL A1 Su, Elizabeth A1 Frauman, Albert G A1 Chapman, Wendy W A1 Pires, Douglas EV YR 2022 UL http://medrxiv.org/content/early/2022/04/07/2021.12.11.21267504.abstract AB The detection of adverse drug reactions (ADRs) is critical to our understanding of the safety and risk-benefit profile of medications. With an incidence that has not changed over the last 30 years, ADRs are a significant source of patient morbidity, responsible for 5-10% of acute care hospital admissions worldwide. Spontaneous reporting of ADRs has long been the standard method of reporting, however this approach is known to have high rates of under-reporting, a problem that limits pharmacovigilance efforts. Automated ADR reporting presents an alternative pathway to increase reporting rates, although this may be limited by over-reporting of other drug-related adverse events.We developed a deep learning natural language processing algorithm to identify ADRs in discharge summaries at a single academic hospital centre. Our model was developed in two stages: first, a pre-trained model (DeBERTa) was further pre-trained on 1.1 million unlabelled clinical documents; secondly, this model was fine-tuned to detect ADR mentions in a corpus of 861 annotated discharge summaries. This model was compared to a version without the pre-training step, and a model finetuned from the ClinicalBERT model, which has demonstrated state-of-the-art performance on other pharmacovigilance tasks. To ensure that our algorithm could differentiate ADRs from other drug-related adverse events, the annotated corpus was enriched for both validated ADR reports and confounding drug-related adverse events using. The final model demonstrated good performance with a ROC-AUC of 0.955 (95% CI 0.946 - 0.963) for the task of identifying discharge summaries containing ADR mentions, significantly outperforming the two comparator models.Competing Interest StatementWC reports being a scientific adviser for Health Fidelity and Modern Trials.Funding StatementThis study did not receive any fundingAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Ethics committee of Austin Health gave ethical approval for this workI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData are not available for external requests