PT - JOURNAL ARTICLE AU - Bejan, Cosmin A. AU - Ripperger, Michael AU - Wilimitis, Drew AU - Ahmed, Ryan AU - Kang, JooEun AU - Robinson, Katelyn AU - Morley, Theodore J. AU - Ruderfer, Douglas M. AU - Walsh, Colin G. TI - Improving ascertainment of suicidal ideation and suicide attempt with natural language processing AID - 10.1101/2022.02.25.22271532 DP - 2022 Jan 01 TA - medRxiv PG - 2022.02.25.22271532 4099 - http://medrxiv.org/content/early/2022/02/27/2022.02.25.22271532.short 4100 - http://medrxiv.org/content/early/2022/02/27/2022.02.25.22271532.full AB - Methods relying on diagnostic codes to identify suicidal ideation and suicide attempt in Electronic Health Records (EHRs) at scale are suboptimal because these phenotypes are heavily under-coded. We propose to improve the ascertainment of suicide phenotypes using natural language processing (NLP). We developed information retrieval methodologies to search over 200 million notes from the Vanderbilt EHR. Suicide query terms were extracted using word2vec. A weakly supervised approach was designed to label cases of suicidal outcomes. The NLP validation of the top 200 retrieved patients showed high performance for suicidal ideation (area under the receiver operator curve [AUROC]: 98.6, 95% confidence interval [CI]: 97.1−99.5) and suicide attempt (AUROC: 97.3, 95% CI: 95.2−98.7). Case extraction produced the best performance when combining NLP and diagnostic codes and when accounting for negated suicide expressions in notes. Overall, we demonstrated that scalable and accurate NLP methods can be developed to identify suicide phenotypes in EHRs to enhance prevention efforts, predictive models, and precision medicine.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis study was supported by R01 MH121455, R01 MH116269, R01 MH118233.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The study was approved by the institutional review board at Vanderbilt University Medical Center.I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData contain protected health information and are not publicly available. The summary statistics extracted from the EHR data used in this study are provided in the manuscript and supplementary material.