PT - JOURNAL ARTICLE AU - Cramer, Estee Y AU - Ray, Evan L AU - Lopez, Velma K AU - Bracher, Johannes AU - Brennen, Andrea AU - Castro Rivadeneira, Alvaro J AU - Gerding, Aaron AU - Gneiting, Tilmann AU - House, Katie H AU - Huang, Yuxin AU - Jayawardena, Dasuni AU - Kanji, Abdul H AU - Khandelwal, Ayush AU - Le, Khoa AU - Mühlemann, Anja AU - Niemi, Jarad AU - Shah, Apurv AU - Stark, Ariane AU - Wang, Yijin AU - Wattanachit, Nutcha AU - Zorn, Martha W AU - Gu, Youyang AU - Jain, Sansiddh AU - Bannur, Nayana AU - Deva, Ayush AU - Kulkarni, Mihir AU - Merugu, Srujana AU - Raval, Alpan AU - Shingi, Siddhant AU - Tiwari, Avtansh AU - White, Jerome AU - Abernethy, Neil F AU - Woody, Spencer AU - Dahan, Maytal AU - Fox, Spencer AU - Gaither, Kelly AU - Lachmann, Michael AU - Meyers, Lauren Ancel AU - Scott, James G AU - Tec, Mauricio AU - Srivastava, Ajitesh AU - George, Glover E AU - Cegan, Jeffrey C AU - Dettwiller, Ian D AU - England, William P AU - Farthing, Matthew W AU - Hunter, Robert H AU - Lafferty, Brandon AU - Linkov, Igor AU - Mayo, Michael L AU - Parno, Matthew D AU - Rowland, Michael A AU - Trump, Benjamin D AU - Zhang-James, Yanli AU - Chen, Samuel AU - Faraone, Stephen V AU - Hess, Jonathan AU - Morley, Christopher P AU - Salekin, Asif AU - Wang, Dongliang AU - Corsetti, Sabrina M AU - Baer, Thomas M AU - Eisenberg, Marisa C AU - Falb, Karl AU - Huang, Yitao AU - Martin, Emily T AU - McCauley, Ella AU - Myers, Robert L AU - Schwarz, Tom AU - Sheldon, Daniel AU - Gibson, Graham Casey AU - Yu, Rose AU - Gao, Liyao AU - Ma, Yian AU - Wu, Dongxia AU - Yan, Xifeng AU - Jin, Xiaoyong AU - Wang, Yu-Xiang AU - Chen, YangQuan AU - Guo, Lihong AU - Zhao, Yanting AU - Gu, Quanquan AU - Chen, Jinghui AU - Wang, Lingxiao AU - Xu, Pan AU - Zhang, Weitong AU - Zou, Difan AU - Biegel, Hannah AU - Lega, Joceline AU - McConnell, Steve AU - Nagraj, VP AU - Guertin, Stephanie L AU - Hulme-Lowe, Christopher AU - Turner, Stephen D AU - Shi, Yunfeng AU - Ban, Xuegang AU - Walraven, Robert AU - Hong, Qi-Jun AU - Kong, Stanley AU - van de Walle, Axel AU - Turtle, James A AU - Ben-Nun, Michal AU - Riley, Steven AU - Riley, Pete AU - Koyluoglu, Ugur AU - DesRoches, David AU - Forli, Pedro AU - Hamory, Bruce AU - Kyriakides, Christina AU - Leis, Helen AU - Milliken, John AU - Moloney, Michael AU - Morgan, James AU - Nirgudkar, Ninad AU - Ozcan, Gokce AU - Piwonka, Noah AU - Ravi, Matt AU - Schrader, Chris AU - Shakhnovich, Elizabeth AU - Siegel, Daniel AU - Spatz, Ryan AU - Stiefeling, Chris AU - Wilkinson, Barrie AU - Wong, Alexander AU - Cavany, Sean AU - España, Guido AU - Moore, Sean AU - Oidtman, Rachel AU - Perkins, Alex AU - Kraus, David AU - Kraus, Andrea AU - Gao, Zhifeng AU - Bian, Jiang AU - Cao, Wei AU - Ferres, Juan Lavista AU - Li, Chaozhuo AU - Liu, Tie-Yan AU - Xie, Xing AU - Zhang, Shun AU - Zheng, Shun AU - Vespignani, Alessandro AU - Chinazzi, Matteo AU - Davis, Jessica T AU - Mu, Kunpeng AU - y Piontti, Ana Pastore AU - Xiong, Xinyue AU - Zheng, Andrew AU - Baek, Jackie AU - Farias, Vivek AU - Georgescu, Andreea AU - Levi, Retsef AU - Sinha, Deeksha AU - Wilde, Joshua AU - Perakis, Georgia AU - Bennouna, Mohammed Amine AU - Nze-Ndong, David AU - Singhvi, Divya AU - Spantidakis, Ioannis AU - Thayaparan, Leann AU - Tsiourvas, Asterios AU - Sarker, Arnab AU - Jadbabaie, Ali AU - Shah, Devavrat AU - Penna, Nicolas Della AU - Celi, Leo A AU - Sundar, Saketh AU - Wolfinger, Russ AU - Osthus, Dave AU - Castro, Lauren AU - Fairchild, Geoffrey AU - Michaud, Isaac AU - Karlen, Dean AU - Kinsey, Matt AU - Mullany, Luke C. AU - Rainwater-Lovett, Kaitlin AU - Shin, Lauren AU - Tallaksen, Katharine AU - Wilson, Shelby AU - Lee, Elizabeth C AU - Dent, Juan AU - Grantz, Kyra H AU - Hill, Alison L AU - Kaminsky, Joshua AU - Kaminsky, Kathryn AU - Keegan, Lindsay T AU - Lauer, Stephen A AU - Lemaitre, Joseph C AU - Lessler, Justin AU - Meredith, Hannah R AU - Perez-Saez, Javier AU - Shah, Sam AU - Smith, Claire P AU - Truelove, Shaun A AU - Wills, Josh AU - Marshall, Maximilian AU - Gardner, Lauren AU - Nixon, Kristen AU - Burant, John C. AU - Wang, Lily AU - Gao, Lei AU - Gu, Zhiling AU - Kim, Myungjin AU - Li, Xinyi AU - Wang, Guannan AU - Wang, Yueying AU - Yu, Shan AU - Reiner, Robert C AU - Barber, Ryan AU - Gakidou, Emmanuela AU - Hay, Simon I. AU - Lim, Steve AU - Murray, Chris J.L. AU - Pigott, David AU - Gurung, Heidi L AU - Baccam, Prasith AU - Stage, Steven A AU - Suchoski, Bradley T AU - Prakash, B. Aditya AU - Adhikari, Bijaya AU - Cui, Jiaming AU - Rodríguez, Alexander AU - Tabassum, Anika AU - Xie, Jiajia AU - Keskinocak, Pinar AU - Asplund, John AU - Baxter, Arden AU - Oruc, Buse Eylul AU - Serban, Nicoleta AU - Arik, Sercan O AU - Dusenberry, Mike AU - Epshteyn, Arkady AU - Kanal, Elli AU - Le, Long T AU - Li, Chun-Liang AU - Pfister, Tomas AU - Sava, Dario AU - Sinha, Rajarishi AU - Tsai, Thomas AU - Yoder, Nate AU - Yoon, Jinsung AU - Zhang, Leyou AU - Abbott, Sam AU - Bosse, Nikos I AU - Funk, Sebastian AU - Hellewell, Joel AU - Meakin, Sophie R AU - Sherratt, Katharine AU - Zhou, Mingyuan AU - Kalantari, Rahi AU - Yamana, Teresa K AU - Pei, Sen AU - Shaman, Jeffrey AU - Li, Michael L AU - Bertsimas, Dimitris AU - Lami, Omar Skali AU - Soni, Saksham AU - Bouardi, Hamza Tazi AU - Ayer, Turgay AU - Adee, Madeline AU - Chhatwal, Jagpreet AU - Dalgic, Ozden O AU - Ladd, Mary A AU - Linas, Benjamin P AU - Mueller, Peter AU - Xiao, Jade AU - Wang, Yuanjia AU - Wang, Qinxia AU - Xie, Shanghong AU - Zeng, Donglin AU - Green, Alden AU - Bien, Jacob AU - Brooks, Logan AU - Hu, Addison J AU - Jahja, Maria AU - McDonald, Daniel AU - Narasimhan, Balasubramanian AU - Politsch, Collin AU - Rajanala, Samyak AU - Rumack, Aaron AU - Simon, Noah AU - Tibshirani, Ryan J AU - Tibshirani, Rob AU - Ventura, Valerie AU - Wasserman, Larry AU - O’Dea, Eamon B AU - Drake, John M AU - Pagano, Robert AU - Tran, Quoc T AU - Tung Ho, Lam Si AU - Huynh, Huong AU - Walker, Jo W AU - Slayton, Rachel B AU - Johansson, Michael A AU - Biggerstaff, Matthew AU - Reich, Nicholas G TI - Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US AID - 10.1101/2021.02.03.21250974 DP - 2021 Jan 01 TA - medRxiv PG - 2021.02.03.21250974 4099 - http://medrxiv.org/content/early/2021/12/10/2021.02.03.21250974.short 4100 - http://medrxiv.org/content/early/2021/12/10/2021.02.03.21250974.full AB - Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multi-model ensemble forecast that combined predictions from dozens of different research groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-week horizon 3-5 times larger than when predicting at a 1-week horizon. This project underscores the role that collaboration and active coordination between governmental public health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.Significance Statement This paper compares the probabilistic accuracy of short-term forecasts of reported deaths due to COVID-19 during the first year and a half of the pandemic in the US. Results show high variation in accuracy between and within stand-alone models, and more consistent accuracy from an ensemble model that combined forecasts from all eligible models. This demonstrates that an ensemble model provided a reliable and comparatively accurate means of forecasting deaths during the COVID-19 pandemic that exceeded the performance of all of the models that contributed to it. This work strengthens the evidence base for synthesizing multiple models to support public health action.Competing Interest StatementAV, MC, and APP report grants from Metabiota Inc outside the submitted work.Funding StatementFor teams that reported receiving funding for their work, we report the sources and disclosures below. The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies. CMU-TimeSeries: CDC Center of Excellence, gifts from Google and Facebook. CU-select: NSF DMS-2027369 and a gift from the Morris-Singer Foundation. COVIDhub: US CDC (1U01IP001122); NIGMS (R35GM119582). Helmholtz Foundation (SIMCARD Information & Data Science Pilot Project). Klaus Tschira Foundation. Columbia_UNC-SurvCon: GM124104 DDS-NBDS: NSF III-1812699. EPIFORECASTS-ENSEMBLE1: Wellcome Trust (210758/Z/18/Z) GT_CHHS-COVID19: William W. George Endowment, Virginia C. and Joseph C. Mello Endowments, NSF DGE-1650044, NSF MRI 1828187, CDC and CSTE NU38OT000297, PACE at GATech. Andrea Laliberte, Joseph C. Mello, Richard (Rick) E. & Charlene Zalesky, and Claudia & Paul Raines. GT-DeepCOVID: CDC MInD-Healthcare U01CK000531-Supplement. NSF (Expeditions CCF-1918770, CAREER IIS-2028586, RAPID IIS-2027862, Medium IIS-1955883, NRT DGE-1545362), CDC MInD program, ORNL and funds/computing resources from Georgia Tech and GTRI. IHME: The Bill & Melinda Gates Foundation; the state of Washington and NSF (FAIN: 2031096). IowaStateLW-STEM: Iowa State University Plant Sciences Institute Scholars Program, NSF DMS-1916204, NSF CCF-1934884, Laurence H. Baker Center for Bioinformatics and Biological Statistics. JHU CSSE: NSF RAPID (2108526, 2028604) JHU_IDD-CovidSP: State of California, US HHS, US DHS, US Office of Foreign Disaster Assistance, Johns Hopkins Health System, Office of the Dean JHBSPH, Johns Hopkins University Modeling and Policy Hub, CDC (5U01CK000538-03), University of Utah Immunology, Inflammation, & Infectious Disease Initiative (26798 Seed Grant). LANL-GrowthRate: LANL LDRD 20200700ER. MOBS-GLEAM_COVID: COVID Supplement CDC-HHS-6U01IP001137-01; CSTE Cooperative Agreement no. NU38OT000297. NotreDame-mobility and NotreDame-FRED: NSF RAPID DEB 2027718 PSI-DRAFT: NSF RAPID Grant # 2031536. UA-EpiCovDA: NSF RAPID DMS 2028401. UCSB-ACTS: NSF RAPID IIS 2029626. UCSD-NEU: Google Faculty Award, DARPA W31P4Q-21-C-0014, COVID Supplement CDC-HHS-6U01IP001137-01. UMass-MechBayes: NIGMS R35GM119582, NSF 1749854. UMich-RidgeTfReg: UMich Physics Department and Office of Research.  Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:UMass-Amherst IRBI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data and code referred to in the manuscript are publicly available. https://github.com/reichlab/covid19-forecast-hub/ https://github.com/reichlab/covidEnsembles https://zoltardata.com/project/44 https://github.com/reichlab/covid19-forecast-evals/blob/main/figures/data_revisions.pdf