PT - JOURNAL ARTICLE AU - Al-Garadi, Mohammed Ali AU - Kim, Sangmi AU - Guo, Yuting AU - Warren, Elise AU - Yang, Yuan-Chi AU - Lakamana, Sahithi AU - Sarker, Abeed TI - Natural Language Model for Automatic Identification of Intimate Partner Violence Reports from Twitter AID - 10.1101/2021.11.24.21266793 DP - 2021 Jan 01 TA - medRxiv PG - 2021.11.24.21266793 4099 - http://medrxiv.org/content/early/2021/11/26/2021.11.24.21266793.short 4100 - http://medrxiv.org/content/early/2021/11/26/2021.11.24.21266793.full AB - Background Intimate partner violence (IPV) is a preventable public health issue that affects millions of people worldwide. Approximately one in four women are estimated to be or have been victims of severe violence at some point in their lives, irrespective of their age, ethnicity, and economic status. Victims often report IPV experiences on social media, and automatic detection of such reports via machine learning may enable the proactive and targeted distribution of support and/or interventions for those in need.Methods We collected posts from Twitter using a list of keywords related to IPV. We manually reviewed subsets of retrieved posts, and prepared annotation guidelines to categorize tweets into IPV-report or non-IPV-report. We manually annotated a random subset of the collected tweets according to the guidelines, and used them to train and evaluate multiple supervised classification models. For the best classification strategy, we examined the model errors, bias, and trustworthiness through manual and automated content analysis.Results We annotated a total of 6,348 tweets, with inter-annotator agreement (IAA) of 0.86 (Cohen’s kappa) among 1,834 double-annotated tweets. The dataset had substantial class imbalance, with only 668 (∼11%) tweets representing IPV-reports. The RoBERTa model achieved the best classification performance (accuracy: 95%; IPV-report F1-score 0.76; non-IPV-report F1-score 0.97). Content analysis of the tweets revealed that the RoBERTa model sometimes misclassified as it focused on IPV-irrelevant words or symbols during decision making. Classification outcome and word importance analyses showed that our developed model is not biased toward gender or ethnicity while making classification decisions.Conclusion Our study developed an effective NLP model to identify IPV-reporting tweets automatically and in real time. The developed model can be an essential component for providing proactive social media based intervention and support for victims. It may also be used for population-level surveillance and conducting large-scale cohort studies.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThe study was funded by the Injury Prevention Research Center at Emory (IPRCE), Emory University.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Emory University Institutional Review BoardI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData will not be made publicly available due to the sensitive nature of the study. Interested researchers will be provided data following the execution of a data use agreement.