PT - JOURNAL ARTICLE AU - Carbonell, Guillermo AU - Del Valle, Diane Marie AU - Gonzalez-Kozlova, Edgar AU - Marinelli, Brett AU - Klein, Emma AU - Homsi, Maria El AU - Stocker, Daniel AU - Chung, Michael AU - Bernheim, Adam AU - Simons, Nicole W. AU - Xiang, Jiani AU - Nirenberg, Sharon AU - Kovatch, Patricia AU - Lewis, Sara AU - Merad, Miriam AU - Gnjatic, Sacha AU - Taouli, Bachir TI - Quantitative chest CT combined with plasma cytokines predict outcomes in COVID-19 patients AID - 10.1101/2021.10.11.21264709 DP - 2021 Jan 01 TA - medRxiv PG - 2021.10.11.21264709 4099 - http://medrxiv.org/content/early/2021/10/14/2021.10.11.21264709.short 4100 - http://medrxiv.org/content/early/2021/10/14/2021.10.11.21264709.full AB - Despite extraordinary international efforts to dampen the spread and understand the mechanisms behind SARS-CoV-2 infections, accessible predictive biomarkers directly applicable in the clinic are yet to be discovered. Recent studies have revealed that diverse types of assays bear limited predictive power for COVID-19 outcomes. Here, we harness the predictive power of chest CT in combination with plasma cytokines using a machine learning approach for predicting death during hospitalization and maximum severity degree in COVID-19 patients. Patients (n=152) from the Mount Sinai Health System in New York with plasma cytokine assessment and a chest CT within 5 days from admission were included. Demographics, clinical, and laboratory variables, including plasma cytokines (IL-6, IL-8, and TNF-α) were collected from the electronic medical record. We found that chest CT combined with plasma cytokines were good predictors of death (AUC 0.78) and maximum severity (AUC 0.82), whereas CT quantitative was better at predicting severity (AUC 0.81 vs 0.70) while cytokine measurements better predicted death (AUC 0.70 vs 0.66). Finally, we provide a simple scoring system using plasma IL-6, IL-8, TNF-α, GGO to aerated lung ratio and age as novel metrics that may be used to monitor patients upon hospitalization and help physicians make critical decisions and considerations for patients at high risk of death for COVID-19.Competing Interest StatementS.G. reports consultancy and/or advisory roles for Merck and OncoMed and research funding from Bristol-Myers Squibb, Genentech, Celgene, Janssen R&D, Takeda, and Regeneron.B.T. reports consultancy and/or advisory roles for Bayer, Helio Health and research funding/support from Bayer, Takeda, Regeneron, Echosens.Funding StatementAuthors wish to acknowledge Rajiv Pande and Martin Putnam at Bio-techne for helping to provide instruments and assay kits for ELLA testing in a CLIA environment in the timeliest possible way during the health crisis. Additionally, this work was supported in part through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai.S.G., E.G.K, D.M.D.V. and M.M were supported by NCI U24 grant CA224319. S.G. and D.M.D.V. is additionally supported by grant U01 DK124165.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This study was reviewed and approved by The Human Research Protection Program at the Icahn School of Medicine at Mount Sinai (HS # 20-00429). A waiver of consent was obtained to query the electronic medical record.I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe data supporting this publication has been made available at ImmPort (https://www.immport.org) under study accession number SDY1752. The dataset has been de-identified in compliance with United States Federal Health Insurance Portability and Accountability Act (HIPAA). ImmPort is a data sharing and analysis portal for immunology research community funded by the National Institute of Allergy and Infectious Diseases (NIAID), Division of Allergy, Immunology, and Transplantation (DAIT). Please refer to the ImmPort user agreement for further details (https://www.immport.org/agreement). https://github.com/eegk/covid19_radiology AUCArea Under the CurveCOVID-19Novel coronavirus discovered in 2021 WuhanCTComputed TomographyEMRElectronic Medical recordsGGOGround-Glass OpacitiesHUHounsfield UnitsIL-6Interleukin 6IL-8Interleukin 8IQRInter Quartile RangeROCReceiver Operating CharacteristicTNF-αTumor Necrosis Factor alphaWHOWorld Health Organization