PT - JOURNAL ARTICLE AU - MacInnis, Alexander G. TI - Time-to-event estimation of birth prevalence trends: a method to enable investigating the etiology of childhood disorders including autism AID - 10.1101/2020.08.05.20169151 DP - 2021 Jan 01 TA - medRxiv PG - 2020.08.05.20169151 4099 - http://medrxiv.org/content/early/2021/09/30/2020.08.05.20169151.short 4100 - http://medrxiv.org/content/early/2021/09/30/2020.08.05.20169151.full AB - An unbiased, widely accepted estimate of the rate of occurrence of new cases of autism over time would facilitate progress in understanding the causes of autism. The same may also apply to other disorders. While incidence is a widely used measure of occurrence, birth prevalence—the proportion of each birth year cohort with the disorder—is the appropriate measure for disorders and diseases of early childhood. Studies of autism epidemiology commonly speculate that estimates showing strong increases in rate of autism cases result from an increase in diagnosis rates rather than a true increase in cases. Unfortunately, current methods are not sufficient to provide a definitive resolution to this controversy. Prominent experts have written that it is virtually impossible to solve.This paper presents a novel method, time-to-event birth prevalence estimation (TTEPE), to provide accurate estimates of birth prevalence properly adjusted for changing diagnostic factors. It addresses the shortcomings of prior methods. TTEPE is based on well-known time-to-event (survival) analysis techniques. A discrete survival process models the rates of incident diagnoses by birth year and age. Diagnostic factors drive the probability of diagnosis as a function of the year of diagnosis. TTEPE models changes in diagnostic criteria, which can modify the effective birth prevalence when new criteria take effect. TTEPE incorporates the development of diagnosable symptoms with age. General-purpose optimization software estimates all parameters, forming a non-linear regression. The paper specifies all assumptions underlying the analysis and explores potential deviations from assumptions and optional additional analyses.A simulation study shows that TTEPE produces accurate parameter estimates, including trends in both birth prevalence and the probability of diagnosis in the presence of sampling effects from finite populations. TTEPE provides high power to resolve small differences in parameter values by utilizing all available data points.Competing Interest StatementThe authors have declared no competing interest.Funding StatementNo external funding was received.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:N/AAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData for this paper are generated by simulation software, which is available at https://doi.org/10.17605/OSF.IO/WPNKU https://doi.org/10.17605/OSF.IO/WPNKU