PT - JOURNAL ARTICLE AU - Kis, Zoltán AU - Tak, Kyungjae AU - Ibrahim, Dauda AU - Papathanasiou, Maria M AU - Chachuat, Benoît AU - Shah, Nilay AU - Kontoravdi, Cleo TI - Pandemic-response adenoviral vector and RNA vaccine manufacturing AID - 10.1101/2021.08.20.21262370 DP - 2021 Jan 01 TA - medRxiv PG - 2021.08.20.21262370 4099 - http://medrxiv.org/content/early/2021/09/02/2021.08.20.21262370.short 4100 - http://medrxiv.org/content/early/2021/09/02/2021.08.20.21262370.full AB - Rapid global COVID-19 pandemic response by mass vaccination is currently limited by the rate of vaccine manufacturing. This study presents a techno-economic feasibility assessment and comparison of three vaccine production platform technologies deployed during the COVID-19 pandemic: (1) adenovirus-vectored (AVV) vaccines, (2) messenger RNA (mRNA) vaccines, and (3) the newer self-amplifying RNA (saRNA) vaccines. Besides assessing the baseline performance of the production process, the impact of key design and operational uncertainties on the productivity and cost performance of these vaccine platforms were also evaluated using variance-based global sensitivity analysis. Cost and resource requirement projections were also computed for manufacturing multi-billion vaccine doses for covering the current global demand shortage and for providing annual booster immunizations. This model-based assessment provides key insights to policymakers and vaccine manufacturers for risk analysis, asset utilisation, directions for future technology improvements and future epidemic/pandemic preparedness, given the disease-agnostic nature of these vaccine production platforms.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis research is partly funded by UK Research and Innovation (UKRI) via the Engineering and Physical Sciences Research Council (EPSRC) grant on COVID-19/SARS-CoV-2 vaccine manufacturing and supply-chain optimisation (EP/V01479X/1) and the Future Vaccine Manufacturing Research Hub at UCL-Oxford (EP/R013756/1). Additional financial support from the Department of Health and Social Care using UK Aid funding as managed by the EPSRC (EP/R013764/1) is also gratefully acknowledged. The views expressed in this publication are those of the author(s) and not necessarily those of the Department of Health and Social Care. The authors gratefully acknowledge insightful discussions with Robin Shattock (Imperial College London, UK), Sandy Douglas (The Jenner Institute, UK), Harvey Branton (Centre for Process Innovation, UK) and John Liddell (Centre for Process Innovation, UK).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:No ethical approval was required for this computational modelling study.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData is available from: https://github.com/ZKis-ZK/RNA_AVV_vaccine_production-cost_modelling_global_sensitivity_analysis