PT - JOURNAL ARTICLE AU - Liley, James AU - Bohner, Gergo AU - Emerson, Samuel R. AU - Mateen, Bilal A. AU - Borland, Katie AU - Carr, David AU - Heald, Scott AU - Oduro, Samuel D. AU - Ireland, Jill AU - Moffat, Keith AU - Porteous, Rachel AU - Riddell, Stephen AU - Cunningham, Nathan AU - Holmes, Chris AU - Payne, Katrina AU - Vollmer, Sebastian J. AU - Vallejos, Catalina A. AU - Aslett, Louis J. M. TI - Development and assessment of a machine learning tool for predicting emergency admission in Scotland AID - 10.1101/2021.08.06.21261593 DP - 2021 Jan 01 TA - medRxiv PG - 2021.08.06.21261593 4099 - http://medrxiv.org/content/early/2021/08/10/2021.08.06.21261593.short 4100 - http://medrxiv.org/content/early/2021/08/10/2021.08.06.21261593.full AB - Avoiding emergency hospital admission (EA) is advantageous to individual health and the healthcare system. We develop a statistical model estimating risk of EA for most of the Scottish population (> 4.8M individuals) using electronic health records, such as hospital episodes and prescribing activity. We demonstrate good predictive accuracy (AUROC 0.80), calibration and temporal stability. We find strong prediction of respiratory and metabolic EA, show a substantial risk contribution from socioeconomic decile, and highlight an important problem in model updating. Our work constitutes a rare example of a population-scale machine learning score to be deployed in a healthcare setting.Competing Interest StatementThe authors have declared no competing interest.Funding StatementJL, CAV and LJMA were partially supported by Wave 1 of The UKRI Strategic Priorities Fund under the EPSRC Grant EP/T001569/1, particularly the "Health" theme within that grant and The Alan Turing Institute; JL, BAM, CAV, LJMA and SJV were partially supported by Health Data Research UK, an initiative funded by UK Research and Innovation, Department of Health and Social Care (England), the devolved administrations, and leading medical research charities; SJV, NC and GB were partially supported by the University of Warwick Impact Fund. SRE is funded by the EPSRC doctoral training partnership (DTP) at Durham University, grant reference EP/R513039/1; LJMA was partially supported by a Health Programme Fellowship at The Alan Turing Institute; CAV was supported by a Chancellor's Fellowship provided by the University of Edinburgh.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This study and the use of NHS data was approved by the Public Benefit and Privacy Panel for Health and Social Care (study number 1718-0370; approval evidenced in application outcome minutes for 2018/19 at https://www.informationgovernance.scot.nhs.uk/pbpphsc/application-outcomes/ ). In addition, accessing data was approved by the Public Health Scotland National Safe Haven, through the the electronic Data Research and Innovation Service (eDRIS) and the Public Benefit and Privacy Panel (PBPP) (study number 1718-0370). All studies have been conducted in accordance with information governance standards; data had no patient identifiers available to the researchers. This work was conducted in accordance with UK data governance regulations under PBPP application number eDRIS 1718-0370 All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesRaw data for this project are patient-level NHS Scotland health records, and are confidential. Due to the confidential nature of the data used, all analysis took place on remote 'safe havens', without access to internet, software updates or unpublished software. Information Governance training was required for all researchers accessing the analysis environment. Moreover, to avoid the risk of accidental disclosure of sensitive information, an independent team carried out statistical disclosure control checks to all data exports, including the outputs presented in this manuscript. All analysis code and co-ordinates required to reproduce our Figures are available in github.com/jamesliley/SPARRAv4 https://github.com/jamesliley/SPARRAv4