RT Journal Article SR Electronic T1 High resolution linear epitope mapping of the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 mRNA vaccine recipients JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2021.07.03.21259953 DO 10.1101/2021.07.03.21259953 A1 Nitahara, Yuko A1 Nakagama, Yu A1 Kaku, Natsuko A1 Candray, Katherine A1 Michimuko, Yu A1 Tshibangu-Kabamba, Evariste A1 Kaneko, Akira A1 Yamamoto, Hiromasa A1 Mizobata, Yasumitsu A1 Kakeya, Hiroshi A1 Yasugi, Mayo A1 Kido, Yasutoshi YR 2021 UL http://medrxiv.org/content/early/2021/07/23/2021.07.03.21259953.abstract AB The prompt rollout of the coronavirus disease (COVID-19) messenger RNA (mRNA) vaccine is facilitating population immunity, which shall become more dominant than natural infection-induced immunity. At the beginning of the vaccine era, understanding the epitope profiles of vaccine-elicited antibodies will be the first step in assessing functionality of vaccine-induced immunity. In this study, the high-resolution linear epitope profiles of Pfizer-BioNTech COVID-19 mRNA vaccine recipients and COVID-19 patients were delineated by using microarrays mapped with overlapping peptides of the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. The vaccine-induced antibodies targeting RBD had broader distribution across the RBD than that induced by the natural infection. Thus, relatively lower neutralizability was observed when a half-maximal neutralization titer measured in vitro by live virus neutralization assays was normalized to a total anti-RBD IgG titer. However, mutation panel assays targeting the SARS-CoV-2 variants of concern have shown that the vaccine-induced epitope variety, rich in breadth, may grant resistance against future viral evolutionary escapes, serving as an advantage of vaccine-induced immunity.Importance Establishing vaccine-based population immunity has been the key factor in attaining herd protection. Thanks to expedited worldwide research efforts, the potency of messenger RNA vaccines against the coronavirus disease 2019 (COVID-19) is now incontestable. The next debate is regarding the coverage of SARS-CoV-2 variants. At the beginning of this vaccine era, it is of importance to describe the similarities and differences between the immune responses of COVID-19 vaccine recipients and naturally infected individuals. In this study, we demonstrated that the antibody profiles of vaccine recipients are richer in variety, targeting a key protein of the invading virus, than those of naturally infected individuals. Yet vaccine-elicited antibodies included more non-neutralizing antibodies than infection-elicited, their breadth in antibody variations suggested possible resilience against future SARS-CoV-2 variants. The antibody profile achieved by vaccinations in naive individuals pose important insight into the first step towards vaccine-based population immunity.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work was funded by Japan Agency for Medical Research and Development (AMED) under Grant number JP20wm0125003 (Yasutoshi Kido), JP20he1122001 (Yasutoshi Kido), JP20nk0101627 (Yasutoshi Kido), and JP20jk0110021 (Yu Nakagama). This work was also supported by JSPS KAKENHI Grant Number JP21441824 (Natsuko Kaku). We also receive the COVID-19 Private Fund (to the Shinya Yamanaka laboratory, CiRA, Kyoto University). We received support from Osaka City University's "Special Reserves" fund for COVID-19. Yuko Nitahara is a recipient of the BIKEN Taniguchi Scholarship.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This study was approved by the institutional review board of Osaka City University (#2020-003) and the Graduate School of Life and Environmental sciences and the Graduate School of Sciences, Osaka Prefecture University.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe data that supports the findings of this study are available in the supplementary material of this article.