RT Journal Article SR Electronic T1 Comparison of COVID-19 vaccine prioritization strategies JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2021.03.04.21251264 DO 10.1101/2021.03.04.21251264 A1 Chapman, Lloyd A. C. A1 Shukla, Poojan A1 Rodríguez-Barraquer, Isabel A1 Shete, Priya B. A1 León, Tomás M. A1 Bibbins-Domingo, Kirsten A1 Rutherford, George W. A1 Schechter, Robert A1 Lo, Nathan C. YR 2021 UL http://medrxiv.org/content/early/2021/06/10/2021.03.04.21251264.abstract AB Background For countries that have only recently started COVID-19 vaccinations, there remains a key public health question of who should be prioritized for early vaccination. Most vaccine prioritization analyses have only considered variation in risk of infection and death by age. We provide a more granular analysis with stratification by demographics, risk factors, and location.Methods We used a simulation model to compare the impact of different prioritization strategies on COVID-19 cases, deaths and disability-adjusted life years (DALYs) over the first 6 months of vaccine rollout. We calibrated the model to demographic and location data on 28,175 COVID-19 deaths in California up to December 30, 2020, and incorporated variation in risk by occupation and comorbidity status using published estimates. We estimated the proportion of clinical cases, deaths and DALYs averted relative to a scenario of no vaccination for strategies prioritizing vaccination by a single risk factor (special population status (e.g. incarcerated individual), age, essential worker status, comorbidity status) or multiple risk factors (e.g. age and location).Results We found that age-based targeting averted the most deaths (65% for 5 million individuals vaccinated) and DALYs (40%) of strategies targeting by a single risk factor and targeting essential workers averted the least deaths (33%) and DALYs (25%) over the first 6 months of vaccine rollout. However, targeting by two or more risk factors simultaneously averted up to 40% more DALYs.Conclusions Our findings highlight the potential value of multiple-risk-factor targeting of COVID-19 vaccination. Where vaccine supply is limited and logistical challenges in vaccine delivery persist, age-based targeting offers a means of ensuring that vaccines reach those most at risk of poor health outcomes. If operational challenges can be overcome, more granular vaccination strategies that overlap age with other risk factors can be adopted.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis study was supported by funding from the California Department of Public Health. NCL is supported by the University of California, San Francisco (Department of Medicine). This work represents the viewpoints of the authors alone and not necessarily those of the California Department of Public Health.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The study was approved by the University of California, San Francisco Institutional Review Board.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll analysis code is available online at https://github.com/LloydChapman/COVIDVaccineModelling. The California Department of Public Health case data required for fitting the Poisson regression model contain personally identifiable information and therefore cannot be made freely available. Individuals interested in accessing the data should contact the California Department of Public Health. The simulated population data required to run the vaccine prioritization simulations is available at http://doi.org/10.5281/zenodo.4516526. https://github.com/LloydChapman/COVIDVaccineModelling http://doi.org/10.5281/zenodo.4516526