PT - JOURNAL ARTICLE AU - Slater, Luke T AU - Williams, John A AU - Karwath, Andreas AU - Fanning, Hilary AU - Ball, Simon AU - Schofield, Paul AU - Hoehndorf, Robert AU - Gkoutos, Georgios V TI - Multi-faceted Semantic Clustering With Text-derived Phenotypes AID - 10.1101/2021.05.26.21257830 DP - 2021 Jan 01 TA - medRxiv PG - 2021.05.26.21257830 4099 - http://medrxiv.org/content/early/2021/05/29/2021.05.26.21257830.short 4100 - http://medrxiv.org/content/early/2021/05/29/2021.05.26.21257830.full AB - Identification of ontology concepts in clinical narrative text enables the creation of phenotype profiles that can be associated with clinical entities, such as patients or drugs. Constructing patient phenotype profiles using formal ontologies enables their analysis via semantic similarity, in turn enabling the use of background knowledge in clustering or classification analyses. However, traditional semantic similarity approaches collapse complex relationships between patient phenotypes into a unitary similarity scores for each pair of patients. Moreover, single scores may be based only on matching terms with the greatest information content (IC), ignoring other dimensions of patient similarity. This process necessarily leads to a loss of information in the resulting representation of patient similarity, and is especially apparent when using very large text-derived and highly multi-morbid phenotype profiles. Moreover, it renders finding a biological explanation for similarity very difficult; the black box problem. In this article, we explore the generation of multiple semantic similarity scores for patients based on different facets of their phenotypic manifestation, which we define through different sub-graphs in the Human Phenotype Ontology. We further present a new methodology for deriving sets of qualitative class descriptions for groups of entities described by ontology terms. Leveraging this strategy to obtain meaningful explanations for our semantic clusters alongside other evaluation techniques, we show that semantic clustering with ontology-derived facets enables the representation, and thus identification of, clinically relevant phenotype relationships not easily recoverable using overall clustering alone. In this way, we demonstrate the potential of faceted semantic clustering for gaining a deeper and more nuanced understanding of text-derived patient phenotypes.Competing Interest StatementThe authors have declared no competing interest.Funding StatementGVG and LTS acknowledge support from support from the NIHR Birmingham ECMC, NIHR Birmingham SRMRC, Nanocommons H2020-EU (731032) and the NIHR Birmingham Biomedical Research Centre and the MRC HDR UK (HDRUK/CFC/01), an initiative funded by UK Research and Innovation, Department of Health and Social Care (England) and the devolved administrations, and leading medical research charities. The views expressed in this publication are those of the authors and not necessarily those of the NHS, the National Institute for Health Research, the Medical Research Council or the Department of Health. RH, PNS and GVG were supported by funding from King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. URF/1/3790-01-01. AK was supported by by the Medical Research Council (MR/S003991/1) and the MRC HDR UK (HDRUK/CFC/01). PNS and GVG acknowledge the support of the Alan Turing Institute, UK. Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This work makes use of the MIMIC-III dataset, which was approved for construction, de-identification, and sharing by the BIDMC and MIT institutional review boards (IRBs). Further details on MIMIC-III ethics are available from its original publication (DOI:10.1038/sdata.2016.35). Work was undertaken in accordance with the MIMIC-III guidelines.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesPatient data is available via MIMIC. Software is available by the attached link. https://github.com/reality/facetsim