PT - JOURNAL ARTICLE AU - Islam Khan, Md. Saikat AU - Rahman, Anichur AU - Karim, Md. Razaul AU - Bithi, Nasima Islam AU - Band, Shahab S. AU - Dehzangi, Abdollah AU - Alinejad-Rokny, Hamid TI - CovidMulti-Net: A Parallel-Dilated Multi Scale Feature Fusion Architecture for the Identification of COVID-19 Cases from Chest X-ray Images AID - 10.1101/2021.05.19.21257430 DP - 2021 Jan 01 TA - medRxiv PG - 2021.05.19.21257430 4099 - http://medrxiv.org/content/early/2021/05/20/2021.05.19.21257430.short 4100 - http://medrxiv.org/content/early/2021/05/20/2021.05.19.21257430.full AB - The COVID-19 pandemic is an emerging respiratory infectious disease, having a significant impact on the health and life of many people around the world. Therefore, early identification of COVID-19 patients is the fastest way to restrain the spread of the pandemic. However, as the number of cases grows at an alarming pace, most developing countries are now facing a shortage of medical resources and testing kits. Besides, using testing kits to detect COVID-19 cases is a time-consuming, expensive, and cumbersome procedure. Faced with these obstacles, most physicians, researchers, and engineers have advocated for the advancement of computer-aided deep learning models to assist healthcare professionals in quickly and inexpensively recognize COVID-19 cases from chest X-ray (CXR) images. With this motivation, this paper proposes a “CovidMulti-Net” architecture based on the transfer learning concept to classify COVID-19 cases from normal and other pneumonia cases using three publicly available datasets that include 1341, 1341, and 446 CXR images from healthy samples and 902, 1564, and 1193 CXR images infected with Viral Pneumonia, Bacterial Pneumonia, and COVID-19 diseases. In the proposed framework, features from CXR images are extracted using three well-known pre-trained models, including DenseNet-169, ResNet-50, and VGG-19. The extracted features are then fed into a concatenate layer, making a robust hybrid model. The proposed framework achieved a classification accuracy of 99.4%, 95.2%, and 94.8% for 2-Class, 3-Class, and 4-Class datasets, exceeding all the other state-of-the-art models. These results suggest that the “CovidMulti-Net” framework’s ability to discriminate individuals with COVID-19 infection from healthy ones and provides the opportunity to be used as a diagnostic model in clinics and hospitals. We also made all the materials publicly accessible for the research community at: https://github.com/saikat15010/CovidMulti-Net-Architecture.git.Competing Interest StatementThe authors have declared no competing interest.Funding StatementNAAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:All the data used in this study are publicly accessible.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll the data are publicly available as mentioned in the manuscript.