RT Journal Article SR Electronic T1 Model selection reveals the butyrate-producing gut bacterium Coprococcus eutactus as predictor for language development in three-year-old rural Ugandan children JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2021.03.15.21253665 DO 10.1101/2021.03.15.21253665 A1 Kort, Remco A1 Schlösser, Job A1 Vazquez, Alan R. A1 Atukunda, Prudence A1 Muhoozi, Grace K.M. A1 Wacoo, Alex Paul A1 Sybesma, Wilbert F.H. A1 Westerberg, Ane C. A1 Iversen, Per Ole A1 Schoen, Eric D. YR 2021 UL http://medrxiv.org/content/early/2021/03/25/2021.03.15.21253665.abstract AB Introduction The metabolic activity of the gut microbiota plays a pivotal role in the gut-brain axis through the effects of bacterial metabolites on brain function and development. In this study we investigated the association of gut microbiota composition with language development of three-year-old rural Ugandan children.Methods We studied the language ability in 139 children of 36 months in our controlled maternal education intervention trial to stimulate children’s growth and development. The dataset includes 1170 potential predictors, including anthropometric and cognitive parameters at 24 months, 542 composition parameters of the children’s gut microbiota at 24 months and 621 of these parameters at 36 months. We applied a novel computationally efficient version of the all-subsets regression methodology and identified predictors of language ability of 36-months-old children scored according to the Bayley Scales of Infant and Toddler Development (BSID-III).Results The best three-term model, selected from more than 266 million models, includes the predictors Coprococcus eutactus at 24 months of age, Bifidobacterium at 36 months of age, and language development at 24 months. The top 20 four-term models, selected from more than 77 billion models, consistently include Coprococcus eutactus abundance at 24 months, while 14 of these models include the other two predictors as well. Mann-Whitney U tests further suggest that the abundance of gut bacteria in language non-impaired children (n = 78) differs from that in language impaired children (n = 61) at 24 months. While obligate anaerobic butyrate-producers, including Coprococcus eutactus, Faecalibacterium prausnitzii, Holdemanella biformis, Roseburia hominis are less abundant, facultative anaerobic bacteria, including Granulicatella elegans, Escherichia/Shigella and Campylobacter coli, are more abundant in language impaired children. The overall predominance of oxygen tolerant species in the gut microbiota of Ugandan children at the age 24 months, expressed as the Metagenomic Aerotolerant Predominance Index (MAPI), was slightly higher in the language impaired group than in the non-impaired group (P = 0.09).Conclusions Application of the all-subsets regression methodology to microbiota data established a correlation between the relative abundance of the anaerobic butyrate-producing gut bacterium Coprococcus eutactus and language development in Ugandan children. We propose that the gut redox potential and the overall bacterial butyrate-producing capacity could be factors of importance as gut microbiota members with a positive correlation to language development are mostly strictly anaerobic butyrate-producers, while microbiota members that correlate negatively, are predominantly oxygen tolerant with a variety of known adverse effects.Competing Interest StatementThe authors have declared no competing interest.Clinical TrialNCT02098031Funding StatementThis research was funded by the Vrije Universiteit (Amsterdam, The Netherlands) and the Throne Holst Foundation (Oslo, Norway).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:All mothers gave written or thumb-printed, informed consent to participate and could decline an interview or assessment at any time. The study was approved by The AIDS Support Organisation Research Ethics Committee (no. TASOREC/06/15-UG-REC-009) and by the Uganda National Council for Science and Technology (no. UNCST HS 1809) as well as by the Norwegian Regional Committee for Medical and Health Research Ethics (no. 2013/1833).All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data in this manuscript is available in the supplemental file S1 and accessible at BioProject PRJNA517509 https://www.ncbi.nlm.nih.gov/bioproject/517509