RT Journal Article SR Electronic T1 Altered transcriptome-proteome coupling indicates aberrant proteostasis in Parkinson’s disease JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2021.03.18.21253875 DO 10.1101/2021.03.18.21253875 A1 Dick, Fiona A1 Tysnes, Ole-Bjørn A1 Alves, Guido Werner A1 Nido, Gonzalo S. A1 Tzoulis, Charalampos YR 2021 UL http://medrxiv.org/content/early/2021/03/20/2021.03.18.21253875.abstract AB The correlation between mRNA and protein levels has been shown to decline in the ageing brain, possibly reflecting age-dependent changes in the proteostasis. It is thought that impaired proteostasis may be implicated in the pathogenesis of Parkinson’s disease (PD), but evidence derived from the patient brain is currently limited. Here, we hypothesized that if impaired proteostasis occurs in PD, this should be reflected in the form of altered correlation between transcriptome and proteome compared to healthy ageing.To test this hypothesis, we integrated transcriptomic data with proteomics from prefrontal cortex tissue of 17 PD patients and 11 demographically matched healthy controls and assessed gene-specific correlations between RNA and protein level. To control for the effects of ageing, brain samples from 4 infants were included in the analyses.In the healthy aged brain, we observed a genome-wide decreased correlation between mRNA and protein levels. Moreover, a group of genes encoding synaptic vesicle proteins exhibited inverse correlations. This phenomenon likely reflects the spatial separation of mRNA and protein into the neuronal soma and synapsis, respectively, commonly characterizing these genes. Most genes showed a significantly lower correlation between mRNA and protein levels in PD compared to neurologically healthy ageing, consistent with a proteome-wide decline in proteostasis. Genes showing an inverse correlation in PD were enriched for proteasome subunits, suggesting that these proteins show accentuated spatial separation of transcript and protein between the soma and axon/synapses in PD neurons. Moreover, the PD brain was characterized by increased positive mRNA-protein correlation for some genes encoding components of the mitochondrial respiratory chain, suggesting these may require tighter regulation in the face of mitochondrial pathology characterizing the PD brain.Our results are highly consistent with a proteome-wide impairment of proteostasis in the PD brain and strongly support the hypothesis that aberrant proteasomal function is implicated in the pathogenesis of PD. Moreover, our findings have important implications for the correct interpretation of differential gene expression studies in PD. In the presence of disease-specific altered coupling of transcriptome and proteome, measured differences in mRNA levels cannot be used to infer changes at the protein-level and should be supplemented with direct determination of proteins nominated by the analyses.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work is supported by grants from The Research Council of Norway (288164, ES633272) (https://www.forskningsradet.no/en/) and Bergen Research Foundation (BFS2017REK05) (https://mohnfoundation.no/engelsk-rekruttering/?lang=en). Both of these were received by CT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Regional Ethics committee of Western Norway (REK 2017/2082, 2010/1700, 131.04)All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe datasets supporting the conclusions of this article are included within the article and its supplementary files. The source code for the analyses and the protein and transcript counts can be requested from the corresponding author.