PT - JOURNAL ARTICLE AU - Gu, Xuelin AU - Mukherjee, Bhramar AU - Das, Sonali AU - Datta, Jyotishka TI - COVID-19 PREDICTION IN SOUTH AFRICA: ESTIMATING THE UNASCERTAINED CASES- THE HIDDEN PART OF THE EPIDEMIOLOGICAL ICEBERG AID - 10.1101/2020.12.10.20247361 DP - 2021 Jan 01 TA - medRxiv PG - 2020.12.10.20247361 4099 - http://medrxiv.org/content/early/2021/03/05/2020.12.10.20247361.short 4100 - http://medrxiv.org/content/early/2021/03/05/2020.12.10.20247361.full AB - Understanding the impact of non-pharmaceutical interventions as well as acscounting for the unascertained cases remain critical challenges for epidemiological models for understanding the transmission dynamics of COVID-19 spread. In this paper, we propose a new epidemiological model (eSEIRD) that extends the widely used epidemiological models such as extended Susceptible-Infected-Removed model (eSIR) and SAPHIRE (initially developed and used for analyzing data from Wuhan). We fit these models to the daily ascertained infected (and removed) cases from March 15, 2020 to Dec 31, 2020 in South Africa that reported the largest number of confirmed COVID-19 cases and deaths from the WHO African region. Using the eSEIRD model, the COVID-19 transmission dynamics in South Africa was characterized by the estimated basic reproduction number (R0) starting at 3.22 (95%CrI: [3.19, 3.23]) then dropping below 2 following a mandatory lockdown implementation and subsequently increasing to 3.27 (95%CrI: [3.27, 3.27]) by the end of 2020. The initial decrease of effective reproduction number followed by an increase suggest the effectiveness of early interventions and the combined effect of relaxing strict interventions and emergence of a new coronavirus variant in South Africa. The low estimated ascertainment rate was found to vary from 1.65% to 9.17% across models and time periods. The overall infection fatality ratio (IFR) was estimated as 0.06% (95%CrI: [0.04%, 0.22%]) accounting for unascertained cases and deaths while the reported case fatality ratio was 2.88% (95% CrI: [2.45%, 6.01%]). The models predict that from December 31, 2020, to April 1, 2021, the predicted cumulative number of infected would reach roughly 70% of total population in South Africa. Besides providing insights on the COVID-19 dynamics in South Africa, we develop powerful forecasting tools that enable estimation of ascertainment rates and IFR while quantifying the effect of intervention measures on COVID-19 spread.AMS Classification Place Classification here. Leave as is, if there is no classificationCompeting Interest StatementThe authors have declared no competing interest.Funding StatementThis work was supported by grants from the National Science Foundation [grant numbers DMS- 1712933 (to B.M.) and DMS-2015460 (to J.D.)] and from National Institute of Health [grant number 1 R01 HG008773-01 (to B.M.)]. The first and second author (X.G. and B.M.) would also like to thank the Center for Precision Health Data Sciences at the University of Michigan School of Public Health, The University of Michigan Rogel Cancer Center and the Michigan Institute of Data Science for internal funding that supported this research. Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:No IRB was needed.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe data of this study are openly available in the COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University at https://github.com/CSSEGISandData/COVID-19. https://github.com/CSSEGISandData/COVID-19