PT - JOURNAL ARTICLE AU - Cramer, Estee Y AU - Ray, Evan L AU - Lopez, Velma K AU - Bracher, Johannes AU - Brennen, Andrea AU - Rivadeneira, Alvaro J Castro AU - Gerding, Aaron AU - Gneiting, Tilmann AU - House, Katie H AU - Huang, Yuxin AU - Jayawardena, Dasuni AU - Kanji, Abdul H AU - Khandelwal, Ayush AU - Le, Khoa AU - Mühlemann, Anja AU - Niemi, Jarad AU - Shah, Apurv AU - Stark, Ariane AU - Wang, Yijin AU - Wattanachit, Nutcha AU - Zorn, Martha W AU - Gu, Youyang AU - Jain, Sansiddh AU - Bannur, Nayana AU - Deva, Ayush AU - Kulkarni, Mihir AU - Merugu, Srujana AU - Raval, Alpan AU - Shingi, Siddhant AU - Tiwari, Avtansh AU - White, Jerome AU - Woody, Spencer AU - Dahan, Maytal AU - Fox, Spencer AU - Gaither, Kelly AU - Lachmann, Michael AU - Meyers, Lauren Ancel AU - Scott, James G AU - Tec, Mauricio AU - Srivastava, Ajitesh AU - George, Glover E AU - Cegan, Jeffrey C AU - Dettwiller, Ian D AU - England, William P AU - Farthing, Matthew W AU - Hunter, Robert H AU - Lafferty, Brandon AU - Linkov, Igor AU - Mayo, Michael L AU - Parno, Matthew D AU - Rowland, Michael A AU - Trump, Benjamin D AU - Corsetti, Sabrina M AU - Baer, Thomas M AU - Eisenberg, Marisa C AU - Falb, Karl AU - Huang, Yitao AU - Martin, Emily T AU - McCauley, Ella AU - Myers, Robert L AU - Schwarz, Tom AU - Sheldon, Daniel AU - Gibson, Graham Casey AU - Yu, Rose AU - Gao, Liyao AU - Ma, Yian AU - Wu, Dongxia AU - Yan, Xifeng AU - Jin, Xiaoyong AU - Wang, Yu-Xiang AU - Chen, YangQuan AU - Guo, Lihong AU - Zhao, Yanting AU - Gu, Quanquan AU - Chen, Jinghui AU - Wang, Lingxiao AU - Xu, Pan AU - Zhang, Weitong AU - Zou, Difan AU - Biegel, Hannah AU - Lega, Joceline AU - Snyder, Timothy L AU - Wilson, Davison D AU - McConnell, Steve AU - Walraven, Robert AU - Shi, Yunfeng AU - Ban, Xuegang AU - Hong, Qi-Jun AU - Kong, Stanley AU - Turtle, James A AU - Ben-Nun, Michal AU - Riley, Pete AU - Riley, Steven AU - Koyluoglu, Ugur AU - DesRoches, David AU - Hamory, Bruce AU - Kyriakides, Christina AU - Leis, Helen AU - Milliken, John AU - Moloney, Michael AU - Morgan, James AU - Ozcan, Gokce AU - Schrader, Chris AU - Shakhnovich, Elizabeth AU - Siegel, Daniel AU - Spatz, Ryan AU - Stiefeling, Chris AU - Wilkinson, Barrie AU - Wong, Alexander AU - Gao, Zhifeng AU - Bian, Jiang AU - Cao, Wei AU - Ferres, Juan Lavista AU - Li, Chaozhuo AU - Liu, Tie-Yan AU - Xie, Xing AU - Zhang, Shun AU - Zheng, Shun AU - Vespignani, Alessandro AU - Chinazzi, Matteo AU - Davis, Jessica T AU - Mu, Kunpeng AU - Piontti, Ana Pastore y AU - Xiong, Xinyue AU - Zheng, Andrew AU - Baek, Jackie AU - Farias, Vivek AU - Georgescu, Andreea AU - Levi, Retsef AU - Sinha, Deeksha AU - Wilde, Joshua AU - Penna, Nicolas D AU - Celi, Leo A AU - Sundar, Saketh AU - Cavany, Sean AU - España, Guido AU - Moore, Sean AU - Oidtman, Rachel AU - Perkins, Alex AU - Osthus, Dave AU - Castro, Lauren AU - Fairchild, Geoffrey AU - Michaud, Isaac AU - Karlen, Dean AU - Lee, Elizabeth C AU - Dent, Juan AU - Grantz, Kyra H AU - Kaminsky, Joshua AU - Kaminsky, Kathryn AU - Keegan, Lindsay T AU - Lauer, Stephen A AU - Lemaitre, Joseph C AU - Lessler, Justin AU - Meredith, Hannah R AU - Perez-Saez, Javier AU - Shah, Sam AU - Smith, Claire P AU - Truelove, Shaun A AU - Wills, Josh AU - Kinsey, Matt AU - Obrecht, RF AU - Tallaksen, Katharine AU - Burant, John C AU - Wang, Lily AU - Gao, Lei AU - Gu, Zhiling AU - Kim, Myungjin AU - Li, Xinyi AU - Wang, Guannan AU - Wang, Yueying AU - Yu, Shan AU - Reiner, Robert C AU - Barber, Ryan AU - Gaikedu, Emmanuela AU - Hay, Simon AU - Lim, Steve AU - Murray, Chris AU - Pigott, David AU - Prakash, B Aditya AU - Adhikari, Bijaya AU - Cui, Jiaming AU - Rodríguez, Alexander AU - Tabassum, Anika AU - Xie, Jiajia AU - Keskinocak, Pinar AU - Asplund, John AU - Baxter, Arden AU - Oruc, Buse Eylul AU - Serban, Nicoleta AU - Arik, Sercan O AU - Dusenberry, Mike AU - Epshteyn, Arkady AU - Kanal, Elli AU - Le, Long T AU - Li, Chun-Liang AU - Pfister, Tomas AU - Sava, Dario AU - Sinha, Rajarishi AU - Tsai, Thomas AU - Yoder, Nate AU - Yoon, Jinsung AU - Zhang, Leyou AU - Abbott, Sam AU - Bosse, Nikos I AU - Funk, Sebastian AU - Hellewel, Joel AU - Meakin, Sophie R AU - Munday, James D AU - Sherratt, Katherine AU - Zhou, Mingyuan AU - Kalantari, Rahi AU - Yamana, Teresa K AU - Pei, Sen AU - Shaman, Jeffrey AU - Ayer, Turgay AU - Adee, Madeline AU - Chhatwal, Jagpreet AU - Dalgic, Ozden O AU - Ladd, Mary A AU - Linas, Benjamin P AU - Mueller, Peter AU - Xiao, Jade AU - Li, Michael L AU - Bertsimas, Dimitris AU - Lami, Omar Skali AU - Soni, Saksham AU - Bouardi, Hamza Tazi AU - Wang, Yuanjia AU - Wang, Qinxia AU - Xie, Shanghong AU - Zeng, Donglin AU - Green, Alden AU - Bien, Jacob AU - Hu, Addison J AU - Jahja, Maria AU - Narasimhan, Balasubramanian AU - Rajanala, Samyak AU - Rumack, Aaron AU - Simon, Noah AU - Tibshirani, Ryan AU - Tibshirani, Rob AU - Ventura, Valerie AU - Wasserman, Larry AU - O’Dea, Eamon B AU - Drake, John M AU - Pagano, Robert AU - Walker, Jo W AU - Slayton, Rachel B AU - Johansson, Michael AU - Biggerstaff, Matthew AU - Reich, Nicholas G TI - Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US AID - 10.1101/2021.02.03.21250974 DP - 2021 Jan 01 TA - medRxiv PG - 2021.02.03.21250974 4099 - http://medrxiv.org/content/early/2021/02/05/2021.02.03.21250974.short 4100 - http://medrxiv.org/content/early/2021/02/05/2021.02.03.21250974.full AB - Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. In 2020, the COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized hundreds of thousands of specific predictions from more than 50 different academic, industry, and independent research groups. This manuscript systematically evaluates 23 models that regularly submitted forecasts of reported weekly incident COVID-19 mortality counts in the US at the state and national level. One of these models was a multi-model ensemble that combined all available forecasts each week. The performance of individual models showed high variability across time, geospatial units, and forecast horizons. Half of the models evaluated showed better accuracy than a naïve baseline model. In combining the forecasts from all teams, the ensemble showed the best overall probabilistic accuracy of any model. Forecast accuracy degraded as models made predictions farther into the future, with probabilistic accuracy at a 20-week horizon more than 5 times worse than when predicting at a 1-week horizon. This project underscores the role that collaboration and active coordination between governmental public health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.Competing Interest StatementAV, MC, and APP report grants from Metabiota Inc outside the submitted work.Funding StatementFor teams that reported receiving funding for their work, we report the sources and disclosures below. CMU-TimeSeries: CDC Center of Excellence, gifts from Google and Facebook. CU-select: NSF DMS-2027369 and a gift from the Morris-Singer Foundation. COVIDhub: This work has been supported by the US Centers for Disease Control and Prevention (1U01IP001122) and the National Institutes of General Medical Sciences (R35GM119582). The content is solely the responsibility of the authors and does not necessarily represent the official views of CDC, NIGMS or the National Institutes of Health. Johannes Bracher was supported by the Helmholtz Foundation via the SIMCARD Information& Data Science Pilot Project. Tilmann Gneiting gratefully acknowledges support by the Klaus Tschira Foundation. DDS-NBDS: NSF III-1812699. EPIFORECASTS-ENSEMBLE1: Wellcome Trust (210758/Z/18/Z) GT_CHHS-COVID19: William W. George Endowment, Virginia C. and Joseph C. Mello Endowments, NSF DGE-1650044, NSF MRI 1828187, research cyberinfrastructure resources and services provided by the Partnership for an Advanced Computing Environment (PACE) at Georgia Tech, and the following benefactors at Georgia Tech: Andrea Laliberte, Joseph C. Mello, Richard Rick E. & Charlene Zalesky, and Claudia & Paul Raines GT-DeepCOVID: CDC MInD-Healthcare U01CK000531-Supplement. NSF (Expeditions CCF-1918770, CAREER IIS-2028586, RAPID IIS-2027862, Medium IIS-1955883, NRT DGE-1545362), CDC MInD program, ORNL and funds/computing resources from Georgia Tech and GTRI. IHME: This work was supported by the Bill & Melinda Gates Foundation, as well as funding from the state of Washington and the National Science Foundation (award no. FAIN: 2031096). IowaStateLW-STEM: Iowa State University Plant Sciences Institute Scholars Program, NSF DMS-1916204, NSF CCF-1934884, Laurence H. Baker Center for Bioinformatics and Biological Statistics. JHU_IDD-CovidSP: State of California, US Dept of Health and Human Services, US Dept of Homeland Security, US Office of Foreign Disaster Assistance, Johns Hopkins Health System, Office of the Dean at Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University Modeling and Policy Hub, Centers for Disease Control and Prevention (5U01CK000538-03), University of Utah Immunology, Inflammation, & Infectious Disease Initiative (26798 Seed Grant). LANL-GrowthRate: LANL LDRD 20200700ER. MOBS-GLEAM_COVID: COVID Supplement CDC-HHS-6U01IP001137-01. NotreDame-mobility and NotreDame-FRED: NSF RAPID DEB 2027718 UA-EpiCovDA: NSF RAPID Grant # 2028401. UCSB-ACTS: NSF RAPID IIS 2029626. UCSD-NEU: Google Faculty Award, DARPA W31P4Q-21-C-0014, COVID Supplement CDC-HHS-6U01IP001137-01. UMass-MechBayes: NIGMS R35GM119582, NSF 1749854. UMich-RidgeTfReg: The University of Michigan Physics Department and the University of Michigan Office of Research.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:UMass-Amherst IRBAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data and code referred to in the manuscript are publicly available. https://github.com/reichlab/covid19-forecast-hub/ https://github.com/reichlab/covidEnsembles https://zoltardata.com/project/44