RT Journal Article SR Electronic T1 The COVID-19 Infodemic: The complex task of elevating signal and eliminating noise JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2021.01.19.21249936 DO 10.1101/2021.01.19.21249936 A1 Desai, Tejas A1 Conjeevaram, Arvind YR 2021 UL http://medrxiv.org/content/early/2021/01/20/2021.01.19.21249936.abstract AB In Situation Report #3 and 39 days before declaring COVID-19 a pandemic, the WHO declared a -19 infodemic. The volume of coronavirus tweets was far too great for one to find accurate or reliable information. Healthcare workers were flooded with which drowned the of valuable COVID-19 information. To combat the infodemic, physicians created healthcare-specific micro-communities to share scientific information with other providers. We analyzed the content of eight physician-created communities and categorized each message in one of five domains. We coded 1) an application programming interface to download tweets and their metadata in JavaScript Object Notation and 2) a reading algorithm using visual basic application in Excel to categorize the content. We superimposed the publication date of each tweet into a timeline of key pandemic events. Finally, we created NephTwitterArchive.com to help healthcare workers find COVID-19-related signal tweets when treating patients. We collected 21071 tweets from the eight hashtags studied. Only 9051 tweets were considered signal: tweets categorized into both a domain and subdomain. There was a trend towards fewer signal tweets as the pandemic progressed, with a daily median of 22% (IQR 0-42%. The most popular subdomain in Prevention was PPE (2448 signal tweets). In Therapeutics, Hydroxychloroquine/chloroquine wwo Azithromycin and Mechanical Ventilation were the most popular subdomains. During the active Infodemic phase (Days 0 to 49), a total of 2021 searches were completed in NephTwitterArchive.com, which was a 26% increase from the same time period before the pandemic was declared (Days −50 to −1). The COVID-19 Infodemic indicates that future endeavors must be undertaken to eliminate noise and elevate signal in all aspects of scientific discourse on Twitter. In the absence of any algorithm-based strategy, healthcare providers will be left with the nearly impossible task of manually finding high-quality tweets from amongst a tidal wave of noise.Competing Interest StatementThe authors have declared no competing interest.Funding StatementNo fundingAuthor DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:exemptionAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data is available and updated at NephTwitterArchive.com https://NephTwitterArchive.com