RT Journal Article SR Electronic T1 A room, a bar and a classroom: how the coronavirus is spread through the air depends on heavily mask filtration efficiency JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.11.10.20227710 DO 10.1101/2020.11.10.20227710 A1 Srikrishna, Devabhaktuni YR 2020 UL http://medrxiv.org/content/early/2020/11/13/2020.11.10.20227710.abstract AB Background Recently the US CDC acknowledged by that the COVID-19 crisis is facilitated at least in part by aerosolized virus exhaled by symptomatic, asymptomatic, or pre-symptomatic infected individuals. Disposable N95 masks remain in short supply due to their use in healthcare settings during the Coronavirus pandemic, whereas NIOSH-approved elastomeric N95 (eN95) masks remain immediately available for use by essential workers and the general public. New reusable N95 mask options with symmetric filtration efficiency can be anticipated to be NIOSH approved in the coming months, today’s eN95 masks have asymmetric filtration efficiency upon inhalation (95%) and exhalation (well under 95%) but are available now during the Fall and Winter when Coronavirus cases are expected to peak.Methods Based on the Wells-Riley model of infection risk, we examine how the rate of transmission of the virus from one infected person in a closed, congested room with poor ventilation to several other susceptible individuals is impacted by the filtration efficiency of the masks they are wearing. Three scenarios are modeled – a room (6 people, 12’ × 20’ × 10’), a bar (18 people, 20’ × 40’ × 10’), and a classroom (26 people, 20’ × 30’ × 10’) with one infectious individual and remaining susceptibles. By dynamically estimating the accumulation of virus in aerosols exhaled by the infected person in these congested spaces for four hours using a “box model,” we compare the transmission risk (probability) when susceptible people based on a realistic hypothesis of face mask protection during inhaling and exhaling e.g. using cloth masks or N95 respirators.Results Across all three scenarios, cloth masks modeled with 30% symmetric filtration efficiency alone were insufficient to stop the spread (18% to 40% infection risk), whereas eN95 masks (modeled as 95% filtration efficiency on inhalation, 30% on exhalation) reduced the infection risk to 1.5% to 3.6%. Symmetric filtration of 80% reduces the risk to 1.7% to 4.1% and symmetric filtration of 95% would further reduce the risk to 0.11% to 0.26%.Conclusion This modeling of mask filtration efficiency suggests that the pandemic could be readily controlled within several weeks if (in conjunction with sensible hygiene) a sufficiently large majority of people wear asymmetric but higher-filtration masks (e.g. eN95) that also block aerosols whenever exposed to anyone else outside their household in order to completely stop inter-household spread.Competing Interest StatementThe authors have declared no competing interest.Funding StatementNo external funding was received for this research work.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:No IRB is required because there are no human subjects.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data used is available in the manuscript