RT Journal Article SR Electronic T1 A fair efficacy formula for assessing the effectiveness of contact tracing applications JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.11.07.20227447 DO 10.1101/2020.11.07.20227447 A1 Fowler, Adam YR 2020 UL http://medrxiv.org/content/early/2020/11/10/2020.11.07.20227447.abstract AB Mobile contact tracing apps have been developed by many countries in response to the COVID-19 pandemic. Trials have focussed on unobserved population trials or staged scenarios aimed to simulate real life. No efficacy measure has been developed that assesses the fundamental ability of any proximity detection protocol to accurately detect, measure, and therefore assess the epidemiological risk that a mobile phone owner has been placed at. This paper provides a fair efficacy formula that can be applied to any mobile contact tracing app, using any technology, allowing it’s likely epidemiological effectiveness to be assessed. This paper defines such a formula and provides results for several simulated protocols as well as one real life protocol tested according to the standard methodology set out in this paper. The results presented show that protocols that use time windows greater than 30 seconds or that bucket their distance analogue (E.g. RSSI for Bluetooth) provide poor estimates of risk, showing an efficacy rating of less than 6%. The fair efficacy formula is shown in this paper to be able to be used to calculate the ‘Efficacy of contact tracing’ variable value as used in two papers on using mobile applications for contact tracing [6]. The output from the formulae in this paper, therefore, can be used to directly assess the impact of technology on the spread of a disease outbreak. This formula can be used by nations developing contact tracing applications to assess the efficacy of their applications. This will allow them to reassure their populations and increase the uptake of contact tracing mobile apps, hopefully having an effect on slowing the spread of COVID-19 and future epidemics.Competing Interest StatementThe authors have declared no competing interest.Funding StatementI have completed this work in my spare time whilst an employee of VMware, Inc. No funding was received for this work.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:N/AAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData is available as part of the submission. Further related research can be found on https://vmware.github.io/herald