RT Journal Article SR Electronic T1 Characterising heterogeneity and sero-reversion in antibody responses to mild SARS⍰CoV-2 infection: a cohort study using time series analysis and mechanistic modelling JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.11.04.20225920 DO 10.1101/2020.11.04.20225920 A1 Manisty, C A1 Treibel, TA A1 Jensen, M A1 Semper, A A1 Joy, G A1 Gupta, RK A1 Cutino-Moguel, T A1 Andiapen, M A1 Jones, J A1 Taylor, S A1 Otter, A A1 Pade, C A1 Gibbons, JM A1 Lee, WYJ A1 Jones, M A1 Williams, D A1 Lambourne, J A1 Fontana, M A1 Altmann, DM A1 Boyton, RJ A1 Maini, MK A1 McKnight, A A1 Brooks, T A1 Chain, B A1 Noursadeghi, M A1 Moon, JC A1 , YR 2020 UL http://medrxiv.org/content/early/2020/11/06/2020.11.04.20225920.1.abstract AB Background SARS-CoV-2 serology is used to identify prior infection at individual and at population level. Extended longitudinal studies with multi-timepoint sampling to evaluate dynamic changes in antibody levels are required to identify the time horizon in which these applications of serology are valid, and to explore the longevity of protective humoral immunity.Methods Health-care workers were recruited to a prospective cohort study from the first SARS-CoV-2 epidemic peak in London, undergoing weekly symptom screen, viral PCR and blood sampling over 16-21 weeks. Serological analysis (n=12,990) was performed using semi-quantitative Euroimmun IgG to viral spike S1 domain and Roche total antibody to viral nucleocapsid protein (NP) assays. Comparisons were made to previously reported pseudovirus neutralising antibody measurements.Findings A total of 157/729 (21.5%) participants developed positive SARS-CoV-2 serology by one or other assay, of whom 31.0% were asymptomatic and there were no deaths. Peak Euroimmun anti-S1 and Roche anti-NP measurements correlated (r=0.57, p<0.0001) but only anti-S1 measurements correlated with near-contemporary pseudovirus neutralising antibody titres (measured at 16-18 weeks, r=0.57, p<0.0001). By 21 weeks’ follow-up, 31/143 (21.7%) anti-S1 and 6/150 (4.0%) anti-NP measurements reverted to negative. Mathematical modelling suggested faster clearance of anti-S1 compared to anti-NP (median half-life of 2.5 weeks versus 4.0 weeks), earlier transition to lower levels of antibody production (median of 8 versus 13 weeks), and greater reductions in relative antibody production rate after the transition (median of 35% versus 50%).Interpretation Mild SARS-CoV-2 infection is associated with heterogenous serological responses in Euroimmun anti-S1 and Roche anti-NP assays. Anti-S1 responses showed faster rates of clearance, more rapid transition from high to low level production rate and greater reduction in production rate after this transition. The application of individual assays for diagnostic and epidemiological serology requires validation in time series analysis.Funding Charitable donations via Barts CharityEvidence before this study We searched PubMed, medRxiv, and bioRxiv for [“antibody” OR “serology”] AND [“SARS-CoV-2” OR “COVID-19”]. The available literature highlights widespread use of serology to detect recent SARS-CoV-2 infection in individual patients and in population epidemiological surveys. Antibody to virus spike protein S1 domain is widely reported to correlate with neutralising antibody titres. The existing assays have good sensitivity to detect seroconversion within 14 days of incident infection, but the available longitudinal studies have reported variable rates of decline in antibody levels and reversion to undetectable levels in some people over 3 months. High frequency multi-time point serology data for different antibody targets or assays in longitudinal cohorts from the time of incident infection to greater than 3 months follow up are lacking.Added value of this study We combine detailed longitudinal serology using the Euroimmun anti-S1 and Roche anti-nucleocapsid protein (NP) assays in 731 health care workers from the time of the first SARS-CoV-2 epidemic peak in London, UK. In 157 seroconverters (using either assay) we show substantial heterogeneity in semiquantitative antibody measurements over time between individuals and between assays. Mathematical modelling of individual participant antibody production and clearance rates in individuals with at least 8 data points over 21 weeks showed anti-S1 antibodies to have a faster clearance rate, earlier transition from the initial antibody production rate to lower rates, and greater reduction in antibody production rate after this transition, compared to anti-NP antibodies as measured by these assays. As a result, Euroimmun anti-S1 measurements peaked earlier and then reduced more rapidly than Roche anti-NP measurements. In this study, these differences led to 21% anti-S1 sero-reversion, compared to 4% anti-NP sero-reversion over 4-5 months.Implications of all of the available evidence The rapid decline in anti-S1 antibodies measured by the Euroimmun assay following infection limits its application for diagnostic and epidemiological screening. If generalisable, these data are consistent with the hypothesis that anti-S1 mediated humoral immunity may not be sustained in some people beyond the initial post-infective period. Further work is required to understand the mechanisms behind the heterogeneity in antibody kinetics between individuals to SARS-CoV-2. Our data point to differential mechanisms regulating humoral immunity against these two viral targets.Competing Interest StatementThe authors have declared no competing interest.Clinical TrialNCT04318314Clinical Protocols https://wellcomeopenresearch.org/articles/5-179 Funding StatementFunding for COVIDsortium was donated by individuals, charitable Trusts, and corporations including Goldman Sachs, Citadel and Citadel Securities, The Guy Foundation, GW Pharmaceuticals, Kusuma Trust, and Jagclif Charitable Trust, and enabled by Barts Charity with support from UCLH Charity. Wider support is acknowledged on the COVIDsortium website. Institutional support from Barts Health NHS Trust and Royal Free NHS Foundation Trust facilitated study processes, in partnership with University College London and Queen Mary University London. Serology tests (anti-S1 and anti-NP) were funded by Public Health England. JCM, CM and TAT are directly and indirectly supported by the University College London Hospitals (UCLH) and Barts NIHR Biomedical Research Centres and through the British Heart Foundation (BHF) Accelerator Award (AA/18/6/34223). TAT is funded by a BHF Intermediate Research Fellowship (FS/19/35/34374). MN is supported by the Wellcome Trust (207511/Z/17/Z) and by NIHR Biomedical Research Funding to UCL and UCLH. RJB/DMA are supported by MRC Newton (MR/S019553/1 and MR/R02622X/1), NIHR Imperial Biomedical Research Centre (BRC):ITMAT, Cystic Fibrosis Trust SRC, and Horizon 2020 Marie Curie Actions. MKM is supported by the UKRI/NIHR UK-CIC grant, a Wellcome Trust Investigator Award (214191/Z/18/Z) and a CRUK Immunology grant (26603) AM is supported by Rosetrees Trust, The John Black Charitable Foundation, and Medical College of St Bartholomews Hospital Trust. RKG is funded by National Institute for Health Research (DRF-2018-11-ST2-004). The funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication. Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The study was approved by a UK Research Ethics Committee (South Central - Oxford A Research Ethics Committee, reference 20/SC/0149).All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe COVIDsortium Healthcare Workers consortium was prospectively designed to create a bioresource with high-dimensional sampling including viral PCR swabs, serology and PBMCs over an initial 20 weeks and pending 6-month and 1 year timepoints (study protocol has been published and is available online https://covid-consortium.com). Applications for access to the individual participant de-identified data (including data dictionaries) and samples can be made to the access committee via an online application https://covid-consortium.com/application-for-samples/. Each application will be reviewed, with decisions to approve or reject an application for access made on the basis of (i) accordance with participant consent and alignment to the study objectives (ii) evidence for the capability of the applicant to undertake the specified research and (iii) availability of the requested samples. The use of all samples and data will be limited to the approved application for access and stipulated in the material and data transfer agreements between participating sites and investigators requesting access. https://covid-consortium.com/application-for-samples/