RT Journal Article SR Electronic T1 Evaluating the use of the reproduction number as an epidemiological tool, using spatio-temporal trends of the Covid-19 outbreak in England JF medRxiv FD Cold Spring Harbor Laboratory Press SP 2020.10.18.20214585 DO 10.1101/2020.10.18.20214585 A1 Sherratt, Katharine A1 Abbott, Sam A1 Meakin, Sophie R A1 Hellewell, Joel A1 Munday, James D A1 Bosse, Nikos A1 CMMID Covid-19 working group A1 Jit, Mark A1 Funk, Sebastian YR 2020 UL http://medrxiv.org/content/early/2020/10/20/2020.10.18.20214585.abstract AB The time-varying reproduction number (Rt: the average number secondary infections caused by each infected person) may be used to assess changes in transmission potential during an epidemic. Since new infections usually are not observed directly, it can only be estimated from delayed and potentially biased data. We estimated Rt using a model that mapped unobserved infections to observed test-positive cases, hospital admissions, and deaths with confirmed Covid-19, in seven regions of England over March through August 2020. We explored the sensitivity of Rt estimates of Covid-19 in England to different data sources, and investigated the potential of using differences in the estimates to track epidemic dynamics in population sub-groups.Our estimates of transmission potential varied for each data source. The divergence between estimates from each source was not consistent within or across regions over time, although estimates based on hospital admissions and deaths were more spatio-temporally synchronous than compared to estimates from all test-positives. We compared differences in Rt with the demographic and social context of transmission, and found the differences between Rt may be linked to biased representations of sub-populations in each data source: from uneven testing rates, or increasing severity of disease with age, seen via outbreaks in care home populations and changing age distributions of cases.We highlight that policy makers should consider the source populations of Rt estimates. Further work should clarify the best way to combine and interpret Rt estimates from different data sources based on the desired use.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThe following funding sources are acknowledged as providing funding for the named authors. Wellcome Trust (210758/Z/18/Z: JDM, JH, KS, NIB, SA, SFunk, SRM). This research was partly funded by the Bill & Melinda Gates Foundation (INV-003174: MJ). This project has received funding from the European Union's Horizon 2020 research and innovation programme - project EpiPose (101003688: MJ). The following funding sources are acknowledged as providing funding for the working group authors. Alan Turing Institute (AE). BBSRC LIDP (BB/M009513/1: DS). This research was partly funded by the Bill & Melinda Gates Foundation (INV-001754: MQ; INV-003174: KP, MJ, YL; NTD Modelling Consortium OPP1184344: CABP, GFM; OPP1180644: SRP; OPP1183986: ESN; OPP1191821: KO'R, MA). BMGF (OPP1157270: KA). DFID/Wellcome Trust (Epidemic Preparedness Coronavirus research programme 221303/Z/20/Z: CABP, KvZ). DTRA (HDTRA1-18-1-0051: JWR). Elrha R2HC/UK DFID/Wellcome Trust/This research was partly funded by the National Institute for Health Research (NIHR) using UK aid from the UK Government to support global health research. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care (KvZ). ERC Starting Grant (#757699: JCE, MQ, RMGJH). This project has received funding from the European Union's Horizon 2020 research and innovation programme - project EpiPose (101003688: KP, MJ, PK, RCB, WJE, YL). This research was partly funded by the Global Challenges Research Fund (GCRF) project 'RECAP' managed through RCUK and ESRC (ES/P010873/1: AG, CIJ, TJ). HDR UK (MR/S003975/1: RME). MRC (MR/N013638/1: NRW). Nakajima Foundation (AE). NIHR (16/136/46: BJQ; 16/137/109: BJQ, CD, FYS, MJ, YL; Health Protection Research Unit for Immunisation NIHR200929: NGD; Health Protection Research Unit for Modelling Methodology HPRU-2012-10096: TJ; NIHR200929: FGS, MJ; PR-OD-1017-20002: AR, WJE). Royal Society (Dorothy Hodgkin Fellowship: RL; RP\EA\180004: PK). UK DHSC/UK Aid/NIHR (ITCRZ 03010: HPG). UK MRC (LID DTP MR/N013638/1: GRGL, QJL; MC_PC_19065: AG, NGD, RME, SC, TJ, WJE, YL; MR/P014658/1: GMK). Authors of this research receive funding from UK Public Health Rapid Support Team funded by the United Kingdom Department of Health and Social Care (TJ). Wellcome Trust (206250/Z/17/Z: AJK, TWR; 206471/Z/17/Z: OJB; 208812/Z/17/Z: SC; 208812/Z/17/Z: SFlasche). No funding (AKD, AMF, AS, CJVA, DCT, JW, KEA, SH, YJ, YWDC)Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Ethical approval was not required for this study, which used anonymised public secondary data sources only.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe code that supports the findings of this study is available on Github, DOI: 10.5281/zenodo.4029075. Other sources of data were derived from the linked resources available in the public domain. https://github.com/epiforecasts/rt-comparison-uk-public https://github.com/beoutbreakprepared/nCoV2019/tree/master/latest_data https://www.health.org.uk/news-and-comment/charts-and-infographics/covid-19-policy-tracker https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland https://www.gov.uk/government/publications/national-covid-19-surveillance-reports. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/numberofdeathsincarehomesnotifiedtothecarequalitycommissionengland