Appendix B: CurveFit Tool and Analyses

Abstract

This Appendix gives details for the CurveFit program and related analyses, including age
standardization, and peak detection, which are used together with the tool to obtain the estimates
for the Covid-19 death rates in the public-facing tool https://covid19.healthdata.org/. The report
includes methods used to create the initial estimates, as well as updates that have been developed
over the last three weeks. The tool allows multiple functional forms, covariates, link functions,
and prior specifications, that can be used as we learn more about Covid-19. A Gaussian form for
daily deaths remains the workhorse functional form used thus far. To fit distributions of daily
deaths, which exhibit asymmetry and flat peaks across locations, we fit a linear combination of
Gaussian atoms to the data. Uncertainty is estimated in all cases using a model-agnostic predictive
validity framework, also detailed in the report. The mathematical methods are open source, and
the repository cited in the introduction is updated as the work continues to evolve.

1. Introduction

Overview. The CurveFit package, available at https://github.com/ihmeuw-msca/CurveFit, is used by
IHME to estimate and forecast deaths across locations'. General changes in data, covariates, and
models are described on the main website? as the approach evolves.

The forecasts for Covid-19 deaths and equipment need assume that:

(1) All social distancing measures that are in place will stay in place.

(2) Any remaining restrictions will be put in place within a fixed number of days.

The time before the remaining social distancing measures are to be implemented was assumed to
be 7 days prior to April 17 forecasts, and 21 days for forecast published on April 17 and afterwards.

CurveFit Model. CurveFit supports parametrized curves that can be fit to data, modeling param-
eters using covariates, and post-processing, such as fitting linear combinations of CurfeFit models.
We focus on parametric and semi-parametric inference (in contrast to fully nonparametric inference,
e.g. fitting tools with splines [10]) for several reasons:

e Parametric functions capture key signals from noisy data due to simple parametrization.
e Parameters are interpretable, and can be modeled using covariates in a transparent way.
e Parametric forms allow for more stable inversion approaches, for current and future work.

e Parametric functions impose rigid assumptions that make forecasting more stable.

Roadmap. The Appendix proceeds as follows. Age-standardization, an important pre-processing
step done for each forecasted location before running CurveFit, is described in Section 2. For the
Covid model, we considered sigmoidal shapes, described in Section 3. Assumptions on noise and
relationships between locations are specified through the statistical model, discussed in Section 4.
Covariate definitions for original and updated analyses are given in Section 5. Assumptions and
expert knowledge can be communicated to the model through priors and constraints, described in
Section 6. All estimation is carried out using an optimization procedure, described in Section 7.
The extended model that fits a constrained linear combination of Gaussian atoms discovered by
fitting the basic CurveFit model is given in Section 8. Posterior uncertainty is estimated from the
fits using a prediction validity framework described in Section 9. Automatic peak detection used to
get a set of likely peaked locations for further expert vetting using splines with shape constraints
is detailed in Section 10. Current settings used to obtain fits are summarized in Section 11.

2. Age Standardization

In an effort to control for the confounding effect of age structure variation across the geographic
units for which we estimate COVID-19 deaths, we run separate model pipelines for each location,
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standardizing all data to that location’s population age structure. The key pre-processing step
before the analysis is to convert the reported cumulative deaths in our dataset into death rates
using the most recent available population data from the Global Burden of Disease 2019 study.

We use the average age pattern of COVID-19 mortality rates in 10-year age bands up to a
terminal group 80+ based on data from Hubei, Italy, Republic of Korea, and the United States as a
reference mortality rate by age m/. We then derive an implied mortality rate m{ using those data
and the age-specific population of each location in the model dataset pg ;.

80+
m; _ Z Mg X Pa,l
b
a=[0—9]
We can then adjust the reference age pattern by the ratio of the observed mortality rate on a given

location-day mj , to the implied mortality rate to produce a series of age-specific mortality rates
Ma,1,q4 representative of each datapoint.

804+] r[80+] m?,d
{ma’lvd}a:[O—Q] = {ma}a:[o—g] m

Lastly, we apply the population structure in the model location p,,, to the age-specific mortality
rates created from each data point, resulting in an age-standardized mortality rate mj'3.

Z[aoﬂ Ma,l,d X Pa,m,;
a=[0—9]

pm,l

The natural log of the age-standardized mortality rate is then used as input data to the CurveF'it
model.

3. Functional Form for Covid-19

We considered several functional forms to model the death rate of the Covid-19 virus. Based on
currently available data, the log rate starts slowly, increases quickly, and then flattens out again as
either social distancing or saturation goes into effect. This is the classic sigmoid shape. We first
tried building the analysis using the sigmoidal function
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Figure 1. Expit function D (left) and ERF function D (right). The ERF function fits the available Covid-19 data better than Expit.

~ . _ p
Dt 8,p) = 7 exp(—a(t — B))

where p controls the level, § the shift, and « the growth. Here and below, we refer to funda-
mental quantities, here p, 5, @ as parameters.
We then discovered that the ERF error function provided a better fit to the data:

a(t—p)
0

CurveFit allows the user to specify an arbitrary parameterized functional form, so that other
models could be considered as more data becomes available. We can fit in four spaces:

e Log space: log (data) vs. log(D)



e Linear space: data vs. D
e Derivative of log space: increments of log data vs. derivative of log(D)
e Derivative of linear space: increments of data vs. derivative of D.

For the D functional form, the three parameters are:
e Level: p controls the maximum asymptotic level that the rate can reach
e Slope: «a controls the speed of the infection
e Inflection: f is the time at which the rate of change of D is maximal.

These interpretations are clear from the following derivative computations:

Logistic Function.
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It is clear that 5'(1&) is maximized at t = 3, since the numerator of D" is then equal to 0, that is
the infection point occurs at ¢ = 3. Plugging in, the maximum value of D’ is given by

-5,tmax:1£~
(s = &

We can also obtain a simple expression for D" (t) at t = 0:
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ERF Function.
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It is clear that D’(t) is maximized at t = f3, since at that value D”(t) = 0. Plugging in, the
maximum value of D’(¢) is given by

pa
D' () max = —=.
(o = 22
For the ERF function, we also have a simple expression for the rate of change of daily deaths at
t=0: )
2
D"(0) = Z7=(aB) exp (~(aB)’) (2)
In both functional forms, the maximal D’ expressions are proportional to pa, and the rates of
changes D" at t = 0 (and at other specified times) are strongly dependent on the quantity a/.

Asymmetric Extensions. We also considered asymmetric forms, such as a switched Gaussian
devised by one of the team members. For the ongoing analyses, we still use a symmetric form, but
fit to data using a linear combination of the inferred peaks described in Section 8. This approach
has proven robust, while also fitting a variety of asymmetric data without relying on a particular
functional form with additional parameters.

To capture variation across location, we have to model the relationships of parameters using
covariates and random effects. These specifications are given in the next section.



4. Statistical Specification

Statistical assumptions link parameters together across locations. Statistical models introduce
variables that can be inferred to describe these relationships. CurveFit allows any parameter
to be specified using both a link function and covariates using the generalized linear modeling
framework [7]:

parameter = LinkFunction(covariate * multiplier + random effect).

The covariate value is provided by the user (for example, a measure of social distancing), while the
multiplier and random effect are both variables that are solved for using an optimization procedure
from the data. Here and below, we use ‘variables’ to refer to quantities solved for by an
algorithm. We use the word ‘parameters’ only when talking about («, 3, p).

For the Covid-19 model, there are two link functions:

e identity for modeling the 8 parameter, and

e exponential function to ensure that o and p parameters are positive.

The ability to parametrize by covariates is a key functionality of the model. For example, the only
covariate used in the death rate model for the current estimate is based on the duration between
a threshold of the rate and social distancing policy, and this covariate drives the inference of the
covariate multiplier for the inflection point or the level in the models we consider for the analysis.
As more data becomes available, CurveFit can be used to incorporate additional understanding to
further link the covariates.

To finish the specification, we give an important modeling example that is used for current
estimates. The covariate links the inflection points §; across locations [. The observation model is

log(cumulative death rate in location [ at time t) = log(D(¢; au, Bi,p1)) + errory

and the remaining specification is

o = exp(pta + ua)
B = (v + uQ)Covariatel (3)
p' = explip + uy)

In this example,

o 1, and p, are intercepts (in log space) that capture average behavior of parameters o' and
p' across locations

e vl and ué are random effects that multiplicatively adjust exp(pa) and exp(up) to each location
e /i, is the average covariate multiplier that controls the peak

° ulw are random effects on slope that adjust the covariate multiplier to each location.

5. Covariate Definitions

The covariate in the CurveFit model (3) is very important in being able to predict the peak. The
information used to construct the covariate has evolved between the initial posting of the model and
the current iteration, and the procedure is briefly described here. The procedure describes creation
of multiple covariates by treating the available information differently, to create a set of models in
the model pool that are then ensembled to create the final estimates as discussed in Section 11.

5.1. Social Distancing Covariates Prior to Social Mobility Data

Before social distancing data was available and had been processed by the team, government man-
dates across locations were used to construct the covariate to capture social distancing (see Sup-
plementary Information). Specifically, covariates of days with expected exponential growth in the
cumulative death rate were created using information on the number of days after the death rate
exceeded 0.31 per million to the day when 4 different social distancing measures were mandated
by local and national governments: school closures, non-essential business closures, stay-at-home
recommendations, and severe local travel restrictions including public transport closures. Three
different weighting schemes to create covariates were considered:

1. Days with 1 measure were counted as 0.67 equivalents, days with 2 measures as 0.334 equiv-
alents and with 3 or 4 measures as 0;



2. Days with 1 measure were counted as 0.86, 2 measures as 0.57, and 3 or 4 as 0
3. Days with 1 or 2 measures are counted fully, and 3 or 4 counted as 0.

For locations that have not yet implemented all of the closure measures, the forecasts assumed that
the remaining measures would be put in place within 1 week of the data of analysis. This lag between
reaching a threshold death rate and implementing more aggressive social distancing was combined
with the observed period of exponential growth in the cumulative death rate seen in Wuhan after
Level 4 social distancing was implemented, adjusted for the median time from incidence to death.
For ease of interpretation of statistical coefficients, this covariate was normalized so the value for
Wuhan was 1.

5.2. Using Social Mobility Data

The model run on April 17 and future updates use population-level mobility data to better reflect
how populations are changing their behavior once distancing mandates are implemented. That
means we now inform our model predictions by including information on how populations are
responding to different distancing measures.

We use social mobility data from Descartes Labs®, SafeGraph?®, and Google (via their COVID-
19 Community Mobility Reports)® in relation to each type of distancing policy implemented. All
three mobility datasets are available for the US, while the Google mobility dataset is the only one
that includes European countries.

Each dataset is analyzed separately to estimate the percentage reduction in mobility associated
with each of our six social distancing measures. We then use these estimates as weights to construct
a single covariate for predicting the epidemic peak in each location, see Table 1. We produce three
distinct versions of the social distancing covariate (i.e., one based on data from Descartes Lab, one
from SafeGraph, and one from Google). We run the COVID-19 death model for each of the three
versions of the social distancing covariate and then ensemble them into a single set of predictions.

Table 1. Mobility weights

Any Gathering Restrictions | Stay at Home | Ed. Fac. Closed | Any Business Closures | Non-ess. Serv. Closed
Descrates 0.129 0.206 0.274 0.212 0.178
Google 0.222 0.081 0.37 0.176 0.151
Safegraph 0.206 0.277 0.201 0.141 0.175

We use “Any gathering restrictions” as an incremental implementation of “People instructed to
stay at home”, so the full mandate is the sum of weights in the first two columns of Table 1. The
same is true of “Any business closures” and “Non-essential services closed”. Using these values, we
determine the weighted average of days without each mandate. For example, when using Descrates
data, the weighted average for a given location using Table 1 is computed as below:

0.129 * (Days without any gathering restrictions) + 0.206 * (Days without a stay home order) +
0.274 * (Days with open educational facilities) + 0.212* (Days without any business closure) +
0.178 *(Days without a non-essential services closed order).

As done in Section 5.1, this composite measure is then combined with the empirical closure
to peak duration (21 days), and normalized based on the Wuhan value (so Wuhan has value 1).
Since switching to these weights, we have also revised the duration of time before unimplemented
mandates are presumed to be in place from 1 week to 3 weeks in the future from the day at which
the forecast is obtained.

6. Specifying Priors and Constraints

The CurveFit tool lets the user specify prior knowledge using two interfaces: Bayesian priors
and constraints. Both types of information can be used to inform estimation of all parameters and
covariate multipliers. In the sections below we discuss simple priors, box constraints, and functional
priors.

6.1. Simple priors

CurveFit assumes that prior distributions are Gaussian N (i, o), where the parameter y encodes
the prior belief, while o2 specifies confidence in this belief.

3https://github.com/descarteslabs/DL-COVID-19
4https://www.safegraph.com/dashboard/covid19-commerce-patterns?is=5¢8b94eac6a05447bd786ac9
Shttps://www.google.com/covid19/mobility/



6.2. Box constraints
Constraints are assumed to be simple bound constraints, that is, we can specify

lower bound < parameter < upper bound

for any parameter we wish to infer. Since the functional form D is highly nonlinear, constraints
are very useful in stabilizing the numerical solution of the inference problem and communicating
model assumptions about parameters in a simple way. Constraints guarantee that parameters will
stay in a certain range, but do not prescribe any particular value in that range.

6.3. Functional priors

The behavior of nonlinear curves often depends on coupled relationships between parameters. For
example, rates of change of daily deaths D" depend on all three parameters (p, a, 3), see (1) and (2),
and strongly depend on the quantity . CurveFit therefore allows functional priors, which for the
logistic functions can be written as

fle, B,p) ~ N(p,0).

These priors can be used when the generalizable quantity (i.e. information we learn from locations
with a lot of data) is a function of the modeled parameters.

7. Optimization Procedure

The final optimization problem includes the GLM specifications such as (3), along with Gaussian
priors (simple and functional) and bound constraints. The fitting problem in the current version of
CurveFit is thus a bound-constrained nonlinear least squares problem. To solve this optimization
problem, we use the L-BFGS-B algorithm [11], implemented in SciPy®.

The L-BFGS-B algorithm requires derivatives of the objective function. We use numerical
differentiation, implemented using the complex step method, to compute these derivatives for any
user-specified functional form [5]. Complex step is a simple variant of Algorithmic Differentiation
(AD) [2]. More sophisticated packages are being tested, but if adopted will impact speed of the
method rather than results.

Since the curves are highly nonlinear, the nonlinear least squares problem is highly nonconvex,
and therefore initialization is important. When fitting a joint model for multiple locations, we
initialize values of the random effects parameters to their location-specific fits, and then run the
full optimization model as specified in Section 4 from this starting point.

8. Curve Fitting Extension Using Gaussians Atoms

As we see more and more data across locations, it is clear that while some peaks follow the classic
Gaussian shape in daily deaths, many do not. Some peaks are wider, some trajectories are asym-
metric, and overall there is a fair amount of variation in the shape of the curves we see directly in
the data.

To balance model flexibility (fitting data) with generalizability (forecasting potential epidemic
trajectories), we use a semi-parametric modeling framework, building on the basic CurveFit result.
The steps are as follows:

e We fit a particular CurveFit model to a given location using the social distancing covariate,
to fit its v multiplier, «, and p (see (3)). This gives the atom specification for the next step.

e Given the atom, we use a semi-parametric fit of staggered atoms to data. Specifically, we
consider a basis of staggered atoms 13 days, with peaks 2 days apart, centered at the inferred
peak from step 1. We fit the weights to the data as described below.

Fitting procedure. Given a set of atomic functions of time f;(¢), and all observations y; for a
given location, we fit the following model:

13
yr = Zwifi(t) + €.
i=1

Shttps:/docs.scipy.org/doc/scipy/reference/optimize.minimize-Ibfgsb.html
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The resulting models generalize the basic model used so far and better capture the signals in the
data — in particular the fitted combinations of curves can be asymmetric, and exhibit flatter regions.
Overall the approach better captures the variation in the epidemic trends that we see. At the same
time, the extended model is can still be used to forecast into the future just as in the original single
atom case.

We want to fit the data as a non-negative combination of atoms. We also put upper bound
constraints of 1 on each weight. The full fitting problem is given by

2

13
o min Z Ye — Z wifi(t) | - (4)
- t i=1

Problem (4) is a bound-constrained linear least squares problem, in particular convex, and easy to
solve. It is analogous to a spline, except that the atoms are highly structured — simple replicates of
the peak inferred from the data. Since (4) is a least squares problem with bound constraints, we
also use the L-BFGS-B routine to solve it.

Uncertainty for any model fit (including the basic fit and the extension) is computed using the
predictive validity framework, described in the next section.

9. Uncertainty Quantification

CurveFit provides draws — random realizations of the mean function — for individual locations used
in the model estimation. Location-specific samples then inform aggregate uncertainty of down-
stream estimates. To make these draws, CurveFit can use sampling based on either approximated
model-based uncertainty, or based on predictive validity. While uncertainty for the initial fore-
casts (updated March 30-April 1st) were made using model-based uncertainty (Section 9.1), the
uncertainty for the forecasts on April 5th were computed via the predictive validity framework
(Section 9.2).

9.1. Model-based uncertainty

We partition the uncertainty as coming from two sources: fixed effects and random effects. Fixed
effects in the model are average parameters across locations, and covariate multipliers. Random
effects are specific to location. Estimates of uncertainty for both pieces of the model come from
asymptotic statistical approximations (Fisher information) together with the likelihood.

Fixed Effects. For any estimator obtained by solving a nonlinear least squares problem
0= in = — 0; X)|I3

= argmin := o [ly — f(6; X)[|z-

we can approximate posterior covariance using the inverse of the Fisher information matrix:
Z(0) = VIVM(O)] = V[Jg S (f(0;X) = )] = J5 57"
where
Ty = Vo f(0;X)]o—s (%)

is the Jacobian of f(6) evaluated at the computed estimate 6. We therefore get

V() =Z(0)™ = (5 =) (6)

Random Effects. To estimate the variance at each location, we first obtain an empirical variance-
covariance matrix using the random effect fits by location, denoted by Vj.

Given a location with no observations, its uncertainty will be driven by Vi, which captures
the variation across location. However, if a location has data, we can obtain a location-specific
fit and uncertainty estimates using the location-specific likelihood. That is, with the prior Vj, the
likelihood changes to

. 1 _ 1
6: = argmin := 207V 0+ o5 lyi — fi(6: X5

and then we have
Vi0) =((J)g 571 (g + Ve )T (7)



9.2. Predictive Validity

The newer approach CurveFit uses to estimate uncertainty is based on studying how the model
performs in predicting deaths out of sample, and generalizing that performance into the future.
The framework is agnostic to the model, that is, any model that generates forecasts can be used.
The key invariant is that when obtaining residuals for a specific location, all the other data for all
the other locations are available to the model for the estimation. The main goal is to evaluate how
well the model predicts for future time points in a location given everything we know so far up to
the current time point.
The natural quantities to consider when analyzing and generalizing these errors are

e How many data points we have, and
e How far out we are forecasting.

To obtain the out of sample errors, for each location, we hold out part of the existing data
points and compute the residual between the held out data and the fitted curves. We iterate this
process, first holding out all data points except the first point, all the way through to only holding
out the last data point, fitting on all others [4]. After this analysis, for each location, we have a
triangular residual matrix with one axis corresponding to the number of data points used to fit the
curve and the other axis represents how far are we predicting out. Using mathematical notation,

we have:
1

n,th +i

— obs! i=1,... (8)

TﬁL,i = pred tl i

where [ is the index of location, n is the number of data points, t., is the time index for the n-th
data point in location [, and i represents how far we are predicting into the future. Table 2 shows
a simple hypothetical example how these residuals would be tabulated across two locations with 5

and 6 datapoints.

Table 2. Tabulating estimation errors at two hypothetical locations with 5 and 6 total datapoints.

Using datapoints:
5 {Tg,l}
4 {Ti,hri,l} {TZ,2}
3 {Té,lvrg,l} {Telx,zvrg‘z} {T§,3}
2 {7’;,1’7"3,1} {T%,Z’T%Q} {T%.37T§,3} {7"%,4}
1 {7’% 17Tf,1} {T% 277"%2} {Ti 37T%3} {T%47T% 4t {7"%5}
Predicting out: 1 2 3 4 5

Prediction space. The evaluation of residuals in (8) can be done in any space, not only to spaces
where we fit the data. Specifically, in the current models we fit the data in the log cumulative
death rate space, and evaluate the residual in the log daily death rate space. Log cumulative space
is more robust to vagaries of the data, but we want to evaluate predictions in log daily death, and
we expect less correlated residuals in log daily death space.

Aggregation and smoothing. To account for low data availability for specific locations we choose
to analyze residuals in across all locations together rather than in specific locations. More specif-
ically, if one location only has three data points, in order to understand how well we will predict
10 time points into the future past those three data points for this location, we need to utilize
information about predictive validity from other locations with more data where we have held out
all but the first three data points and predicted 10 time points into the future.
To do this aggregation over location of the residual matrix, for each number of data point n
and forecasting horizon ¢, we obtain mean and standard deviation of the residual by,
pini = mean({r’ . : | —n| < a,|i —i| < b})

X
oni =std({rl . : [n—n| <a,[i — i <b})

where a and b are the window size for the number of data points and forecasting horizon, and
we include the data across locations when compute the mean and standard deviation. To get the
estimates, we use a = b = 5. Since some number of data points n and forecasting horizons i pairs
only have a couple of contributing locations (for example, only a handful of locations have over
30 data points), we average the mean and standard deviations obtained from the aggregation step
over the same window size. After smoothing, we have clearer trends in the relationship between
the number of data points, the forecasting horizon and the standard deviation of the residuals. An
example of the result of this aggregation and smoothing process is shown in Figure 2.
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Figure 2. Smoothed standard deviation matrix.

Extrapolating averaged mean, standard deviation, and coefficient of variation values. We need
to extrapolate the above matrix to new prediction horizon and number of data point combinations.
For example, in Table 2, we don’t have any predictive validity results where we had 5 data points
and predicted out 5 into the future. In the current approach we use a simple extrapolation technique
to extend this table, first extrapolating available quantities to the right, and then down. Continuing
with the example in Table 2, we get the array in Table 3.

Table 3. Extrapolating residual matrices to new prediction horizons and number of datapoints

Pred / num: 1 2 3 4 5 6 7
i T T i
6 66,1 =051 | 06,2 =05,1 =
5 05,1 05,2 =051 | 05,3 =05,1 =
4 04,1 04,2 64,3 =042 | O4,4 =042 =
3 03,1 03,2 03,3 63,4 =033 | 03,5 =033 =
2 02,1 02,2 02,3 02,4 62,5 =02,4 | 02,6 =02,4 =
1 01,1 01,2 01,3 01,4 01,5 61,6 =015 | 01,7 =015

Generating draws for predictive validity-based uncertainty. Once we have residual standard de-
viation computed across all observed values of forecast horizon and number of data points, and
extrapolated to future values, we generate random errors appropriately around the mean curve to
simulate draws.

Specifically, for one draw, we generate one realization from a standard normal distribution and
then add on that amount of noise scaled by the standard deviation from Table 3 to the mean curve
for each prediction horizon, given the amount of data currently observed for that location. We do
this for any number of draws (for a given model this will typically be > 200 draws). Currently, we
are only incorporating standard deviation of the residuals into the uncertainty and not the mean
of the residuals.

10. Peak Analysis

In this section, we describe analyses to detect which locations have peaked, and what the likely
durations of these peaks might be. The technology to do this uses splines, and a brief primer on
splines is first provided in Section 10.1. The peak detector is then briefly described in Section 10.2,
while the duration detector is described in Section 10.3.




10.1. Splines and Spline Shape Constraints

A spline basis is a set of piecewise polynomial functions with designated degree and domain. If
we denote polynomial order by p, and the number of knots by k, we need p + k basis elements s? ,
which can be generated recursively.

Given such a basis, we can represent any dose-response relationship as the linear combination
of the spline basis elements, with coefficients 8 € RP** that are fit to data:

pt+k

F(t) = Brst(). 9)

j=1

We can impose shape constraints such as monotonicity, concavity, and convexity on splines.
Constraints on splines have been developed in the past through reformulation techniques, see e.g. [8].
We use explicit constraints instead.

Monotonicity. Spline monotonicity across the domain of interest follows from monotonicity of the
spline coefficients [1]. Given coefficients

Bn
the curve f(¢) in (9) is monotonically nondecreasing when
Br < B2 < Bn

and monotonically non-increasing if

B1>pB2> > B

Convexity and Concavity. For any twice continuously differentiable function f : R — R, convexity
and concavity are captured by the signs of the second derivative. Specifically, f is convex if f”(t) > 0
is everywhere, an concave if f”(t) < 0 everywhere. We can compute f”(t) for each interval, and
impose linear inequality constraints on these expressions.

10.2. Peak Detector

When running the model, we use peaked locations to obtain relationships between peaks and social
distancing covariates. Here we detail an automatic peak detector to give a list of potential peaked
locations for further expert vetting. For example, from the data set from 04/10/2020, the detector
selects 31 candidates from 107 locations, largely reduced the search space, and then expert consensus
is used to select the final 19 locations from this reduced set.

The detector works as follows. Since the cumulative death rate is modeled using the ERF
function, we know that the log daily death rate should roughly follow a quadratic function with
negative curvature. When the location reaches its peak, the log daily death curve should have
either almost reached or passed the part of this curve where the tangent line is horizontal, see e.g.
Emilia-Romagna in Figure 3.

To detect whether this has happened, we fit a quadratic B-spline to each location in the log daily
death rate space using the Xspline package [9], and compute the minimum of the absolute value
of the derivatives of the fitted curve. We use two knots, at 0 and 100; Xspline allows functionality
for computing derivatives of any fitted splines. To detect whether a location has peaked, we choose
a threshold and declare peaks when the minimum absolute derivative is less than this threshold
(we use 5e-3 to get 31 locations). To make the detector more accurate, we impose the requirement
that the second order derivative of the spline should be negative and we require the number of the
observations has to be greater or equal to 20.

10.3. Peak Duration

As more and more locations starting to decline in the daily death, we observe that many locations
have a flat peak of variable duration. To estimate the duration of the peak, we extend the idea of
the peak detector, fitting a concave quadratic spline in the log daily death space, also using the
Xspline package. This approach can capture the flat shape at the top of the peak, while denoising
the data through the concavity assumption. After fitting the spline, we compute derivatives of
the curve in the log daily death space. Given a threshold, we obtain the duration of the peak by
the difference between points where the relative derivative (as a fraction of maximum observed
derivative) crosses the threshold on each side of the peak.
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Figure 3. Peaked detector example for Emilia-Romagana. Dots are the data in daily and log daily death space and curve are the spline fits.

11. Model Specification for Estimates

The final results use an a model ensemble, where models in the ensemble differ by definition of the
social distancing covariate. Final estimates and uncertainty are created at the draw level. When
we have fewer than 18 datapoints, each draw from a particular model (using a particular social
distancing covariate) interpolates draws between short-range and long-range models. When we have
18 or more datapoints, we use the linear Gaussian extended model. These analyses are explained in
detail below, along with common settings and assumptions. At the end we document the ensemble.

11.1. Data processed outside of the JHU Pipeline

France. Due to out-of-hospital deaths being reported differentially to in-facility deaths in France,
we have been redistributing French data. Using data from Sante Publique’” cumulative deaths
in hospital are kept distinct from deaths reported in EHPAD (Etablissement d’hébergement pour
personnes agées dépendantes) and EMS (Etablissements medico-sociaux). We have redistributed
the deaths reported in the latter sector proportionate to the daily deaths reported in hospitals.

Spanish subnationals. With subnational locations in Spain missing from JHU, we have instead
used the Daily governmental reports from the Centro de Coordinacién de Aleras y Emergencias
Sanitarias (CCASES)®.

Catalonia addendum. In the Spanish governmental report Number 78 dated 17th April 2020,
it was noted that there was a discrepancy between reported tabulations, and that reported by
Salud Publica de Cataluna (Sub-direccié General de Vigilancia I Reposta a Emergeéncies de Salut
Publica). For the epidemiological dates 16th April onwards, we instead report the number of deaths
indicated by the Catalonian Government instead®

Germany. With subnational locations in Germany missing from JHU, we have instead used the
daily epidemiological reports from the Robert Koch Institute'®

Wuhan City, Hubei Province, China. With sub-provincial data missing from JHU, we have instead
manually extracted the time series of deaths as reported by the Health Commission of Hubei
Province!! in their daily situation report press releases.

Wuhan City addendum. On the 16th April 2020, Wuhan City death numbers were increased by
1290 deaths, and cases by 325. We have subtracted these numbers from the subsequent days of
reported cases and deaths since these deaths are known not to have occurred on the 16th April
2020, but across the months previously. We are currently withholding these deaths from the model.

United States.

e Illinois. Due to repeated inconsistences in reported cumulative total deaths between JHU and
the Illinois Department of Public Health, we replaced the JHU time series with one derived
from the Illinois Department of Public Health instead'?. Given the lack of an historical archive,

7https://dashboard.covid19.data.gouv.fr/

8https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov-China/situacionActual.htm
9https://analisi.transparenciacatalunya.cat/Salut/Incid-ncia-de-la- COVID- 19-a-Catalunya/623z-r97q
10https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Gesamt.html

H http://wjw.hubei.gov.cn/fbjd/dtyw/

12http://www.dph.illinois.gov/topics-services/diseases-and-conditions/diseases-a- z-list/coronavirus
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we used The COVID Tracking Project’s'® archive of preserved screenshots to reconstruct the
historical time series of reported total cumulative deaths.

e New York. Due to the mid-outbreak of stratification of confirmed and probable deaths in
New York City, we derived an alternative data processing workflow for New York City and
therefore New York State. We replaced the JHU New York City time series with the New
York Times New York City time series'® which more closely tracks with the time series of
confirmed deaths as indicated by New York City Health'®>. To account for the reporting of
probable deaths, for the most recent day of reporting, we take the difference between the New
York City Health total number of deaths (i.e. the sum of probable and confirmed deaths) and
subtract the New York Times reported deaths for that day, and re-distribute the remainder
proportionate to the daily deaths reported by New York Times.

e Washington. Due to the unique high-intensity epidemic in the Life Care Kirkland facility in
Washington state [6, 3] we have modeled this facility separately from the general population.
Furthermore, as our initial development of the model was focused on King and Snohomish
counties in Washington state, we have also stratified these 2 counties from the rest of Wash-
ington state. In other words, for Washington state, we model 3 populations explicitly: (i)
the Life Care Kirkland facility; (ii) the remainder of the King and Snohomish county popula-
tion; and (iii) all other counties in Washington state. Data was collected directly from each
County Health Department, with metadata on whether deaths were reported from the Life
Care Kirkland facility retained.

11.2. Pre-processing
11.2.1. Short-term Pseudo-Death data from Hospitalizations

We use what we know about the timing of the disease to generate additional short-term predicted
deaths (pseudo-data) from hospitalizations and use these in our model. On average, the time
between hospitalization and death is 8 days. Using location-specific hospitalization data which has
more than 10 deaths, we build simple measure that can help predict deaths:

cumulative deaths up to time ¢

R =
4/h = Cumulative cases up to time t — 8

If a location has more than 10 deaths, we then use a location-specific ratio and current case loads
to generate ‘pseudo-data’ for the next 8 days, and incorporate this pseudo-data into the model,
with a fractional weight of é so the model fits to real data much more strongly than pseudo-data.
If a location has fewer than 10 days, we use the average ratio and location-specific cases to predict
location-specific deaths in the next 8 days.

11.2.2. Moving average smoothing of daily deaths

We use a 3-day moving average across times (¢t — 1,¢,¢ + 1) in the space where we fit the model,
log age-standardized cumulative death rate. For the first day, where ¢ = 0, we project the average
difference in smoothed values from ¢t = 1to ¢ = 3 back from ¢ = 1. For the last day, where t = N,
we project the average difference in smoothed values from ¢t = N —3 tot = N — 1 forward. We
drop the last day from analysis if there are no new deaths reported.

11.3. Model functional form, variables, and bounds.
All of the models in the ensemble follow (3).
Measurement model.
log(cumulative death rate in location [ at time t) = log(D(t; al, ﬁl,pl)) + e
Statistical model for parameters.
o' = exp(pa + )
B = (uy + ulv)Covariatel
P = exp(pp + up)

13 https://covidtracking.com/
M https://github.com/nytimes/covid- 19-data
15https://www1.nyc.gov/site/doh/covid/covid- 19-data.page
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Error model.
2
0, O

e ~ N( )

U ~ N(0,07)
ul, ~ N(0,02)
ulh ~ N(0,03).

Simple bound constraints are also used, and Table 4 shows bounds that apply to all models. The

error model assumptions are set differentially, depending on the model, as explained in the next
sections.

(10)

Table 4. Parameter bounds and prior values common across all models. * The interpretation for g assumes
the same value of the social distancing covariate value as in Wuhan (normalized to 1).

Parameter Bounds Interpretation
Lo (=00, 0] 0<a<l1
Ly [15,100] 15 < B < 100"
o [-15,-6] | exp(—15) < p < exp(—6)

11.4. Low-Data Case: Fewer Than 18 Daily Death Datapoints

For locations that have fewer than 18 points of daily data, we generate forecasts that transition
from short-term to long-term models. This also is the way all forecasts were generated before the
April 17, 2020 update, so we give full details below.

11.4.1. Short-term models

Short-term models are specified to fit the data. In order to obtain location specific models we
e First fit peaked locations jointly to get a prior distribution

e Fit to individual locations using the prior we obtained from peaked locations.

Fitting to peaked locations. In order to obtain some of the statistics (10), we first fit a joint
model on the ‘peaked’ locations, obtained using the peak detector in Section 10.2 followed by
expert vetting of the candidates. To consider later points more than earlier points, we set

1

T 01t

(11)
With this specification of measurement error, we fit the joint model with bounds from Table 4 and
set 0o = 0p = 00, and o, = 10. From the resulting empirical distribution of v; in the peaked
locations, we then get a mean 7., and standard deviation o that we can use as a prior when fitting
individual locations.

Fitting individual locations. The individual fits are done completely independently, so each loca-
tion is fit with its own fixed-effects only model:

o = exp(ub)

B = (,ul7 )Covariate'

!
p

exp(ytp)
1 — 2
Py ™~ N(/‘w o—'y)
with only the prior on ,ufy informed by the joint fit. The variables (al, pl) can adapt to each location,
still subject to bounds in Table 4. The standard deviations are still given by (11).

11.4.2. Long-term models

The purpose of long-term models is to forecast far away, following more closely those locations that
have already peaked. Just as in the short-term case, the strategy is

e First fit peaked locations jointly to get a prior distribution

e Fit to individual locations using the prior we obtained from peaked locations.

The list of peaked locations is the same as for the short-term models, but the remaining speci-
fications are different.
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Fitting to peaked locations. In order to obtain some of the statistics (10), we again fit a joint
model on the ‘peaked’ locations.

For long-term models, we let standard errors follow a different functional form, that still em-
phasizes the latter points but not as strongly:

1

T 1.0+t
We also let the strength of the o depend on the timeliness of the datapoint, so later values

have more influence on the inferred multipliers. Specifically we use the formula

gt

(12)

O'W(t) _ 1Omin(0,max(71,t/1071.5))’ (13)

which varies between 0.1 and 1, in contrast to the value 10 used in the short-term model.
Finally, for the tight model we use a functional prior (see Section 6.3)

aff ~ N(exp(0.7),0.1) (14)

where the value exp(0.7) was obtained by fitting a regression in log-space for the quantity af to the
slopes at t = 14 days for data rich locations. We impose a prior on a3 because this term determines
the behavior of slopes of the trajectory of daily deahts D" (t), see e.g. (2).

The peaked locations again determine a mean 1z, and standard deviation o, that we use as a
prior when fitting individual locations.

Fitting to individual locations. The individual fits are again done independently, so each location
is fit with its own fixed-effects only model:

o' = exp(ul)

B = (,ulv)Covariatel
1 1

P = exp(pp)

py ~ N(f,,03)

with only the prior on pfy informed by the joint fit (using the long-term specifications). The variables
(al, pl) can adapt to each location, still subject to bounds in Table 4. The standard deviations are
given by (12), and the functional prior (14) is also used for each individual location.

11.4.3. Combining draws from long-term and short-term models

For each location, the previous sections explain how we get long-term and shor-term location-specific
fitted models, that are informed by priors estimated using peaked locations. Given a location, we
use the predicted validity framework of Section 9.2 to obtain 200 draws from each of the long-term
and short-term location-specific variants.

To create the combined 200 draws that transition smoothly from the short-term to the long-term
regime, we use simple linear interpolation in log increment space:

increment of log D = A(¢)[increment of log D (long)] + (1 — A(¢))[increment of log D (short)]

A(t) = min (1, max (0, tt :tts )) .

and where ts and t. are start and end times for the period of interest, starting with the last
datapoint and continuing to the end of the forecast horizon. The resulting draw is then constructed
by aggregating the joint increments over (ts,t.).

We illustrate these steps all together using New York as an example. Figure 4 shows four plots.
The short-term models are everywhere indicated using a red curve, while the long-term models
are shown using green. The blue curve interpolates between these at the draw level in daily death
space. Uncertainty in the plots is generated using the predictive validity framework, as described
in Sections 6 and 7.

where

11.5. Default Case: 18 or More Daily Death Datapoints

For all locations where we have 18 or more datapoints, we no longer use the short-term strategy.
Instead we use the extended model strategy detailed in Section 8.
Specifically, we follow the following steps:

e Fit a long-term specification as described in Section 11.4.2. For each location, this gives a
Gaussian atom that has its own (v, «, p) parameters.
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Figure 4. New York fits using the strategy in Section 11.4 (analysis and data from April 6). Top left: log cumulative death rate. Top right: cumulative
death rate. Bottom right: cumulative deaths. Bottom left: daily deaths. Uncertainty using the PV framework is shown using blue shading. The short-term
model is indicated by the red curve, while the long-term model is indicated by the green curve. The mean forecast, shown using the blue line, interpolates
between the short-term and long-term models in daily death space.
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Figure 5. NY fits in daily death space, using the strategy in Section 11.5 (analysis and data from April 16). The long-term model, shown in green, is
strongly tied to the social distancing covariate under-estimates the deaths time series and cannot adjust to the peak duration. The fitted linear combination
of Gaussians, shown in grey, is fit as described in Section 8, uses the green fit as an atom, and fits much better to the data. Uncertainty estimates (shown
using blue shading) for the entire procedure are obtained through the predictive validity framework described in Section 9.

e Fit location-specific combination of Gaussians using the 13 staggered peaks strategy given in
Section 8.

The effects of this approach are as follows:

1. We borrow strength across locations in obtaining the relationship between the social distancing
covariate and the peak times for places that have peaked.

2. We obtain location-specific Gaussian atoms that use the borrowed strength from the first step,
and adjust the shape of the Gaussian atom to each specific location.

3. The final location-specific forecasts for data-rich locations use a combination of these atoms
fit to the data at each location, captures individual variation, including asymmetric epidemic
shapes, flat peaks, and other anomalies.
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11.6. Ensemble over different covariate definitions.

The final estimates are created by an ensemble, at the draw level, across different model types.
Models differed by definition of the social distancing covariate. The construction of these covariates
(both for the initial and more recent estimates) is described in Section 5.

Once we have a set of covariates to ensemble over, the statistical specification and fitting pro-
cedure of each model type is specified exactly as in the previous sections. The final ensemble was
created by equally weighting draws from each type of covariate model. The process is illustrated
for New York in Figure 6 showing differences in data, analysis, and covariates between April 6th
and April 16th.

New York (location) __
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Figure 6. New York forecasts of three covariate models that are incorporated into a final ensemble. Left panel: data, analysis, and covariates from

April 6th for cumulative and daily death rates, using the analysis detailed in Section 11.4. Right panel: data, analysis, and covariates from April 16 for
cumulative and daily death counts using the analysis detailed in Section 11.5. Covariate definitions for these dates are described in Section 5.
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