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Abstract 

Importance: Down syndrome, resulting from trisomy 21, is the most prevalent chromosomal disorder and a leading 

cause of intellectual disability. Despite its significant impact on brain development, research on the white matter 

microstructure in infants with Down syndrome remains limited.  

Objective: To investigate early white matter microstructure in infants with Down syndrome using diffusion tensor 

imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). 

Design: Infants were recruited and scanned between March 2019 and May 2024 as participants in prospective 

studies conducted by the Infant Brain Imaging Study (IBIS) Network. Data were analyzed in October 2024.  

Setting: Data collection occurred at five research centers in Minnesota, Missouri, North Carolina, Pennsylvania, and 

Washington.  

Participants: Down syndrome and control infants were scanned at 6 months of age. Control infants had no Down 

syndrome diagnosis and either had a typically developing older sibling or, if they had an older sibling with autism, 

were confirmed not to meet clinical best estimate criteria for an autism diagnosis.  

Exposure: Diagnosis of Down syndrome.  

Main Outcomes and Measures: The outcome of interest was white matter microstructure quantified using DTI and 

NODDI measures.  

Results: A total of 49 Down syndrome (28 [57.14%] female) and 37 control (18 [48.65%] female) infants were 

included. Infants with Down syndrome showed significant reductions in fractional anisotropy and neurite density 

index across multiple association tracts, particularly in the inferior fronto-occipital fasciculus and superior 

longitudinal fasciculus II, consistent with reduced structural integrity and neurite density. These tracts also 

demonstrated increased radial diffusivity, suggesting delayed myelination. The inferior fronto-occipital fasciculus 

and uncinate fasciculus exhibited increased neurite dispersion and fanning in Down syndrome infants, reflected by 

elevated orientation dispersion index. Notably, the optic tracts in Down syndrome infants exhibited a distinct pattern 

of elevated fractional anisotropy and axial diffusivity, and lower radial diffusivity and orientation dispersion index, 

suggesting an early maturation of these pathways.  

Conclusions and Relevance: This first characterization of white matter microstructure in Down syndrome infants 

reveals widespread white matter developmental delays. These findings provide new insights into the early 

neurodevelopment of Down syndrome and may inform early therapeutic interventions. 
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Introduction 

Down syndrome (DS), caused by trisomy 21, is the most common genetic cause of intellectual disability, affecting 

approximately 1 in 600 newborns.1,2 It is a lifelong neurodevelopmental disorder characterized by heterogeneous 

presentation, susceptibility to regression in childhood, and increased incidence of Alzheimer’s disease (AlzD) in 

adulthood.3-5 Neuroimaging research in DS has primarily focused on older children and adults, consistently revealing 

volumetric brain reductions and white matter (WM) integrity alterations that contribute to cognitive and functional 

challenges.6-9 While previous studies in infants with DS have examined brain volume,10-12 no research has 

investigated WM microstructure at this early stage. 

Infancy is a critical period of brain development, particularly in WM maturation, marked by rapid myelination, 

heightened plasticity, and the establishment of neural pathways.13,14 Understanding neurodevelopmental differences 

at infancy can (a) provide insight into how atypical neurodevelopmental trajectories emerge, (b) establish a 

foundation for longitudinal studies to determine how these trajectories evolve and whether they predict later 

behavioral and functional outcomes, and (c) identify optimal windows for mechanistically-informed interventions 

aimed at improving long-term cognitive and adaptive functioning in DS.15,16 

Diffusion MRI, predominantly diffusion tensor imaging (DTI), has been instrumental in identifying WM 

abnormalities such as changes in fiber integrity and microstructural disruptions associated with demyelination and 

axonal damage.17-19 DTI assumes a single dominant fiber orientation per voxel, making it difficult to interpret in 

regions with intersecting fibers.20 To address this challenge, we employ Neurite Orientation Dispersion and Density 

Imaging (NODDI) to obtain a more nuanced view of WM microstructure.  

In children and young adults, WM abnormalities have been identified in key tracts, including the inferior fronto-

occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), 

corticospinal tract (CST), and uncinate fasciculus (UNC).21-23 Thus, we hypothesize that infants with DS would 

exhibit lower fractional anisotropy (FA) and altered diffusivity in these tracts, reflecting delayed or atypical 

maturation of neural pathways critical for cognitive and motor function. 

By utilizing advanced neuroimaging methods and ensuring a comprehensive assessment, the study aims to make a 

first attempt to characterize WM microstructure in infants with DS, marking a crucial step in understanding the 

neurodevelopmental trajectory of DS from its earliest stages. 
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Methods 

Study design: 

This cross-sectional study was reported following STROBE reporting guidelines. Ethical approval was obtained 

from institutional review boards at all sites that relied on a parent IRB at Washington University in St. Louis, and 

written informed consent was obtained from each participant’s parent. 

Participants: 

DS infants were reported by parents to have a diagnosis of trisomy 21 (i.e., not partial or mosaic trisomy 21) and 

recruited as part of the IBIS-DS study. Control infants without DS, recruited as part of two IBIS infant studies 

(IBIS-DS and IBIS-Early Prediction), met one of two criteria.  Either they had a TD older sibling and no sibling 

history of autism or neurodevelopmental disorders. Otherwise, if they had an older sibling with an autism diagnosis, 

they were themselves confirmed not to meet clinical best estimate criteria for an autism diagnosis at 24 months of 

age, based on DSM-IV-TR and DSM-5-TR. A background on the IBIS infant studies and detailed exclusion criteria 

are available in eMethods in Supplement 1. 

MRI Acquisition and preprocessing: 

MRI scans were acquired during natural sleep on identical Siemens Prisma 3T scanners with a 32-channel head coil. 

Diffusion-weighted images (DWIs) were acquired in anterior-posterior (AP) and posterior-anterior (PA) phase-

encoding directions, with 102 DWI volumes acquired for each AP and PA: 8 b=0, 20 b= 400, 37 b=1500, 37 

b=3000, TR= 3222ms, TE=89.20ms, 1.5mm3 voxel, TA=12min19s. Tensors metrics were computed using only 

b=400 and 1500 shells, while NODDI metrics utilized all available shells. MRI processing and quality control steps 

are described in eMethods in Supplement 1. 

A susceptibility artifact in the AP phase affecting the temporal poles was found in 50 scans (eFigure 1). Steps taken 

to remove the artifact from the analyses are detailed in eMethods in Supplement 1. 

WM Tract Measurements: 

Metrics of WM microstructure were extracted via an extended UNC-NAMIC automated fiber analysis framework 

(the detailed process is available in eMethods in Supplement 1).24,25 Drawing on previous findings in older 

children21,23, we examined 6 intrahemispheric tracts bilaterally—corticofugal prefrontal, CST, IFOF, ILF, SLF II, 

and UNC—and 3 interhemispheric tracts: the parietal portion, splenium, and tapetum of the corpus callosum (CC). 

All primary analysis tracts are displayed in Figure 1. 
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Table 1 outlines DTI and NODDI parameters and their interpretations. 

Statistical Analyses:  

All statistical analyses were performed using general linear models (GLMs) in JMP 17 Pro. 

Primary Analyses: 

For each tract, a multivariate analysis of variance (MANOVA) was conducted comparing the average values of FA, 

RD, AD, NDI, and ODI between the DS and control groups. MD was excluded to avoid multicollinearity with AD 

and RD in MANOVA, while FWF was excluded due to its sensitivity to partial volume effects, particularly in tracts 

close to the cerebrospinal fluid (CSF), like the CC. 

For tracts showing significant group differences in MANOVA, follow-up univariate analyses of variance (ANOVA) 

were conducted to identify the specific diffusion parameters significantly different between the two groups. All 

analyses were covaried by age-at-assessment in days, sex, and scan-motion quantification (defined as the number of 

diffusion volumes with significant artifacts or head motion greater than 2mm). To correct for multiple comparisons, 

Bonferroni correction was applied across all tests, accounting for 15 comparisons in MANOVA (corrected p<0.003) 

and 5 diffusion parameter comparisons in ANOVA (corrected p<0.01). All reported p-values from ANOVA tests in 

the Results section are corrected. 

Secondary Analyses: 

For tracts identified as significant in ANOVA, along-tract analyses were conducted using the Functional Analysis of 

Diffusion Tensor Tract Statistics (FADTTS) toolbox45 and its corresponding graphical user interface, FADTTSter.46 

Along-tract analyses were performed for each diffusion parameter (FA, RD, AD, NDI, ODI) identified as significant 

in prior ANOVA tests, providing a finer-grained understanding of where differences occurred in the tract. Results 

were assessed visually and statistically to interpret region-specific differences in diffusion properties. 

Finally, exploratory full-brain analyses were performed to examine all diffusion parameters (FA, AD, RD, MD, 

NDI, ODI, and FWF) across all 51 tracts (listed in eTable 1), and were conducted without correcting for multiple 

comparisons, providing a broader view of potential differences between groups. 

 

Results 

Demographics: 

A total of 49 DS and 37 control infants were included. No significant differences were observed in sex (X2=0.61, 
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p=0.43), age-at-assessment in days (p=0.12), and scan motion quantification (p=0.6). Gestational age was slightly 

higher in DS group (267 ± 9.5 days) than in control group (272 ± 9 days; p=0.015). Maternal age at birth was also 

significantly higher in DS group (36.84 ± 4.54 years) than in control group (34.16 ± 3.02 years; p=0.004), consistent 

with the increased incidence of DS with maternal age. A full summary of the demographics can be found in Table 2. 

Analysis of Variance of Diffusion Parameter Averages: 

Significant group differences were found between DS and control groups on MANOVA in the tapetum and parietal 

portions of the CC, as well as bilateral CST, IFOF, ILF, SLF II, and UNC. Left SLF II (F=12.16, p<.0001), right 

SLF II (F=10.73, p<.0001), left IFOF (F=10.57, p<.0001) and parietal CC (F=8.51, p<.0001) showed the strongest 

statistical differences on MANOVA. The splenium of the CC and bilateral corticofugal prefrontal tracts showed no 

group differences. eTable 2 details the MANOVA results. 

On ANOVA, several association tracts in DS infants showed patterns consistent with reduced structural integrity 

and neurite density, as evidenced by reduced FA and NDI, and delayed maturation indicated by increased RD. IFOF 

showed bilateral reductions in FA (Left: β=0.012, Cohen's-d=-1.37, p<.0001; Right: β=0.0087, Cohen's-d=-0.95, 

p<.0001), and NDI (Left: β=0.0069, Cohen's-d=-0.69, p<.0001; Right: β=0.0077, Cohen's-d=-0.69, p<.0001), and 

increase in RD (Left: β=-0.000014, Cohen's-d=0.94, p<.0001; Right: β=-0.000013, Cohen's-d=0.79, p<.0001) in DS 

group.  SLF II showed bilateral reductions in FA (Left: β=0.012, Cohen's-d=-1.23, p<.0001; Right: β=0.0082, 

Cohen's-d=-0.811, p=0.004), and NDI (Left: β=0.0093, Cohen's-d=-0.85, p<.0001; Right: β=0.0088, Cohen's-d=-

0.8, p<.0001), and increase in RD bilaterally (Left: β=-0.000018, Cohen's-d=1.04, p<.0001; Right: β=-0.000012, 

Cohen's-d=0.66, p<.0001) in DS group. 

IFOF and UNC also showed increased neurite dispersion and fanning bilaterally reflected by elevated ODI in DS 

group (Left IFOF: β=-0.0058, Cohen's-d=1.21, p<.0001; Right IFOF: β=-0.0039, Cohen's-d=0.79, p=0.004; Left 

UNC: β=-0.0038, Cohen's-d=0.74, p=0.023; Right UNC: β=-0.005, Cohen's-d=0.94, p=0.001). 

The parietal portion of the CC and bilateral CST demonstrated patterns of increased axonal integrity as indicated by 

elevated AD (Parietal CC: β=-0.000013, Cohen's-d=0.63, p=0.009; Left CST: β=−0.000019, Cohen's-d=0.84, 

p<.0001; Right CST: β=−0.000014, Cohen's-d=0.54, p=0.035). The tapetum of the CC showed no significant 

differences after correcting for multiple comparisons.  

Figure 2 presents violin and box plots of the significant diffusion metrics in the bilateral CST and IFOF. Table 3 

details the ANOVA results for tracts found significant on MANOVA. 
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Along-Tract Analyses: 

We conducted follow-up along-tract analyses for the diffusion parameters found significant in ANOVA to identify 

spatially-specific differences along the trajectories of fiber tracts.  

Along-tract analysis of the bilateral CST revealed significant group differences in RD in the region between the 

midbrain and the internal capsule. The left ILF showed significant differences in RD in the ventral portion of the 

tract within the temporal lobe, while the left SLF II demonstrated differences in NDI and RD in the ventral portion 

of the tract as it extends into the frontal lobe. The right IFOF revealed consistent differences in FA, RD, and NDI 

across the frontal, temporal and parietal portions of the tract. Lastly, the right UNC exhibited differences in FA and 

ODI in the frontal portion of the tract. eFigure 2 visualizes the significant p-values along the tracts. 

Exploratory Analyses: 

Exploratory analyses revealed distinct patterns in diffusion parameters between DS and control infants. FA values 

were lower in DS infants across all significant tracts except for the bilateral optic tracts, which exhibited higher FA 

values. MD values were consistently higher in DS infants, while both AD and RD values were higher in DS infants, 

with the exception of the left cingulate gyrus of the cingulum (CGC) for AD and the right optic tract for RD. 

NDI values were consistently lower in DS infants across all significant tracts. ODI values varied across tracts, with 

some showing increases and others decreases in DS infants. FWF values were lower in DS infants in all significant 

tracts except for the CST bilaterally and the right hippocampal part of the cingulum (HCG). 

Notably, the bilateral optic tracts were the only tracts to demonstrate higher FA and AD values, alongside lower RD 

and ODI values, suggesting preserved or distinct WM microstructure. 

Full statistical results across all tracts are presented in eTable 3. 

 

Discussion 

This is the first study to examine the WM microstructure in infants with DS. Findings reveal consistent patterns of 

delayed WM maturation, characterized by regional differences in neurite density, axonal growth, and myelination. 

DS infants exhibited reduced microstructural coherence and delayed myelination across multiple intrahemispheric 

tracts, including the bilateral IFOF, SLF, and UNC, indicated by significantly lower FA and elevated RD compared 

to their control counterparts. Additionally, DS infants exhibited significantly elevated RD in motor pathways such as 

the bilateral CST. These findings align with prior DS research in early childhood to adulthood.6,21-23 
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Exploratory analyses showed increased MD in specific tracts, including the frontoparietal portion of the left arcuate 

fasciculus, left SLF II, and left corticothalamic motor and premotor pathways. In typical development, myelination 

progresses posterior-to-anterior and caudal-to-rostral, with occipital/parietal lobes myelination occurring between 4–

6 months and frontal/temporal lobes between 6–8 months.47-50 As such, it is expected that tracts located in the frontal 

regions would show relatively high MD during this developmental stage. The observation that DS infants exhibited 

higher MD in these tracts, compared to controls of the same age, suggests that the typical timeline of myelination is 

delayed or disrupted in DS infants, reflecting slower and less complete myelination. 

Significant elevation in AD in DS infants was observed in both inter- and intrahemispheric tracts, including the 

CST, ILF, the parietal and tapetum portions of the CC, indicating alterations in axonal development during early 

growth. Romano et al.22 reported elevated AD in the CST of young adults with DS, as well as forceps major and 

minor. In contrast, the lower AD and FA and higher RD in the left CGC and right UNC indicate regional delays in 

axonal development and myelination, highlighting differential vulnerability of pathways associated with attention, 

memory and emotional regulation.6,51-53 

NDI was significantly reduced in DS infants across most major WM tracts, including the SLF II, IFOF, ILF, and the 

majority of the CC except the tapetum. Previous studies indicate that NDI typically reflects neurite density, which 

generally increases during the first two decades of life.40,54 Lower NDI in DS infants suggests a slower rate of 

neurite packing, particularly in axons and dendrites, during this critical developmental window. Consistent with 

Timmers et al.55 findings, NDI demonstrated greater sensitivity, identifying more tracts with lower values compared 

to FA. Combined with reductions in FA, the lower NDI provides converging evidence of global delays in WM 

maturation in DS infants. 

Changes in ODI further emphasize regional variability in neurite structure. In DS infants, increased ODI in the 

bilateral IFOF, UNC, and SLF II suggests greater neurite dispersion, aligning with findings by Garic et al.21 in 

school-aged children. This may reflect compensatory reorganization, such as axonal sprouting or delayed pruning, in 

response to reduced neurite density, as indicated by lower NDI.56,57 

In our exploratory analyses, significant reductions in FWF were observed in the CC (body, motor, parietal) and 

corticothalamic motor and right premotor tracts, which also showed concurrent reductions in NDI. This pattern 

suggests reduced neurite density without evidence of neuroinflammation. While direct evidence for elevated FWF in 

older individuals with DS is insufficient, increased FWF has been documented in older adults with AlzD.58,59 DS is 
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associated with early onset and increased prevalence of AlzD, purportedly due to the triplicated amyloid precursor 

protein on chromosome 21.5,60,61 Thus, increased FWF in older DS individuals may reflect neurodegeneration or 

inflammation similar to that seen in AlzD. However, the reduced FWF observed in DS infants suggests an absence 

of inflammatory or degenerative processes at this stage, highlighting the need for longitudinal studies to distinguish 

the pathological changes in WM across the lifespan. 

The optic tracts exhibit a distinct developmental profile, suggesting an early maturation of sensory pathways relative 

to higher-order systems. Infants with DS exhibited higher FA in the optic tracts bilaterally, consistent with findings 

from Gunbey et al.23, who observed elevated FA in the right optic tract of two-year-old children with DS. This 

increase in FA, alongside elevated AD, suggests a more linear and organized axonal structure, indicative of 

preserved neurite density in this sensory pathway. Furthermore, reduced ODI in the optic tracts aligns with these 

findings, reflecting less dispersion and greater coherence in fiber orientation, consistent with early maturation 

typical of the visual pathway.62,63 However, this early structural advantage does not necessarily translate to 

functional gains over time, as studies show that visual acuity plateaus after two years in children with DS,64 while it 

continues to improve in TD peers.65,66 

Along-tract analyses offer a detailed spatially specific assessment of WM changes compared to whole-tract average 

diffusion parameters.67,68 Findings revealed localized alterations in the bilateral CST, left SLF II and ILF, and right 

IFOF and UNC. However, the absence of significant along-tract findings in other tracts, despite group differences 

detected in average parameter analyses, could be attributed to the increased number of comparisons required by 

along-tract approaches, which demand a larger sample size to detect significant localized changes along the tracts. 

Our findings demonstrate that WM microstructural alterations emerge early in DS infants, mirroring patterns 

observed in later developmental stages,6-8,21-23,60 underscoring the importance of exploring this underrepresented 

field in DS neurodevelopment. Early interventions and therapies have been shown to improve outcomes in 

individuals with DS,69 and WM may serve as a valuable biomarker for monitoring these interventions, as it has 

shown to change in response to treatment in children and adults.70 Notably, a prior clinical trial reported 

improvements in WM connectivity following treatment in children with autism.71 This study represents a crucial 

foundation for understanding the neurobiology of DS and identifying early WM alterations that may inform optimal 

windows for mechanistically-derived interventions aimed at improving long-term outcomes. 
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A key strength of our study is its larger sample of DS and control infants compared to previous studies in toddlers, 

the largest of which23 included only 10 DS and 8 control individuals. The larger sample size enhances the reliability 

and generalizability of our findings. The use of multishell diffusion imaging allowed us to obtain and examine both 

DTI and NODDI data in DS infants. NODDI distinguishes intra-neurite, extra-neurite, and CSF compartments, 

estimating neurite density and orientation dispersion.40,72,73 These measures complement traditional DTI, helping 

disentangle the effects of axonal density, myelination, and neurite organization.74,75 

Limitations and future directions: 

This study has a few limitations. A larger sample size would improve the ability to detect smaller effects in along-

tract analyses. Additionally, the observed susceptibility artifact, as described in the eMethods in Supplement 1, 

necessitated a more stringent definition of certain tracts, which could have influenced the findings in the affected 

tracts. Future research should include longitudinal follow-up to chart WM microstructure development in DS from 

infancy to childhood, as well as examining how WM microstructure in infancy correlates with behavioral, language, 

and cognitive outcomes during childhood, potentially providing a predictive tool for these developmental outcomes. 

 

Conclusion 

Our findings reveal distinct patterns of delayed WM maturation in DS infants, marked by reduced myelination, 

lower neurite density, and increased neural dispersion in fibers critical for higher-order cognitive and motor 

functions, providing an early window into the microstructural abnormalities that may underlie later cognitive and 

motor delays. 

By employing advanced diffusion imaging techniques, this study examines WM microstructure in DS infants, 

addressing a significant gap in research that has largely focused on older children and adults.  

These findings lay a foundation for future longitudinal studies to explore how early WM alterations relate to 

cognitive, behavioral, and motor outcomes in DS, and will be essential for identifying critical windows for targeted 

clinical interventions aimed at supporting WM maturation and mitigating developmental delays. 
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Figure Legends 

Figure 1. Fiber tractography of the examined tracts. Abbreviations: IFOF, inferior fronto-occipital fasciculus; 

ILF, inferior longitudinal fasciculus; SLF, superior longitudinal fasciculus; CC, corpus callosum. 

 

Figure 2. Violin and box plots of the significant diffusion metrics in the bilateral CST and IFOF. 

Abbreviations: IFOF, inferior fronto-occipital fasciculus; CST, corticospinal tract. FA, fractional anisotropy; AD, 

axial diffusivity; RD, radial diffusivity; NDI, neurite density index; ODI, orientation dispersion index. 
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Tables 

Metric Definition of Measurement 
Interpretation in Infants with 

Down syndrome 

DTI Metrics   

Fractional Anisotropy (FA)

  

A scalar value between 0 and 1 that quantifies the degree of anisotropy 

of water diffusion; 0 indicates isotropic diffusion, and 1 indicates fully 

anisotropic diffusion.26  

Decreased FA values suggest a 

delay/disruption in the 

structural integrity of white 

matter.6-8,23 

 

Axial Diffusivity (AD)  The magnitude of water diffusion parallel to the tract.27 

Decreased AD suggests 

delayed/disrupted axonal 

organization and elongation.28-

30 

Radial Diffusivity (RD)  The magnitude of water diffusion perpendicular to the tract.27 

Increased RD suggests 

delayed/disrupted 

myelination.27,31-33 

Mean Diffusivity (MD) The average amount of diffusion occurring within a single voxel.23 

Increased MD suggests 

delayed/disrupted tissue 

organization.6,34,35 

NODDI Metrics   

Neurite Density Index 

(NDI)  

Reflects the fraction of tissue volume occupied by neurites (axons and 

dendrites).36 

Decreased NDI suggests a 

delayed/disruption in neurite 

density.37,38 

Orientation Dispersion 

Index (ODI)  

The variability in neurite orientation, ranging from 0 (perfectly 

aligned) to 1 (randomly in all directions).36 

Increased ODI suggests greater 

dispersion and fanning of 

neurites.39-41 

Free Water Fraction (FWF) 
The fraction of diffusion signals explained by isotopically unrestricted 

water, estimated using a bi-tensor model.42 

Increased FWF suggests 

neuroinflammation.43,44 

Table 1. Definitions of the DTI and NODDI parameters and their interpretation in infants with Down 

syndrome. 
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Table 2. Participant demographics by group. (***p-value is <0.0001, **p-value is 0.01 - 0.001, *p-value is 0.05 - 

0.01).

 
Down syndrome (DS) Controls Group Comparison 

N 49 37  

Sex, n (%) Female: 28 (57.14) 

Male: 21 (42.86) 

Female: 18 (48.65) 

Male: 19 (51.35) 
X2=0.611, p-value=0.4343 

Age-at-assessment in days, Mean (SD) 207.31 (25.10) 199.62 (19.09) t-test, p-value=0.1242 

Gestational Age in days, Mean (SD) n=39, 266.63 (9.46) n=33, 272.09 (9.05) t-test, p-value=0.0152* 

Scan-motion quantification, Mean (SD) 10.20 (10.34) 8.92 (12.27) t-test, p-value=0.6 

Maternal Age at birth in years, Mean (SD) n=38, 36.84 (4.54) n=36, 34.16 (3.02) t-test, p-value=0.004** 

Paternal Age at birth in years, (Mean) (SD) n=37, 37.71 (6.44) n=36, 36.03 (4.96) t-test, p-value=0.2171 

Maternal Education, Mean (SD) 4.24 (1.30) 4.6 (1.16) t-test, p-value=0.2156 

1. Some high school 0 (0) 0 (0)  

2. High school graduate 3 (6.12) 0 (0)  

3. Some college 8 (16.33) 6 (16.22)  

4. College graduate 15 (30.61) 15 (40.54)  

5. Some grad school 1 (2.04) 1 (2.7)  

6. Graduate degree 11 (22.45) 13 (35.14)  

NA. Not available 11 (22.45) 2 (5.41)  

Paternal Education, Mean (SD) 4.027 (1.4237) 4.4722 (1.5021) t-test, p-value=0.1978 

1. Some high school 0 (0) 0 (0)  

2. High school graduate 7 (14.29) 4 (10.81)  

3. Some college 5 (10.2) 7 (18.92)  

4. College graduate 15 (30.61) 9 (24.32)  

5. Some grad school 0 (0) 0 (0)  

6. Graduate degree 10 (20.41) 16 (42.24)  

NA. Not available 12 (24.49) 1 (2.7)  

Household Income, Mean (SD)  5.8 (1.86) 6.08 (1.36) t-test, p-value=0.4653 

1. less than 25K 2 (4.08) 0 (0)  

2. 25K-35K 0 (0) 0 (0)  

3. 35K-50K 1 (2.04) 1 (2.70)  

4. 50K-75K 6 (12.25) 4 (10.81)  

5. 75K-100K 2 (4.08) 6 (16.22)  

6. 100K-150K 11 (22.45) 12 (32.43)  

7. 150K-200K 6 (12.25) 6 (16.22)  

8. over-200K 7 (14.29) 7 (18.92)  

NA. Not available 14 (28.57) 1 (2.70)  
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Tract Parameter 
Down syndrome (DS) Controls 

Beta value 
Lower 

95% 

Upper 

95% 
p-value  

Corrected 

p-value 

Cohen's 

d  Mean SD N Mean SD N 

Corpus 

Callosum 

Parietal 

AD 0.001529 3.68x10⁻⁵ 47 0.001506 3.53x10⁻⁵ 35 -1.32x10⁻⁵ -2.13x10⁻⁵ -5.05x10⁻⁶ 0.0018** 0.009** 0.63** 

FA 0.474409 1.93x10⁻² 47 0.47064 2.56x10⁻² 35 -9.36x10⁻⁴ -5.61x10⁻³ 3.74x10⁻³ 0.69 1 0.17 

NDI 0.309436 1.95x10⁻² 47 0.321489 2.27x10⁻² 35 8.07x10⁻³ 4.06x10⁻³ 1.21x10⁻² 0.0001*** 0.0005*** -0.58** 

ODI 0.095306 8.04x10⁻³ 47 0.098787 9.27x10⁻³ 35 1.76x10⁻³ -1.7x10⁻⁴ 3.7x10⁻³ 0.073 0.37 -0.41 

RD 0.00068 3.13x10⁻⁵ 47 0.000677 3.83x10⁻⁵ 35 -4.13x10⁻⁶ -1.13x10⁻⁵ 3x10⁻⁶ 0.25 1 0.11 

Corpus 

Callosum 

Tapetum 

AD 0.002154 1.2x10⁻⁴ 46 0.002089 1.35x10⁻⁴ 37 -3.3x10⁻⁵ -6.2x10⁻⁵ -3.9x10⁻⁶ 0.027* 0.13 0.52 

FA 0.361024 2.42x10⁻² 46 0.363352 1.65x10⁻² 37 1.28x10⁻³ -3.52x10⁻³ 6.08x10⁻³ 0.6 1 -0.11 

NDI 0.362944 3.6x10⁻² 46 0.37538 3.14x10⁻² 37 6.96x10⁻³ -7.69x10⁻⁴ 1.47x10⁻² 0.077 0.38 -0.37 

ODI 0.190367 3.7x10⁻² 46 0.183322 3.37x10⁻² 37 -2.48x10⁻³ -1.05x10⁻² 5.53x10⁻³ 0.54 1 0.20 

RD 0.001231 1.08x10⁻⁴ 46 0.001194 1x10⁻⁴ 37 -1.86x10⁻⁵ -4.24x10⁻⁵ 5.19x10⁻⁶ 0.12 0.62 0.36 

CorticoSpinal 

Left 

AD 0.001394 4.06x10⁻⁵ 49 0.00136 4.01x10⁻⁵ 37 -1.88x10⁻⁵ -2.76x10⁻⁵ -1x10⁻⁵ 0.00001*** 0.00005*** 0.84*** 

FA 0.506108 1.53x10⁻² 49 0.50464 1.89x10⁻² 37 -3.47x10⁻⁴ -4.09x10⁻³ 3.4x10⁻³ 0.85 1 0.09 

NDI 0.469285 1.58x10⁻² 49 0.47404 1.96x10⁻² 37 2.43x10⁻³ -1.46x10⁻³ 6.32x10⁻³ 0.22 1 -0.27 

ODI 0.095498 1.08x10⁻² 49 0.101219 1x10⁻² 37 2.81x10⁻³ 4.84x10⁻⁴ 5.14x10⁻³ 0.019* 0.093 -0.55 

RD 0.000584 2.93x10⁻⁵ 49 0.000567 3.41x10⁻⁵ 37 -9.64x10⁻⁶ -1.65x10⁻⁵ -2.78x10⁻⁶ 0.0065** 0.033* 0.53** 

CorticoSpinal 

Right 

AD 0.001383 4.53x10⁻⁵ 48 0.001358 4.70x10⁻⁵ 37 -1.41x10⁻⁵ -2.43x10⁻⁵ -4x10⁻⁶ 0.0069** 0.035* 0.54** 

FA 0.507638 1.35x10⁻² 48 0.510519 1.90x10⁻² 37 1.63x10⁻³ -1.95x10⁻³ 5.21x10⁻³ 0.37 1 -0.18 

NDI 0.467721 1.64x10⁻² 48 0.469944 2.16x10⁻² 37 1.28x10⁻³ -2.94x10⁻³ 5.5x10⁻³ 0.55 1 -0.12 

ODI 0.095056 8.91x10⁻³ 48 0.096008 7.70x10⁻³ 37 5.99x10⁻⁴ -1.27x10⁻³ 2.46x10⁻³ 0.52 1 -0.11 

RD 0.000576 2.75x10⁻⁵ 48 0.000556 3.58x10⁻⁵ 37 -1.08x10⁻⁵ -1.77x10⁻⁵ -3.87x10⁻⁶ 0.0026** 0.013* 0.63** 

Inferior 

Fronto-

Occipital 

Fasciculus 

Left 

AD 0.0014 2.65x10⁻⁵ 48 0.001416 4.57x10⁻⁵ 35 6.94x10⁻⁶ -8.34x10⁻⁷ 1.47x10⁻⁵ 0.079 0.4 -0.44 

FA 0.395741 1.67x10⁻² 48 0.417533 1.47x10⁻² 35 1.16x10⁻² 7.97x10⁻³ 1.51x10⁻² 0.00001*** 0.00005*** 
-

1.37*** 

NDI 0.291474 1.35x10⁻² 48 0.302593 1.93x10⁻² 35 6.86x10⁻³ 3.53x10⁻³ 1.02x10⁻² 0.0001*** 0.0005*** -0.69** 

ODI 0.126647 9.4x10⁻³ 48 0.115319 9.39x10⁻³ 35 -5.83x10⁻³ -7.8x10⁻³ -3.85x10⁻³ 0.00001*** 0.00005*** 1.21*** 

RD 0.000743 2.5x10⁻⁵ 48 0.000718 2.77x10⁻⁵ 35 -1.38x10⁻⁵ -1.96x10⁻⁵ -8.09x10⁻⁶ 0.00001*** 0.00005*** 0.94*** 
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Inferior 

Fronto-

Occipital 

Fasciculus 

Right 

AD 0.001407 2.7x10⁻⁵ 45 0.001416 4.60x10⁻⁵ 35 2.01x10⁻⁶ -5.99x10⁻⁶ 1x10⁻⁵ 0.62 1 -0.25 

FA 0.400235 1.69x10⁻² 45 0.415485 1.48x10⁻² 35 8.66x10⁻³ 4.96x10⁻³ 1.24x10⁻² 0.00001*** 0.00005*** 
-

0.95*** 

NDI 0.29 1.51x10⁻² 45 0.301486 1.84x10⁻² 35 7.75x10⁻³ 4.3x10⁻³ 1.12x10⁻² 0.00001*** 0.00005*** -0.69** 

ODI 0.120209 9.47x10⁻³ 45 0.112315 1.06x10⁻² 35 -3.94x10⁻³ -6.18x10⁻³ -1.71x10⁻³ 0.0007*** 0.0035** 0.79** 

RD 0.000742 2.51x10⁻⁵ 45 0.000722 2.67x10⁻⁵ 35 -1.3x10⁻⁵ -1.85x10⁻⁵ -7.53x10⁻⁶ 0.00001*** 0.00005*** 0.79** 

Inferior 

Longitudinal 

Fasciculus 

Left 

AD 0.001502 3.31x10⁻⁵ 35 0.001481 6.48x10⁻⁵ 37 -1.28x10⁻⁵ -2.52x10⁻⁵ -3.33x10⁻⁷ 0.044* 0.22 0.41 

FA 0.40438 2.19x10⁻² 35 0.417521 2.16x10⁻² 37 6.57x10⁻³ 1.23x10⁻³ 1.19x10⁻² 0.017* 0.084 -0.60 

NDI 0.276527 1.74x10⁻² 35 0.294301 2.33x10⁻² 37 1.03x10⁻² 5.63x10⁻³ 1.5x10⁻² 0.00001*** 0.00005*** 
-

0.86*** 

ODI 0.107502 8.26x10⁻³ 35 0.109542 1.11x10⁻² 37 1.35x10⁻³ -1.04x10⁻³ 3.75x10⁻³ 0.26 1 -0.21 

RD 0.000781 3.28x10⁻⁵ 35 0.000755 3.96x10⁻⁵ 37 -1.39x10⁻⁵ -2.26x10⁻⁵ -5.1x10⁻⁶ 0.0024** 0.012* 0.69** 

Inferior 

Longitudinal 

Fasciculus 

Right 

AD 0.001542 5.42x10⁻⁵ 37 0.001521 6.07x10⁻⁵ 37 -1.42x10⁻⁵ -2.71x10⁻⁵ -1.34x10⁻⁶ 0.031* 0.16 0.36 

FA 0.41299 2.4x10⁻² 37 0.428126 2.08x10⁻² 37 7.12x10⁻³ 1.7x10⁻³ 1.25x10⁻² 0.011* 0.054 -0.67 

NDI 0.271777 2.1x10⁻² 37 0.28743 2.23x10⁻² 37 9.43x10⁻³ 4.65x10⁻³ 1.42x10⁻² 0.0002*** 0.001** -0.72** 

ODI 0.104156 9.87x10⁻³ 37 0.104143 8.91x10⁻³ 37 5.59x10⁻⁴ -1.48x10⁻³ 2.6x10⁻³ 0.59 1 0.00 

RD 0.000792 3.7x10⁻⁵ 37 0.000765 3.92x10⁻⁵ 37 -1.45x10⁻⁵ -2.35x10⁻⁵ -5.49x10⁻⁶ 0.002** 0.01* 0.7** 

Superior 

Longitudinal 

Fasciculus II 

Left 

AD 0.001336 3.23x10⁻⁵ 40 0.001332 4.41x10⁻⁵ 29 -3.85x10⁻⁶ -1.3x10⁻⁵ 5.31x10⁻⁶ 0.4 1 0.1 

FA 0.332468 1.71x10⁻² 40 0.355197 2.01x10⁻² 29 1.18x10⁻² 7.36x10⁻³ 1.62x10⁻² 0.00001*** 0.00005*** 
-

1.23*** 

NDI 0.273937 1.56x10⁻² 40 0.289206 2.07x10⁻² 29 9.32x10⁻³ 5.53x10⁻³ 1.31x10⁻² 0.00001*** 0.00005*** 
-

0.85*** 

ODI 0.16971 1.43x10⁻² 40 0.152933 1.47x10⁻² 29 -7.98x10⁻³ -1.16x10⁻² -4.32x10⁻³ 0.00001*** 0.00005*** 1.16*** 

RD 0.000798 2.81x10⁻⁵ 40 0.000766 3.45x10⁻⁵ 29 -1.78x10⁻⁵ -2.49x10⁻⁵ -1.08x10⁻⁵ 0.00001*** 0.00005*** 1.03*** 

Superior 

Longitudinal 

Fasciculus II 

Right 

AD 0.001328 3.23x10⁻⁵ 33 0.001327 4.37x10⁻⁵ 34 -2.64x10⁻⁶ -1.16x10⁻⁵ 6.32x10⁻⁶ 0.56 1 0.02 

FA 0.339356 2.07x10⁻² 33 0.354572 1.66x10⁻² 34 8.21x10⁻³ 3.62x10⁻³ 1.28x10⁻² 0.0007*** 0.0035** 
-

0.81*** 

NDI 0.279004 1.67x10⁻² 33 0.293487 1.92x10⁻² 34 8.78x10⁻³ 5.14x10⁻³ 1.24x10⁻² 0.00001*** 0.00005*** -0.8*** 

ODI 0.160886 1.53x10⁻² 33 0.152281 1.35x10⁻² 34 -4.42x10⁻³ -8.01x10⁻³ -8.38x10⁻⁴ 0.016* 0.082 0.6 

RD 0.000778 3.02x10⁻⁵ 33 0.000758 3.02x10⁻⁵ 34 -1.2x10⁻⁵ -1.86x10⁻⁵ -5.39x10⁻⁶ 0.0006*** 0.003** 0.66** 

AD 0.001386 2.94x10⁻⁵ 39 0.001397 3.54x10⁻⁵ 36 3.48x10⁻⁶ -3.97x10⁻⁶ 1.09x10⁻⁵ 0.35 1 -0.32 
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Uncinate 

Fasciculus 

Left 

FA 0.370956 1.65x10⁻² 39 0.383937 1.38x10⁻² 36 7.23x10⁻³ 3.62x10⁻³ 1.08x10⁻² 0.0002*** 0.001** 
-

0.85*** 

NDI 0.271155 1.57x10⁻² 39 0.27973 1.95x10⁻² 36 5.81x10⁻³ 1.88x10⁻³ 9.73x10⁻³ 0.0043** 0.022* -0.49* 

ODI 0.147031 1.17x10⁻² 39 0.138847 1.05x10⁻² 36 -3.78x10⁻³ -6.36x10⁻³ -1.2x10⁻³ 0.0046** 0.023* 0.73** 

RD 0.000772 2.52x10⁻⁵ 39 0.000757 2.56x10⁻⁵ 36 -9.21x10⁻⁶ -1.49x10⁻⁵ -3.52x10⁻⁶ 0.0019** 0.0095** 0.56** 

Uncinate 

Fasciculus 

Right 

AD 0.001389 2.92x10⁻⁵ 40 0.001409 3.76x10⁻⁵ 37 8.49x10⁻⁶ 1.01x10⁻⁶ 1.60x10⁻⁵ 0.027* 0.13 -0.6 

FA 0.360311 1.41x10⁻² 40 0.376878 1.47x10⁻² 37 8.78x10⁻³ 5.59x10⁻³ 1.2x10⁻² 0.00001*** 0.00005*** 
-

1.15*** 

NDI 0.263935 1.51x10⁻² 40 0.27032 1.93x10⁻² 37 4.2x10⁻³ 4.67x10⁻⁴ 7.94x10⁻³ 0.028* 0.14 -0.37 

ODI 0.14925 1.1x10⁻² 40 0.13898 1.09x10⁻² 37 -4.97x10⁻³ -7.5x10⁻³ -2.44x10⁻³ 0.0002*** 0.001** 0.94*** 

RD 0.000785 2.56x10⁻⁵ 40 0.000768 2.81x10⁻⁵ 37 -1x10⁻⁵ -1.58x10⁻⁵ -4.23x10⁻⁶ 0.0009*** 0.0045** 0.64** 

Table 3. Results of univariate analyses of variance comparing DTI and NODDI parameters in the significant tracts between DS and control infants.  

(***p-value is <0.0001, **p-value is 0.01 - 0.001, *p-value is 0.05 - 0.01; Cohen’s d: *small effect is 0.2 – 0.5, **medium effect is 0.5 – 0.8, ***large effect is ≥ 

0.8).
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Figure 1 
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Figure 2 
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