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Abstract 
Most genetic variants associated with complex traits and diseases occur in non-coding 

genomic regions and are hypothesized to regulate gene expression. To understand the genetics 
underlying gene expression variability, we characterize 14,324 ancestrally diverse 
RNA-sequencing samples from the NHLBI Trans-Omics for Precision Medicine (TOPMed) 
program and integrate whole genome sequencing data to perform cis and trans expression and 
splicing quantitative trait locus (cis-/trans-e/sQTL) analyses in six tissues and cell types, most 
notably whole blood (N=6,454) and lung (N=1,291). We show this dataset enables greater 
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detection of secondary cis-e/sQTL signals than was achieved in previous studies, and that  
secondary cis-eQTL and primary trans-eQTL signal discovery is not saturated even though 
eGene discovery is. Most TOPMed trans-eQTL signals colocalize with cis-e/sQTL signals, 
suggesting many trans signals are mediated by cis signals. We fine-map European UK BioBank 
GWAS signals from 164 traits and colocalize the resulting 34,107 fine-mapped GWAS signals 
with TOPMed e/sQTL signals, finding that of 10,611 GWAS signals with a colocalization, 7,096 
GWAS signals colocalize with at least one secondary e/sQTL signal. These results demonstrate 
that larger e/sQTL analyses will continue to uncover secondary e/sQTL signals, and that these 
new signals will benefit GWAS interpretation. 

Introduction 
Most genetic variants associated with complex human traits occur in non-coding 

genomic regions (Hindorff et al., 2009). This complicates the task of interpreting variant - trait 
associations identified in genome wide association studies (GWAS). While GWAS signals are 
commonly annotated with the name of the closest gene, without additional data it is often 
impossible to determine the gene(s) impacted by trait-associated variants as well as the 
functional effects of a variant on a gene product. Molecular quantitative trait locus (QTL) 
analyses detect associations between genetic variants and molecular traits such as gene 
expression (eQTLs) or RNA splicing (sQTLs). Because non-coding GWAS variants are 
expected to act through the transcriptome, e/sQTL analyses are a critical step in interpreting the 
molecular cascade of events at GWAS signals. 

e/sQTL studies have made important contributions to understanding gene regulation and 
GWAS signals (Brown et al., 2023; GTEx Consortium, 2020; Liu et al., 2022; Võsa et al., 2021; 
Yao et al., 2017). Recent notable efforts include the GTEx Consortium (GTEx Consortium, 
2020), which performed e/sQTL analyses in 49 tissues and cell types and is the most expansive 
published resource in terms of tissue and cell type breadth (many genetic variants affect the 
transcriptome in a cell type-specific manner); the eQTLGen Consortium (Võsa et al., 2021) 
which published a study including 31,684 whole blood and PBMC samples, representing the 
largest eQTL study in terms of sample size published to date; and the DIRECT consortium 
(Brown et al., 2023), which performed QTL analyses of gene expression, proteins, and 
metabolites in 3,029 blood and plasma samples. 
 These studies have multiple limitations. The largest sample size in any single GTEx 
tissue is 706, which limits power to detect relatively weaker genetic effects. 84.6% of GTEx 
donors and 100% of donors in the DIRECT study are of European ancestry, which limits power 
to detect e/sQTLs driven by genetic variants absent or at low frequency in European samples. 
eQTLGen has technical limitations: the study was a meta-analysis of 37 separate studies, many 
of which profiled gene expression and genotypes using gene expression and genotyping arrays. 
This heterogeneity in gene expression profiling and genotyping platforms complicates 
cross-cohort analysis; as a result eQTLGen did not attempt to identify more than one eQTL 
signal per gene (i.e., no secondary eQTL signals), despite the fact that many genes are 
expected to have more than one eQTL signal and many of these secondary eQTLs may 
colocalize with GWAS signals (GTEx Consortium, 2020; Zeng et al., 2019). Furthermore 
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eQTLGen did not attempt to detect sQTLs, as splicing is difficult to quantify with gene 
expression arrays. 

The National Heart, Lung, and Blood Institute’s (NHLBI) Trans-Omics for Precision 
Medicine (TOPMed) program has performed whole genome sequencing (WGS) on >180k 
samples from >85 phenotypically and ethnically diverse cohorts, generating a large dataset of 
genetic variation (Taliun et al., 2021) (https://topmed.nhlbi.nih.gov/). Here we characterize 
14,324 TOPMed RNA-sequencing samples and use existing WGS sample genotypes to perform 
cis- and trans-expression and splicing quantitative trait locus (cis- and trans-eQTL / sQTL) 
analyses in six tissues and cell types (Fig 1A,B), with the following aims: (1) generate a large, 
high-quality e/sQTL reference dataset that addresses the above-described shortcomings of 
previous studies, and (2) explore secondary e/sQTL signal discovery with larger sample sizes 
and characterize whether this benefits e/sQTL - GWAS signal colocalizations. We find that the 
large TOPMed sample sizes available for e/sQTL analyses in whole blood (N=6,454) and lung 
(N=1,291) combined with our mega-analysis approach (directly combining data from all studies, 
rather than meta-analyzing studies) enables greater detection of secondary cis-e/sQTL signals 
than was achieved in previous studies. This TOPMed e/sQTL resource complements GTEx, 
which has e/sQTL for a broader array of tissues but fewer samples per tissue and (in whole 
blood) less ancestral diversity, as well as eQTLGen, which has a larger sample size but no 
secondary signal discovery or splicing analyses. We show that even with 6,454 whole blood 
samples, discovery of secondary cis-eQTL and primary trans-eQTL signals has not reached 
saturation even though eGene discovery has. We find that most trans-eQTL signals at TOPMed 
sample sizes colocalize with cis-e/sQTL signals, consistent with the hypothesis that many trans 
signals are mediated by cis signals. We fine-map 34,107 UK BioBank GWAS signals from 164 
traits (Bycroft et al., 2018; Sudlow et al., 2015) (https://pan.ukbb.broadinstitute.org) and 
compare GWAS signal colocalization between TOPMed and GTEx e/sQTL signals (Fig 1C). Of 
2,308 GWAS signals with a TOPMed cis-e/sQTL colocalization and no GTEx cis-e/sQTL 
colocalization, 1,200 colocalize only with secondary TOPMed cis-e/sQTL signals, demonstrating 
that larger e/sQTL sample sizes enabling extensive secondary e/sQTL signal discovery 
substantially improve our ability to identify e/sQTL - GWAS signal colocalizations. 

Results 

Sample demographics 
We performed RNA-seq on 14,324 samples from the TOPMed program, including 

12,863 samples from 10,195 donors with WGS-derived genotypes. RNA-seq samples 
represented six tissue types and eight individual TOPMed cohorts (Fig S1; Supplementary 
methods). Samples from each tissue were derived from single TOPMed cohorts, with the 
exception of whole blood which included samples from six cohorts. Sample characteristics such 
as ancestry, sex, and age varied between tissues (Fig S1, S2).  

For each sample we computed the genetically inferred global ancestry, the fraction of the 
genome assigned to each of seven ancestry groups (Sub-saharan Africa (AFR); Native America 
(AMR); East Asia (EAS); Europe (EUR); Middle East (MES); and Central and South Asia (SAS)) 
using a reference panel derived from the Human Genome Diversity Panel (J. Z. Li et al., 2008) 
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(Fig S2). Lung and nasal epithelial samples were heavily European (87.0% of lung samples and 
91.1% of nasal epithelial samples were >=90% EUR; 11.4% of lung samples and 8.1% of nasal 
epithelial samples were admixed, defined here as less than 90% of the genome attributable to a 
single ancestry). 50.8% of whole blood samples were >= 90% EUR, while 46.7% were admixed 
(mostly representing EUR, AFR, and AMR ancestry). The three tissues and cell types derived 
solely from the MESA cohort (PBMCs, monocytes, and T cells) were the most diverse. Most 
notably, of PBMC samples, 31.7% were >= 90% EUR, 6.5% were >= 90% AFR, 5.2% were > 
90% EAS, and 56.5% were admixed. 

Primary cis-e/sQTL signal discovery 
To identify genetic variants associated with gene expression or RNA splicing, we 

performed cis-e/sQTL scans using unrelated subjects and a single time point for each individual 
(Fig 1A,B), testing variants with minor allele frequency (MAF) >= 0.01. The sample size per 
tissue ranged from 352 (monocytes) to 6,454 (whole blood) (Fig S3, S4). We identified 9,330 - 
19,465 genes with a significant cis-eQTL (cis-eGenes) and 3,290 - 8,795 genes with a 
significant cis-sQTL (cis-sGenes) (5% FDR; Fig 2A). The number of significant cis-e/sGenes in 
each tissue correlated strongly with sample size. In whole blood and lung, the tissues profiled in 
both TOPMed and GTEx, the rate of cis-e/sGene discovery in TOPMed exceeded that of GTEx, 
reflecting the greater TOPMed sample sizes (Fig S5; e.g., 19,465 / 22,187 tested genes (87.8%)  
in TOPMed whole blood were eGenes vs. 12,360 / 20,315 (60.8%) in GTEx whole blood). The 
rate of cis-eGene discovery in TOPMed whole blood was comparable to that in the larger 
eQTLGen study (16,987 / 19,250 tested genes (88.2%) were eQTLGen eGenes), suggesting 
that cis-eGene discovery is largely saturated at the TOPMed whole blood sample size 
(N=6,454). Primary cis-e/sQTL signals in TOPMed showed high direction-of-effect concordance 
in GTEx and eQTLGen (Fig S6-S11), supporting the robustness of our results. 

Fine-mapping of cis-e/sQTL signals reveals tens of thousands of secondary 
signals 
 Many genes are expected to have multiple independent cis-e/sQTLs, and detecting 
secondary signals provides a more comprehensive picture of gene expression regulation and 
may increase the number of colocalizations with other QTL and GWAS signals. We used SuSiE 
(G. Wang et al., 2020) to fine-map independent cis-e/sQTL signals, generating 95% credible 
sets for each signal. Throughout this work ‘signal’ denotes a 95% credible set, ‘secondary 
signal’ denotes any e/sQTL signal that is not the most significant signal for the gene (see 
Methods), and ‘top PIP variant’ denotes the variant with the greatest posterior inclusion 
probability (PIP) in the 95% credible set (i.e., the variant statistically judged most likely to be 
causal). This identified 10,282 - 69,766 and 4,992 - 35,770 total cis-eQTL and cis-sQTL signals 
per tissue, respectively (Fig 2A). In whole blood and lung in particular, this represents a 
meaningful increase (518.2% increase vs GTEx whole blood cis-eQTLs; 16.3% increase vs 
DIRECT whole blood cis-eQTLs; 114.4% increase vs GTEx lung cis-eQTLs) in signals detected 
relative to previous studies (Fig 2B) (Brown et al., 2023; Buil et al., 2015; GTEx Consortium, 
2020; Kerimov et al., 2021; Lepik et al., 2017) (this could not be evaluated in eQTLGen, which 
reported only primary cis-eQTLs). In whole blood, we discovered a mean of 3.6 cis-eQTL and 
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1.9 cis-sQTL signals per cis-e/sGene (Fig. 2A). 28715 (41.2%) whole blood cis-eQTL and 
13393 (37.4%) whole blood cis-sQTL 95% credible sets contained a single variant (Fig. 2A), 
representing a substantial increase in resolution relative to previously published results (e.g. 
2,112 (18.7%) of GTEx whole blood cis-eQTL credible sets contained a single variant; Fig S12). 
Ancestry differences between TOPMed and previously published datasets likely contribute, as 
TOPMed whole blood donors (69% EUR, as defined by the ancestry underlying the greatest 
fraction of the each donor’s genome) are more diverse than GTEx (~84.6% EUR), TwinsUK 
(~100% EUR), or Lepik_2017 (derived from the Estonian BioBank (Leitsalu et al., 2015)). These 
results emphasize the benefits of large sample sizes and diverse ancestries in characterizing 
genetic effects on the transcriptome. 
 As whole blood cis-eGene discovery seems to be largely saturated at the TOPMed 
sample size, we asked whether the total number of cis-eQTL signals might also be at or near 
saturation. To test this we downsampled the whole blood sample set and re-performed 
cis-eGene discovery and cis-eQTL fine-mapping (Fig. 2B, S13). While cis-eGene discovery 
began to saturate around 3,000 samples, the number of total cis-eQTL signals did not saturate 
even at the full whole blood sample size, suggesting that additional cis-eQTL signals will be 
discovered with larger sample sizes. cis-sGene discovery likewise shows signs of saturation, 
while the number of total cis-sQTL signals discovered is not saturated (Fig. S14). 

Characterization of cis-eQTL and sQTL by functional annotation, tissue, 
and ancestry 

Cis-eQTLs were enriched in TF binding sites, and cis-e/sQTL signals were enriched in 
splice regions, though cis-eQTLs not colocalizing with cis-sQTLs showed no splice region 
enrichment (Fig 2C, S15-S17; Table S1, S2). cis-eQTL signals were enriched in enhancer, 
active transcription start site (TSS), flanking active TSS and weak/strong transcription chromatin 
states, while cis-sQTL signals were enriched in active TSS, flanking active TSS, weak/strong 
transcription, transcription at gene 5’ and 3’, and genic enhancer chromatin states (Fig 2C, 
S18-19). This is consistent with the fact that cis-eQTL signals are more likely than cis-sQTL 
signals to be in promoters, and less likely to be in a gene body (Fig S20). Both primary and 
secondary cis-sQTL signals were enriched in splice regions, but the enrichment was stronger for 
primary cis-sQTLs (Fig S21, Table S3). Primary and secondary cis-eQTL signals were enriched 
in active TSS and enhancer chromatin states, but active TSS enrichment was stronger for 
primary cis-eQTL signals (Fig S22). 

In the case that a TF tends to activate rather than repress gene expression, eVariant 
alleles that disrupt that TF’s motifs should associate with decreases in gene expression, while 
alleles that create a binding site should associate with increases in gene expression. The 
reverse is expected for TFs that primarily repress gene expression. To explore these effects in 
our data, we performed variant-sensitive motif scanning and, for each TF position weight matrix, 
noted which cis-eVariant alleles favor TF binding and which alleles associate with higher gene 
expression (Fig S23; Table S4). While many TFs are known to act as both activators and 
repressors in different contexts (Mavrothalassitis & Ghysdael, 2000), several TF motifs display 
associations with gene expression that suggest a tendency to activate. Most notably, alleles 
creating or strengthening many ETS family motifs associated with increased gene expression in 
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~70% of instances, suggesting the corresponding TFs tend to activate gene expression. The 
tendency for ETS motif-strengthening alleles to associate with increased gene expression and 
the lack of motif-strengthening alleles associated with decreased gene expression mirrors 
previous findings in pancreatic islets (Viñuela et al., 2020). 

Cis-e/sQTL signals may be specific to a tissue, or shared across tissues, and sharing 
may reflect the extent to which local genomic function is shared across tissues (Aguet et al., 
2017; GTEx Consortium, 2020). We determined the fraction of signals shared -- defined here as 
credible set overlap -- between lung/nasal epithelial and whole blood, conditional on a gene 
being tested in both tissues (Fig S24). The fraction of lung and nasal epithelial cis-eQTL signals 
shared with blood was 46.9% and 44.7%, respectively. Sharing was higher for cis-sQTL signals 
(63.5% and 60.2%, respectively; Fisher’s Exact Test p-value for lung=9.98x10-192 and odds ratio 
= 1.97). Primary signals were more likely to be shared than secondary signals (Fig S24; for lung 
cis-eQTL, Fisher’s Exact Test p = 2.9x10-69 and odds ratio = 1.66). Relative to unshared signals, 
shared eQTL signals showed stronger enrichment in active TSS chromatin states (Fig S25-28; 
Table S5) and shared sQTL signals were enriched in strong transcription chromatin states. 
 To gauge the contribution of each ancestry to cis-eQTL discovery, we examined 
differences in MAFs across ancestry groups for each cis-eQTL signal in whole blood and 
PBMCs (the tissue with the largest sample size and the tissue with the greatest fraction of 
non-EUR samples, respectively) (Fig S29-32). A sample was assigned to an ancestry if it had 
global genetic ancestry >= 75% from that ancestry, or >= 50% in the case of AMR ancestry (see 
Methods). This revealed that inclusion of participants of African (AFR) ancestry had an outsized 
influence on eQTL signal discovery, consistent with previous eQTL analyses within TOPMed 
(Kachuri et al., 2023) and expectations based on the greater genetic heterogeneity and smaller 
linkage disequilibrium (LD) blocks in AFR populations relative to non-AFR populations (D. E. 
Reich et al., 2001; Shifman et al., 2003; The 1000 Genomes Project Consortium, 2015). For 
example, 5.9% of 25,894 unique PBMC cis-eVariants had MAF >= 0.01 in AFR samples and 
MAF < 0.001 in all other ancestries, compared to 0.3% for EUR samples. (Fig S32). As many 
studies use only EUR samples, we additionally examined MAF differences using only EUR and 
AFR samples. 15.3% of 63,784 unique whole blood cis-eVariants had MAF >= 0.01 in AFR 
samples and MAF < 0.001 in EUR, compared to 0.2% of variants with MAF >= 0.01 in EUR 
samples and MAF < 0.001 in AFR. For PBMCs, these values were 9.7% and 0.7%, respectively. 

Large whole blood sample size enables discovery of lower MAF cis-e/sQTL 
signals 

Due to sample size limitations, previously published cis-e/sQTL studies frequently test 
only variants with MAF of 0.01 or greater (GTEx Consortium, 2020; Kerimov et al., 2021; Scott 
et al., 2016; Varshney et al., 2017; Viñuela et al., 2020; Võsa et al., 2021). To explore our ability 
to detect cis-e/sQTL signals involving rarer variants, we ran a second set of whole blood 
cis-e/sQTL scans applying a 0.001 MAF threshold (corresponding to a minor allele count (MAC) 
threshold of 13, comparable to the MAC threshold (14) in GTEx whole blood (N=670) when 
applying a MAF threshold of 0.01). With the lower MAF threshold, the average number of 
variants tested against each gene more than doubled (7,866 vs 17,195 for the cis-eQTL scan). 
Notably, the fraction of tested variants that were specific to one ancestry increased as the MAF 
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threshold decreased (0.2% of variants in MAF > 0.01 scan vs 16.7% of variants in MAF > 0.001 
scan, when considering the three well-represented ancestries (EUR, AFR, AMR)); the fraction of 
tested variants that were specific to AFR samples accounted for most of these ancestry-specific 
variants (Fig S33-35). While the number of cis-e/sGenes showed little change compared to a 
0.01 MAF threshold (19,465 and 19,394 cis-eGenes at 0.01 and 0.001 MAF thresholds, 
respectively, and 8,795 vs 8,873 cis-sGenes), the number of total signals detected increased by 
~9% (from from 69,766 to 76,545 cis-eQTLs, and 35,770 to 39,001 cis-sQTLs). As expected, 
low MAF cis-eQTLs had larger effect sizes than high MAF cis-eQTLs (Fig 2D) (Liu et al., 2022). 
The top PIP variant for 16,217 cis-eQTL and 7,302 cis-sQTL signals had MAF < 0.01. However, 
a majority of the signals with variant MAF < 0.01 had MAF >= 0.01 in at least one of the 
well-represented ancestries (Fig S36) and could therefore be said to represent common variants 
in at least one ancestry. 7,479 cis-eQTL and 3,290 cis-sQTL signals had MAF < 0.01 in all three 
well-represented ancestries. cis-e/sQTL signals with MAF < 0.01 in all three ancestries 
generally showed directionally similar enrichment patterns as those with MAF >= 0.01 in all 
three ancestries, though the degree of enrichment often differed (Fig S37-38; Table S6): for 
example, cis-eQTL signals with MAF < 0.01 were more strongly enriched in the active TSS 
chromatin state than those signals with MAF >= 0.01 (Fig S38), and cis-sQTL signals with MAF 
< 0.01 were more strongly enriched in splice regions and genic enhancers than those with MAF 
>= 0.01 (Fig S37). 

Integration of trans-e/sQTL signals with cis signals identify regulatory 
relationships and biological pathways 
 To identify genetic variants that may impact gene expression and splicing in trans, we 
performed trans-e/sQTL scans at a MAF >= 0.05 using gene - variant pairs on separate 
chromosomes. Detection of trans-e/sQTL signals is more difficult than detection of cis signals, 
as trans signals are weaker than cis signals and an untargeted trans scan entails a higher 
multiple testing burden. We identified 1 - 1,725 trans-eGenes and 0 - 127 trans-sGenes per 
tissue (5% FDR; Fig 3A, S39). A saturation analysis in whole blood revealed a near-linear 
relationship between sample size and the number of trans-eGenes discovered, suggesting that 
trans-eGene discovery is not saturated at the current sample sizes (Fig S40). Trans-eQTLs had 
smaller effect sizes than cis-eQTLs (Fig 3B). 

In whole blood, after linkage-disequilibrium (LD)-based clumping of primary 
trans-eVariants 614 unique trans-eVariants were discovered for 1,725 trans-eGenes; 171 
variants were trans-eVariants for >1 gene (accounting for 1,282 total trans-eGenes; Table S7). 
Trans-eVariants were enriched in missense and 3’ UTR variants, though only a small fraction 
overlapped these annotations (Fig S41-42). Our top trans-eVariant (ranked by number of 
trans-eGenes) was rs946588154 (chr7_50342615_A_G), which was a trans-eVariant for 260 
genes. This variant was a cis-eQTL credible set variant for genes IKZF1 and GRB10 and a 
cis-sQTL variant for IKZF1 in whole blood. The second ranked trans-Variant was rs1354034 
(chr3_56815721_T_C), which had 82 trans-eGenes and was not a cis-e/sQTL in any tissue. 

In whole blood, we identified 61 unique trans-sVariants (Table S8). The four 
trans-sVariants with the largest number of trans-sGenes in whole blood included variants 
rs946588154 (chr7_50342615_A_G; 16 trans-sGenes) and rs1354034 (chr3_56815721_T_C; 
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30 trans-sGenes) discussed above; rs6939187 (chr6_163408503_T_C; 8 trans-sGenes), a 
whole blood cis-eQTL for lncRNA CAHM as well as gene QKI, which encodes an RNA splicing 
regulator (Wu et al., 2002); and rs7613875 (chr3_49934081_C_A; 5 trans-sGenes), which sits 
5.9kb upstream of the gene encoding splicing regulator RBM6 (Huber et al., 2012). Overall in 
whole blood, eleven variants were trans-sVariants for more than one trans-sGene (accounting 
for 77 total trans-sGenes). 
 Different trans-eGenes sharing a trans-eVariant might represent genes in a pathway or 
network. To explore this, we performed gene ontology (GO) and KEGG pathway enrichment 
analyses for groups of 10+ genes sharing the same whole blood trans-eVariant (Table S9) 
(Raudvere et al., 2019). 14 of 25 such groups showed significant GO:BP or KEGG pathway 
enrichments. For example, one cis-eVariant (rs16947425; chr17_64066984_C_A) for gene 
ERN1, which encodes endonuclease IRE1a, and gene PRR29 (unknown function) was a 
trans-eVariant for thirteen trans-eGenes, including known ERN1 downstream target XBP1 (Shen 
et al., 2001; Yoshida et al., 2001) and XBP1 target genes including DNAJB9. ERN1 is a 
regulator of the endoplasmic reticulum (ER) stress response (Shen et al., 2001; Yoshida et al., 
2001), and five of the thirteen trans-eGenes were in the “Protein processing in ER” KEGG 
pathway (39.1-fold enrichment; nominal p=1.0x10-7).  Among ER response pathways 
IRE1a-XBP1 is the most highly conserved (Hetz & Papa, 2018; Richardson et al., 2010), with an 
emerging role in regulation of inflammation and immune response (Grootjans et al., 2016; 
Pramanik et al., 2018; Richardson et al., 2010). These results suggest that trans signals can 
provide insight into biological pathways. 

Primary and secondary trans signals converge on potential mediator genes 
 To identify trans-e/sGenes that may share multiple signals with a potential regulatory 
cis-e/sGene, we fine-mapped trans-e/sQTL signals within the 2Mb window centered on each 
trans-e/sGene’s lead trans-e/sVariant (Fig 3C; Table S10). Within the 2Mb windows, 327 of the 
1,876 trans-eGene - tissue pairs had  >1 trans-eQTL (16 of the 146 trans-sGene - tissue pairs). 
 In whole blood, trans-eVariants were enriched for overlap with cis-e/sQTL signals and 
trans-sVariants were enriched in cis-eQTL (Fig S43). 32.9% of unique whole blood 
trans-eVariants overlap at least one whole blood cis-eQTL or cis-sQTL signal (31.1% for 
trans-sVariants). Cis-eGenes for cis-eQTL overlapping trans-eQTL were 3.7-fold enriched for 
transcription factor (TF) genes (p < 1x10-3; Fig S44). The overlap between cis and trans signals 
is consistent with the hypothesis that many trans effects are mediated by cis effects. 

To nominate mediating mechanisms and genes for whole blood trans-e/sQTL signals, we 
colocalized whole blood trans signals with cis signals, and noted whether each trans-e/sQTL 
credible set contained protein-altering variants or 3’/5’ UTR variants (Fig 3D; Fig S45-47). We 
also fine-mapped 34,107 EUR GWAS signals for 164 UK Biobank traits (Table S11) and 
determined whether each trans-e/sQTL credible set colocalized with a GWAS signal for blood 
cell abundance or other traits (Fig S45-47). Only 15.9% of trans-eQTL credible sets and 16.9% 
of trans-sQTL credible sets did not colocalize with a cis or GWAS signal or contain 
protein-altering / UTR variants. 58.8% and 45.8% of trans-eQTL and trans-sQTL credible sets, 
respectively, colocalized with at least one cis-e/sQTL signal. For some trans-eGenes with 
multiple credible sets, these annotations suggest that different trans-eQTL signals for the same 
gene are due to different functional effects on a single mediator gene. For example, the 
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trans-eGene AGAP2 showed three trans-eQTL signals, one of which colocalized with a RREB1 
cis-sQTL and one of which represented a RREB1 missense variant (Fig 3D). 

Across all tissues, we found 30 cis-e/sGenes with > 1 cis-e/sQTL signal colocalizing with 
> 1 trans-e/sQTL signal from at least one trans-e/sGene (158 unique cis-trans gene pairs) 
(Table S12). IKZF1 cis signals accounted for 76.6% (121 / 158) of these multi-colocalizing gene 
pairs. Of 146 gene pairs where > 1 trans-eQTL from gene 1 colocalized with > 1 cis-eQTL from 
gene 2, directions of effect were consistent across the colocalizing signals (variants that 
increased expression of gene 1 either always increased or always decreased expression of 
gene 2) in 140 (95.9%) of the pairs (Table S12). In the most extreme case, trans-eGene 
BTN3A3 showed 4 whole blood trans-eQTL signals that colocalized with 4 cis-eQTL signals for 
its known regulator NLRC5; for all four signal pairs, the allele associated with increased NLRC5 
expression associated with increased BTN3A3 expression, consistent with NLRC5’s role in 
activating BTN3A3 (Dang et al., 2020). 

Only one multi-colocalizing gene pair was observed in a tissue other than whole blood. 
The GTEx Consortium previously reported an ENOX1 cis-eQTL colocalization with a COL5A1 
trans-sQTL in lung tissue. TOPMed lung results support and extend these previous findings: we 
find two ENOX1 cis-eQTL signals colocalized with two COL5A1 trans-sQTLs (Fig S48). 
 

GWAS signals frequently colocalize with secondary e/sQTL signals 
To assess the utility of this dataset to identify target genes and nominate causal variants 

for GWAS signals, we colocalized all TOPMed cis- and trans-e/sQTL signals with the 34,107 
fine-mapped EUR UK BioBank GWAS signals from 164 traits (Table S11). We additionally ran 
cis- and trans-e/sQTL scans on EUR subsets of the RNA-seq data (Fig S49A,B; Table S13) in 
order to obtain ancestry-matched e/sQTL results for colocalization with the EUR GWAS signals. 
Because the goal of e/sQTL - GWAS integration is commonly to interpret the GWAS signals, 
here we examine how many GWAS signals colocalize with at least one e/sQTL signal, rather 
than the inverse. 

10,611 GWAS signals (31.1%) colocalized with at least one cross-ancestry 
cis-/trans-e/sQTL in at least one tissue (SuSiE-coloc PP4 posterior probability of colocalization 
>= 0.8; Fig 4A,B; 94.8% of colocalized GWAS signals colocalized with only cis signals, 1.7% 
with only trans signals, and 3.6% with at least one cis and at least one trans signal). 9,410 
GWAS signals (27.6%) colocalized with at least one EUR cis-/trans-e/sQTL (Fig S49C), 
suggesting that in this case the sample size advantage of the cross-ancestry e/sQTL scans 
outweighed the advantage of ancestry-matching. However, we also observed 887 GWAS 
signals that colocalized with EUR e/sQTL but not cross-ancestry e/sQTL. We highlight the 
GWAS colocalizations with cross-ancestry e/sQTL here. 

GWAS traits with the greatest fraction of GWAS signals colocalizing with an e/sQTL 
signal generally corresponded to tissue relevant traits; for example, monocyte QTL signals were 
particularly likely to colocalize with ‘Monocyte count’ GWAS signals (Fig S50). In whole blood, 
5,872, 3,331, 524, and 74 GWAS signals colocalized with cis-eQTL, cis-sQTL, trans-eQTL, and 
trans-sQTL signals, respectively, and thousands of GWAS signals colocalized with multiple 
e/sQTL types, especially cis-eQTL and cis-sQTL (Fig S51). 41.9% of the 10,611 GWAS signals 
colocalizing with at least one cross-ancestry e/sQTL signal colocalized with a signal from more 
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than one gene (across all tissues and modalities) (Fig S52). In whole blood, 44.6% of GWAS 
signals with a cis-e/sQTL colocalization colocalized only with cis-e/sQTL signal(s) from the 
nearest tested gene; when the colocalization was only with cis-sQTL signals, the colocalization 
was more likely to involve the nearest gene (relative to colocalizations with cis-eQTL signals 
only; Fig S53). 2,876 of the 10,611 GWAS signals (27.1%) colocalized only with secondary 
signals (Fig S54) and a majority (7,096.0; 66.9%) colocalized with at least one secondary signal, 
emphasizing the importance of secondary e/sQTL signals in nominating effector genes for 
GWAS hits. 

We identified 659 instances in which multiple neighboring GWAS signals for a given trait 
colocalized with multiple e/sQTL signals from the same gene and same e/sQTL type (Table 
S14). For example, two cis-eQTL signals at the IL2RA locus colocalize with two GWAS signals 
for albumin/globulin ratio (Fig 4C,D; S55). Both cis-eQTL signals are single-variant credible sets 
(chr10_6052734_C_T; chr10_6053965_C_A), and the signals are in a single IL2RA intron. The 
sequence surrounding chr10_6052734_C_T was previously shown via a CRISPR activation 
screen to regulate IL2RA expression (Simeonov et al., 2017). Three cis-eQTL signals for HK1 
colocalized with three GWAS signals for mean corpuscular volume (red blood cell volume; Fig 
4E,F; S56). HK1 is critical to red blood cell function; mutations in HK1 are known to cause 
nonspherocytic haemolytic anemia (Jamwal et al., 2019; van Wijk et al., 2003). In the most 
extreme case, four ‘Monocyte count’ GWAS signals colocalized with four whole blood CEBPB 
cis-eQTL signals (Fig S57); CEBPB regulates monocyte development, survival, and gene 
expression (Huber et al., 2012; Mildner et al., 2017; Tamura et al., 2017), though these GWAS 
signals also colocalized with e/sQTL signals for other nearby genes (all four colocalized with at 
least one SMIM25 cis-e/sQTL in at least one TOPMed tissue, including two colocalizing with two 
whole blood SMIM25 cis-e/sQTLs; and three colocalized with LINC01270 cis-eQTLs), 
suggesting that CEBPB may not be the target gene, or only target gene, at this locus. 

 

e/sQTL tissue diversity and sample size both contribute to GWAS 
colocalization analyses 

Many GWAS signals have no known e/sQTL colocalization. One explanation for this is 
that they affect a trait via a different molecular mechanism. Alternatively, the GWAS signal might 
correspond to an e/sQTL signal that is highly specific to a tissue, timepoint, or context, or the 
GWAS signal might correspond to an e/sQTL signal that is too weak to be detected in a dataset. 
To explore the relative impact of tissue type breadth vs. sample size in detecting e/sQTL 
colocalizations with GWAS signals, we colocalized GTEx autosomal cis-e/sQTL signals from 49 
tissues with the PanUKBB GWAS signals and compared the results to TOPMed autosomal 
cis-e/sQTL colocalization results (Fig S58). 12,033 GWAS signals colocalized with at least one 
GTEx cis-e/sQTL signal, compared to 10,208 colocalizing with at least one TOPMed cis-e/sQTL 
signal (MAF >= 0.01 scans). GWAS signals colocalizing with GTEx but not TOPMed cis-e/sQTL 
tended to colocalize in a smaller number of GTEx tissues than those colocalizing with both 
GTEx and TOPMed cis-eQTL signals, suggesting that these reflected more tissue-specific 
effects (Fig S58B) that might not be present in the more restricted TOPMed tissue set. In whole 
blood (GTEx N = 670; TOPMed N = 6,454), 2,897 GWAS signals colocalized with a GTEx 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 21, 2025. ; https://doi.org/10.1101/2025.02.19.25322561doi: medRxiv preprint 

https://www.zotero.org/google-docs/?L14TXd
https://www.zotero.org/google-docs/?bBdGf3
https://www.zotero.org/google-docs/?MOUuMp
https://doi.org/10.1101/2025.02.19.25322561
http://creativecommons.org/licenses/by-nd/4.0/


cis-e/sQTL signal compared to 7,091 with a TOPMed cis-e/sQTL, and in lung (GTEx N = 515; 
TOPMed N = 1,291), these values were 3,142 and 5,381 for GTEx and TOPMed, respectively. 
GWAS signals colocalizing with TOPMed but not GTEx whole blood cis-e/sQTL signals tended 
to colocalize with weaker cis-eQTL signals than those colocalizing with both TOPMed and GTEx 
whole blood cis-e/sQTL signals (Fig S58C). These results demonstrate that tissue breadth as 
well as sample size have a considerable impact on colocalization detection. 

To determine if the number of GWAS signals colocalizing with a whole blood eQTL 
signal has already reached saturation in our dataset, we colocalized the PanUKBB GWAS 
signals with the cis-eQTLs identified using nested subsets of the whole blood data (Fig S59). 
We found that the number of colocalizing GWAS signals continues to increase up to the current 
sample size, though at an increasingly slow pace. This suggests that GWAS signals not 
colocalizing with eQTL signals at the current sample size may colocalize in even larger eQTL 
datasets in the tested tissues. 
 

Discussion 
Here we present cis- and trans-e/sQTL results from six tissues and cell types profiled as 

part of the TOPMed program. The uniform application of modern genotyping and gene 
expression profiling platforms (WGS and RNA-seq), combined with large sample sizes and 
individual-level data (as opposed to a meta-analysis), enables fine mapping of tens of 
thousands of secondary e/sQTL signals with high resolution. 

Our results complement those in previous studies, most notably GTEx, DIRECT, and 
eQTLGen. For example, in whole blood we detect 69,766 total cis-eQTL signals  for 19,468 
genes, 51,037 (73.2%) of which were not detected in GTEx, DIRECT, or eQTLGen blood (see 
Methods). Of these 51,037, 2,760 (5.4%) colocalize with at least one PanUKBB GWAS signal, 
demonstrating the utility of the TOPMed data in interpreting GWAS signals. For instance, one 
PanUKBB GWAS signal for "Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, 
allergy diagnosed by doctor" has lead variant rs7936323 (chr11_76582714_G_A), and this 
variant and variants in high LD have previously been associated with allergy, asthma, and 
immune traits (Asai et al., 2018; Astle et al., 2016; Ferreira et al., 2017).  The signal is 
intergenic, and previous publications have cited LRRC32 and EMSY as candidate target genes 
(Elias et al., 2019). The LRRC32 gene encodes the glycoprotein A repetitions predominant 
(GARP) protein, which helps regulate regulatory T cell activity and transforming growth factor β 
(TGF-β) release from T cells; mutations in LRRC32 have previously been linked to immune 
disorders in humans and mice (Lehmkuhl et al., 2021; C. H. Wallace et al., 2018). EMSY is 
involved in transcriptional regulation including regulation of interferon stimulated genes (Ezell et 
al., 2012). This GWAS signal does not colocalize with any GTEx cis-e/sQTL signals. In 
TOPMed, we identify a colocalization between this GWAS signal and a LRRC32 cis-eQTL (a 
four variant credible set including rs7936323 (chr11_76582714_G_A), with PIP = 0.31). The 
colocalization is not discovered using GTEx cis-e/sQTL credible sets, and the TOPMed 
cis-eQTL signal does not overlap DIRECT LRRC32 conditional cis-eQTLs (or their R2 >= 0.8 LD 
proxies) or the eQTLGen LRRC32 primary cis-eQTL or its R2 >= 0.8 LD proxies.  Our results, 
especially in whole blood, therefore complement these previous studies. 
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In regards to trans-e/sQTL discovery, we discover substantially more whole blood 
trans-eGenes (1,725) than GTEx (thirteen), a similar number as DIRECT (1,670) but fewer 
trans-eGenes than studies that test a more restricted set of variants (e.g., eQTLGen detected 
6,298 trans-eGenes, but tested only 10,317 trait associated variants) or use a more expansive 
definition of trans (Liu et al., 2022; Yao et al., 2017). GTEx lung and whole blood trans-eQTLs 
partially replicated in TOPMed (2/3 GTEx lung trans-eQTLs; 7/13 whole blood trans-eQTLs); 2/3 
GTEx lung or whole blood trans-sQTLs replicated in TOPMed (Supplementary methods; Table 
S15; Table S16). Trans analyses are underpowered and prone to artifacts, leading to lower 
overlap in  trans-eGenes between studies than one might expect. Only 78.1% and 26.9% of 
TOPMed whole blood trans-eGenes are trans-eGenes in eQTLGen and DIRECT, respectively 
(58.0% of DIRECT trans-eGenes are trans-eGenes in eQTLGen). While some of this is 
attributable to basic differences in testing procedures, this limited overlap also reflects the 
difficulty of these analyses. Nevertheless, ~85% and ~80% of eQTLGen and DIRECT primary 
trans-eQTLs showed the same direction of effect in TOPMed (regardless of statistical 
significance). Using the π1 statistic (Storey & Tibshirani, 2003) we estimate that the proportions 
of primary eQTLGen and DIRECT trans-eQTLs that replicate in TOPMed are 0.653 and 0.632, 
respectively. 

Genomic windows with relatively large numbers of TOPMed trans-eQTLs showed 
elevated density of primary eQTLGen trans-eQTLs (Fig S60), and TOPMed trans-eVariants 
shared across many trans-eGenes frequently overlapped previously-established trans-eQTL 
hotspots (Fig S61) (Yao et al., 2017). Our top trans-eVariants (ranked by number of 
corresponding trans-eGenes) closely mirrored findings in previous studies; for example, our top 
trans-eVariant, rs946588154 (chr7_50342615_A_G; a trans-eVariant for 260 genes) is in perfect 
LD (1000G EUR populations based on LDlink) with rs149007767 (chr7_50330658_C_T) 
(Machiela & Chanock, 2015), which was a trans-eQTL hotspot in eQTLGen (top associated 
SNP for 522 eQTLGen trans-eGenes) and DIRECT. DIRECT and TOPMed both nominate 
IKZF1 and GRB10 as associated cis-eGenes that may be mediating the trans effect (Brown et 
al., 2023). The second highest number of trans signals was observed for rs1354034 
(chr3_56815721_T_C), with 82 trans-eGenes. This was the top associated variant for 543 
trans-eGenes in eQTLGen, and was a trans-eQTL in many additional studies (Kolberg et al., 
2020; Mao et al., 2019; Nath et al., 2017). (Kolberg et al., 2020) identified the trans signal as 
highly specific to platelets. rs1354034 (chr3_56815721_T_C) is upstream of / intronic in gene 
ARHGEF3, for which it has been identified as a cis-eQTL in other studies (Kolberg et al., 2020; 
Zou et al., 2017). This variant also represents a protein QTL hotspot (Sun et al., 2023) and has 
been associated with a variety of blood cell traits, most commonly platelet volume and platelet 
count (Buniello et al., 2019; Chen et al., 2020; Gieger et al., 2011; J. Li et al., 2013; Vuckovic et 
al., 2020). 

We show that even with 6,454 samples, we have not saturated cis-/trans-eQTL 
discovery. Considered alongside the fact that many e/sQTL signals are tissue and cell-type 
specific (GTEx Consortium, 2020), this suggests that many additional cis- and trans-e/sQTL 
signals remain to be discovered with greater sample sizes in a large array of tissues. While 
e/sQTLs are often employed to help interpret GWAS signals, GWAS hits and eQTLs face 
different selective constraints, so the overlap between the two is often limited (Mostafavi et al., 
2023). This highlights the importance of larger QTL studies that are powered to detect more 
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subtle/secondary effects. While the current study improves upon past studies in this regard, with 
still greater sample sizes (in a wider array of tissues) we anticipate that many 
as-yet-undiscovered e/sQTL signals will colocalize with GWAS signals. 
 Trans-e/sQTL signals have many potential explanations. Previous studies have found 
significant overlap between trans and cis-eQTL signals (GTEx Consortium, 2020; Yao et al., 
2017), suggesting that trans-e/sQTL signals might be mediated by cis-e/sQTLs. Other potential 
(non-mutually exclusive) underlying explanations include direct changes to a protein sequence 
(for example, a missense variant in a transcription factor which alters the expression of that TF’s 
target genes); changes in post-transcriptional regulation (for example, a change in a TF gene’s 
3’ or 5’ UTR that changes the efficiency of the TF’s mRNA translation and thereby affects the 
expression of the TF target genes) (Leppek et al., 2018; Steri et al., 2018); changes in cell type 
composition; and changes in a trait that in turn affects gene expression. We find that most trans 
signals (at current sample size) also have cis effects, suggesting they may be explainable by cis 
mediation. Larger analyses are needed to evaluate if this remains true as power to detect trans 
effects improves and to further characterize functional enrichment signals for trans-eVariants, 
which is challenging with the limited number of currently detected signals. A substantial fraction 
of trans signals (36.1% of whole blood trans-eQTLs) colocalize with GWAS signals for blood cell 
type abundance traits (e.g., neutrophil count); in some cases the trans signal may drive the 
GWAS signal, but in other cases the causality may be reversed (the change in cell type 
abundance may cause genes with differential expression across cell types to appear to be 
trans-eGenes). While the use of gene expression PCs should correct for cell type proportions, 
future single cell RNA-seq e/sQTL analyses are needed to fully dissect these effects. Future 
work could also incorporate cell type proportion estimates to improve power and to allow testing 
of cell type interaction effects, which can enable the detection of cell type specific QTLs. Careful 
examination of appropriate single cell reference panels representative of TOPMed participants 
and cell type estimation methods will be important for such future work. (Kim-Hellmuth et al., 
2020) 
 While the TOPMed samples for several tissues were collected from more ancestrally 
diverse cohorts than previous studies, European ancestry donors are still over-represented in 
this study relative to other populations. As our analysis and other TOPMed eQTL studies have 
shown (Araujo et al., 2023; Kachuri et al., 2023), greater ancestral diversity will enhance our 
ability to detect eQTL/sQTL variants which are rare in European ancestry populations but 
common in other populations. Similarly, cohort-level demographic differences limit some of our 
conclusions; for example, overlap between whole blood and lung cis-eQTL signals may be 
affected by the notable ancestry, age, and disease phenotype differences between the donors in 
the contributing TOPMed cohorts. 
 While several TOPMed cohorts have longitudinal data (e.g., MESA), the current study 
does not attempt to utilize this. Future studies could examine changes in e/sQTL behavior over 
time, e.g. interactions between e/sQTL and age. Because metadata such as diet or medications 
is often limited, we do not examine any context-specific effects. Context-specific e/sQTLs are an 
area of increasing interest and have been proposed as one explanation for limited eQTL - 
GWAS overlap (Soskic et al., 2022). 
 In summary, we show that while many e/sQTL signals surely remain to be discovered, 
the joint analysis of TOPMed RNA-seq and WGS data defines e/sQTL signals at exceptionally 
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high resolution, generating a useful resource for those studying gene expression and the effects 
of human genetic variation. 

Methods 

RNA-seq library preparation and sequencing 

Gene-Environments and Admixture in Latino Asthmatics (GALA II) and 
Study of African Americans, Asthma, Genes, & Environments (SAGE) 
Peripheral blood samples were collected into PAXgene Blood RNA tubes (PreAnalytiX, 
Hombrechtikon, Switzerland) and stored in the PAXgene tube in a -80oC freezer.  
 
Total RNA was isolated from a PAXgene tube using a MagMAX for Stabilized Blood Tubes RNA 
Isolation Kit (4452306; Applied Biosystems). Globin depletion was performed using 
GLOBINclear Human (AM1980; Thermo Fisher Scientific). RNA integrity and yield were 
assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies). 
 
Total RNA was quantified using the Quant-iT RiboGreen RNA Assay Kit and normalized to 
5 ng/µl. An aliquot of 300 ng for each sample was transferred into library preparation, which was 
an automated variant of the Illumina TruSeq Stranded mRNA Sample Preparation Kit. This 
method preserves strand orientation of the RNA transcript. It uses oligo dT beads to select 
messenger RNA from the total RNA sample. It is followed by heat fragmentation and 
complementary DNA synthesis from the RNA template. The resultant complementary DNA then 
goes through library preparation (end repair, base A addition, adapter ligation and enrichment) 
using Broad-designed indexed adapters substituted in for multiplexing. After enrichment, the 
libraries were quantified with quantitative PCR using the KAPA Library Quantification Kit for 
Illumina Sequencing Platforms and then pooled equimolarly. The entire process was in 96-well 
format and all pipetting was done using either an Agilent Bravo or a Hamilton Starlet instrument. 
Pooled libraries were normalized to 2 nM and denatured using 0.1 N NaOH before sequencing. 
Flow cell cluster amplification and sequencing were performed according to the manufacturer’s 
protocols using the HiSeq 4000. Each run was a 101-base pair paired-end read with an 
eight-base index barcode. Each sample was targeted to 50 million reads. Data were analyzed 
using the Broad Picard Pipeline, which includes demultiplexing and data aggregation. 
 

COPDGene Study (COPDGene) 
Whole blood samples were collected into PAXgene Blood RNA tubes (PreAnalytiX, 
Hombrechtikon, Switzerland) at the second study visit (five-year follow-up). Total RNA was 
extracted from PAXgene™ Blood RNA tubes using the Qiagen PreAnalytiX PAXgene Blood 
miRNA Kit (Qiagen, Valencia, CA). The extraction protocol was performed either manually or 
with the Qiagen QIAcube extraction robot according to the company’s standard operating 
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procedure. Extracted RNA samples with a minimum RIN > 6 and concentration > =10 μg/ul were 
sequenced. 
 
Initial QC entailed RNA quantification using the Quant-iT RNA assay (Invitrogen) and RNA 
integrity analysis using a fragment analyzer (Advanced Analytical). Samples were failed if the 
total amount, concentration, or integrity of RNA was too low. 
  
Poly-A selection and cDNA synthesis were performed using the TruSeq Stranded mRNA kit as 
outlined by the manufacturer (Illumina).  All steps were automated on the Perkin Elmer Sciclone 
NGSx Workstation to reduce batch to batch variability and to increase sample throughput.  Final 
RNASeq libraries were quantified using the Quant-it dsDNA High Sensitivity assay, and library 
insert size distribution was checked using a fragment analyzer (Advanced Analytical).  Samples 
where adapter dimers constitute more than 3% of the electopherogram area were failed prior to 
sequencing.  
  
Sequencing was carried out on the NovaSeq sequencer. The processing pipeline consisted of 
the following elements: (1) base calls generated in real-time on the NovaSeq6000 instrument 
(RTA 3.1.5); (2) demultiplexed, unaligned BAM files produced by Picard 
ExtractIlluminaBarcodes and IlluminaBasecallsToSam were converted to FASTQ format using 
SamTools bam2fq (v1.4); (3) sequence read and base quality were checked using the 
FASTX-toolkit (v0.0.13). 
 

Multi-Ethnic Study of Atherosclerosis (MESA) 
MESA data was generated in two phases (a small pre-pilot phase and a pilot phase) and across 
two sequencing centers (at the Northwest Genomics Center (NWGC) and at the Broad Institute 
of MIT and Harvard). 

Pre-pilot phase 

The pre-pilot included peripheral blood mononuclear cells (PBMCs) isolated at the University of 
Vermont from Exam 1 (2000-2002) or at Wake Forest University from Exam 5 (2010-2012). 
Three separate sets of PBMC RNA samples were used in the pre-pilot phase: 

1. 32 MESA Exam 1 cryopreserved PBMC samples processed at the University of Vermont 
(taken from -145C freezers, thawed and RNA extracted using a Trizol Protocol described 
below). 16 samples were sent to the Broad and 16 to NWGC for RNA-seq library 
preparation and sequencing. 
2. 40 MESA Exam 5 PBMC samples processed at Wake Forest University. These underwent 
automated extraction of RNA using the Qiagen AllPrep DNA/RNA Mini Kit (Catalogue # 
80204) and the QIAcube. 20 samples were sent to the Broad and 20 to the NWGC for library 
preparation and sequencing. 
3. Non-MESA control samples from the University of Vermont (none of which were used in 
e/sQTL scans). These were prepared from five donors, with three types of samples 
prepared from each donor: (1) fresh PBMC samples (RNA extracted from Paxgene 
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collection tube following the Paxgene protocol); (2) past PBMCs (PBMCs prepared 
immediately, but frozen with RNAlater (Millipore-Sigma #R0901) overnight at -20C, then 
thawed with RNA extracted using the Qiagen AllPrep DNA/RNA Mini Kit (Catalogue # 
80204)); and (3)  cryopreserved PBMCs (cryopreserved PBMCs were prepared with no 
additive, then step frozen to -145oC, thawed, and RNA prepared, blood collected in Cell 
Preparation Tube/citrate (BD Vacutainer CPT #362761). RNA was extracted using the 
Qiagen AllPrep DNA/RNA Mini Kit (Catalogue # 80204). For each of these three 
preparations, RNA obtained from volunteers 1-3 had 250ng and was sent to both the NWGC 
and the Broad Institute, while RNA obtained from volunteers 4 and 5 had 500ng and was 
sent to both the NWGC and the Broad Institute. 

The pre-pilot additionally included a small number of whole blood samples, which were not 
analyzed in this work.   

Pilot phase 

Exam 1 RNA was extracted at the University of Vermont from cryopreserved PBMCs using the 
Trizol protocol described below. RNA of all Exam 5 samples (PBMCs, monocytes and T cells) 
were extracted at Wake Forest using the QIAcube and the Qiagen AllPrep DNA/RNA Mini Kit 
(Catalogue # 80204).   The Wake Forest laboratory shipped the extracted RNA samples to the 
University of Vermont for assignment of Pilot Study ID and plating; the University of Vermont 
shipped all plates containing RNA to the TOPMed Sequencing Centers. If a MESA participant 
had more than one RNA sample (i.e., Exam 1 PBMC, Exam 5 PBMC, Exam 5 monocyte, and/or 
Exam 5 T cell), these samples were aliquoted to the same 96-well plate.  Frozen samples were 
shipped overnight in batches on dry ice. 

Trizol RNA isolation protocol 

This protocol requires the Qiagen RNeasy Mini Kit Cat No. 74104. 
  
First, cells were thawed quickly at 37°C for ~2 minutes, then pelleted by centrifuging at 500 x g 
for 5 minutes (2400 rpm) after which the freezing media was decanted. 
 
For the lyse/phase separation, 1 mL TRIzol reagent was added and the mixture was vortexed. 
This was incubated at room temperature for 5 minutes. 0.2 mL cholorform was added, the tube 
was shaken vigorously by hand for 15 seconds, and this was incubated at room temperature for 
2-3 minutes. The sample was then centrifuged at 12000 x g for 15 minutes at room temperature. 
600 ul of the upper phase was transferred to a fresh RNase-free tube, 1.5x (~900 ul) volume of 
70% ethanol was added and the tube was inverted to mix 
 
For binding, washing, and elution, 700 ul of the sample at a time was transferred to an RNeasy 
spin cartridge. This was centrifuged at 12000 x g for 15 seconds at room temperature and 
flow-through was discarded; this spin step was repeated until all of the sample had been 
processed. Next, 350 ul RW1 was added and this mixture spun at 12000 x g for 15 seconds and 
flow-through was discarded. Then, 500 ul RPE buffer was added, and this was spun for 15 
seconds at full speed and flow-through discarded. Another 500 ul RPE buffer was added, and 
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this was spun for 2 minutes at full speed and flow-through discarded. Lastly 30 ul RNase-Free 
Water was added to the center of cartridge, and this was incubated for 1 minute at room 
temperature before spinning for 2 minutes at max speed. 
 
Broad library preparation and sequencing 
Quantification of total RNA was accomplished using the Quant-iTTM RiboGreen® RNA Assay Kit. 
Quality was assessed by measuring RNA degradation. Samples were assigned an RQS (RNA 
Quality Score) value based off of a 0-10 scale with 10 being the most intact RNA. To calculate 
the RQS, the Caliper LabChip GX was used to perform an electrophoresis-based separation to 
measure the fragment sizes of each sample. The RQS was calculated based on the 18S and 
28S peak areas and heights of the resultant electropherogram, as well as the total RNA area. 
The calculation also took into consideration the FastRegion Area (the region between the LM 
and 18S peaks), which represents smaller, more degraded RNA fragments. After upfront quality 
assessment, samples were plated into diluted daughter aliquots with an input target of 250ng 
total RNA. Daughter concentrations were confirmed with RiboGreen quantification. 
 
After quantification, 2 uL of External RNA Controls Consortium (ERCC) controls (using a 1:1000 
dilution) were spiked into a 200ng aliquot of each sample destined for library construction. 
These consist of a set of unlabeled, polyadenylated transcripts, 250 to 2000nt in length 
designed to be added to an RNA analysis experiment after sample isolation, allowing for control 
of several sources of variability including quality of the starting material, the level of cellularity 
and RNA yield, the platform employed, and batch to batch variability. 
 
The 200ng aliquot for each sample was continued into library preparation which used an 
automated variant of the Illumina TruSeqTM Stranded mRNA Sample Preparation Kit. Input RNA 
first underwent PolyA selection with the use of oligo-dT purification beads. For optimal 
purification, the polyA selection process was performed in two sequential rounds. The mRNA 
was subsequently fragmented and primed for first strand synthesis, while the beads were eluted 
and washed away. The first strand of cDNA was synthesized from the mRNA template using 
reverse transcriptase. To create double-stranded cDNA, the mRNA template was removed and 
the second strand synthesized using the first cDNA strand as a template. AMPure XP beads 
were used to purify the ds cDNA from the reaction mix. The resulting product was blunt-ended 
cDNA. The 3’ blunt ends of the ds cDNA were subsequently adenylated with a single ‘A’ 
nucleotide. This provided a complementary overhang for the ligation of adapters and prevented 
the cDNA fragments from ligating to each other during this ligation reaction, thereby reducing 
chimera formation. Molecular adapters were then ligated to the ends of the ds cDNA to serve as 
primers for PCR enrichment. Each adapter was a unique molecular barcode specific for each 
well location of the 96-well plate. After enrichment, samples were amplified using PCR and the 
cDNA libraries subsequently quantified using PicoGreen and then pooled in equimolarity. Pools 
were quantified using qPCR and then normalized to 2nM. Afterwards, pools were denatured 
using 0.1 N NaOH prior to sequencing to create single-stranded DNA to be loaded onto the 
sequencers. 
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Flowcell cluster amplification and sequencing were performed according to the  manufacturer’s 
protocols using the HiSeq 4000. The runs were 101bp paired-end with an eight-base index 
barcode read. Data was analyzed using the Broad Picard Pipeline which includes 
de-multiplexing and data aggregation. 
 
NWGC library preparation and sequencing 
 
Total RNA submitted by the investigator was verified using the Quant-iT RNA Assay Kit 
(Invitrogen, cat# Q33140).  The NWGC required a minimum of 225ng of RNA per sample. 
Samples with less than 225 ng of RNA were failed in quality control.  RNA  quality was 
measured using the RIN score as assessed by the Agilent 2100 Bioanalyzer (Agilent, Santa 
Clara, CA). The RIN software algorithm determines the RIN score by assessing the 
electropherogram, including the 18S and 28S peak heights.  Lower RIN scores indicate greater 
degradation of the total RNA. The NWGC requires RNA with a RIN score >5.0. Samples with 
RIN scores below 5.0 were considered as quality control failures by the NWGC. 
 
Total RNA was normalized to 5ng/ul in a total volume of 50ul on the Perkin Elmer Janus 
Workstation (Perkin Elmer, Hopkington, MA).  Poly-A selection and cDNA synthesis were 
performed using the TruSeq Stranded mRNA kit as outlined by the manufacturer (Illumina, 
cat#RS-122-2103).  All steps were automated on the Perkin Elmer Sciclone NGSx Workstation 
to reduce batch to batch variability and to increase sample throughput.  Total RNA was subject 
to two rounds of poly-A selection through sequential binding of poly-A RNA to oligo d(T) beads 
and washing away of unbound RNA.  Purified mRNA was then eluted from the beads, 
fragmented and randomly primed for first strand synthesis using the SuperScript III reverse 
transcriptase (Invitrogen, cat#18080085).  The original RNA template was degraded and double 
stranded cDNA was made using the first strand of cDNA as a template.  The resulting cDNA 
was purified using AMPure XP beads (Beckman Coulter, A63882). 
 
Double stranded cDNA proceeded through a series of shotgun library steps using the TruSeq 
Stranded mRNA kit, as outlined by the manufacturer.  Library molecules are adenylated 
(A-tailing) to accommodate the T overhang of the Illumina Truseq adapters.  Full length 
adapters were then ligated to the cDNA fragments, followed by an AMPure XP cleanup to 
remove unligated adapters.  The NWGC uses a dual indexing strategy  designed to avoid index 
hopping and to uniquely identify each library. Using unique dual indexing when multiplexing 
samples as well as implementing perfect barcode matching during demultiplexing ensures that 
samples are not contaminated at low levels with mismatched reads. Adapter ligated ds cDNA 
molecules were amplified by 13 cycles of PCR and subjected to a final 1X AMPure XP cleanup 
to remove carry over primers.  All library preparation steps were carried out on the Perkin Elmer 
Sciclone NGSx Workstation. 
 
Final RNA-seq libraries were quantified using the Quant-it dsDNA High Sensitivity assay.  
Library insert size distribution was checked using the DNA1000 assay on the Agilent 2100 
Bioanalyzer.  Samples where adapter dimers constituted more than 4% of the electropherogram 
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area were failed prior to sequencing. Successful libraries were normalized to 10nM for 
submission to sequencing. 
 
Ninety-six normalized and indexed libraries were pooled together and denatured before cluster 
generation on a cBot. The 96-plex pools were loaded on eight lanes of a flow cell and 
sequenced on a HiSeq4000 using illumina’s HiSeq 4000 reagents kit (cat# FC-410-1001,1002). 
For cluster generation, every step is controlled by cBot. When cluster generation is complete, 
the clustered patterned flow cells are then sequenced with sequencing software HCS (HiSeq 
Control Software v3.4.0.38). The runs are monitored for %Q30 bases using the SAV 
(Sequencing Analysis Viewer).  Using RTA 2 (Real Time Analysis 2 v2.7.7) ) the BCLs (base 
calls) were de-multiplexed. 
 

Women’s Health Initiative (WHI) 
The WHI RNA samples were collected from Long Life Study (LLS) participants as part of the 
LLS Blood Protocol using the PreAnalytiX PAXgene blood tubes. After collection in participant 
homes throughout the US, PAXgene tubes were the last of five tubes drawn from each 
participant, mixed carefully (inverted 8-10 times), kept at room temperature for a minimum of 2 
hours post draw, and shipped overnight with cool packs to the Fred Hutch Specimen Processing 
Lab (SPL). Upon receipt at the SPL, techs froze the PAXgene tubes at -80 degrees C until they 
could be transferred to the Fred Hutch Public Health Sciences Biomarker Lab, where the vials 
were kept frozen at -80 degrees C until a sufficient number for an extraction run was assembled. 
 
Within about a month of collection, the lab extracted total RNA, including miRNA, using the 
PreAnalytiX method (PAXgene Blood miRNA Kit Handbook, Qiagen, 05/2009) designed for use 
with the PAXgene blood collection tubes. A qualitative assessment by agarose gel 
electrophoresis of RNA integrity was done at the time of extraction. The RNA was quantified by 
NanoDrop. 
 
The elution volume of 76 µL of extracted RNA was divided between two RNA ‘Parent’ vials 
without further dilution, frozen at -80 degrees C, and shipped overnight on dry ice to the WHI 
biorepository for long term storage at -80 degrees C. 
 
Extracted RNA was sent to the Northwest Genomics Center (NWGC) for library prep and 
sequencing. 
 
Initial QC entailed RNA quantification using the Quant-iT RNA assay (Invitrogen) and RNA 
integrity analysis using a fragment analyzer (Advanced Analytical). Samples were failed if the 
total amount, concentration, or integrity of RNA was too low. 
  
Poly-A selection and cDNA synthesis were performed using the TruSeq Stranded mRNA kit as 
outlined by the manufacturer (Illumina).  All steps were automated on the Perkin Elmer Sciclone 
NGSx Workstation to reduce batch to batch variability and to increase sample throughput.  Final 
RNASeq libraries were quantified using the Quant-it dsDNA High Sensitivity assay, and library 
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insert size distribution was checked using a fragment analyzer (Advanced Analytical).  Samples 
where adapter dimers constitute more than 3% of the electropherogram area were failed prior to 
sequencing.  
  
Sequencing was carried out on the NovaSeq sequencer. The processing pipeline consisted of 
the following elements: (1) base calls generated in real-time on the NovaSeq6000 instrument 
(RTA 3.1.5); (2) demultiplexed, unaligned BAM files produced by Picard 
ExtractIlluminaBarcodes and IlluminaBasecallsToSam were converted to FASTQ format using 
SamTools bam2fq (v1.4); (3) sequence read and base quality were checked using the 
FASTX-toolkit (v0.0.13). 
 

Lung Tissue Research Consortium (LTRC) 
The lung tissue samples were aliquoted and stored at -80 ̊C. Reagents and components of the 
Qiagen Allprep DNA/RNA/miRNA Universal Kit (Qiagen, Catalog # 80224) were used for the 
simultaneous extraction of DNA and RNA from the Lung Tissue samples. The extractions were 
performed at the Channing Division of Network Medicine at the Brigham and Women’s Hospital. 
10-20 mg of the frozen Lung Tissue samples were weighed using sterile scalpel under frozen 
conditions. The extractions were performed as per the kit manufacturer’s instructions. The RNA 
was eluted in TE (Tris EDTA, pH=7.0) buffer. The eluted RNA was stored in NUNC cryotubes 
(Fisher Scientific, cat # 12-565-170N) at -80 ° C. 
 
RNA samples were randomized into 16 plates. The RNA samples were quantified using 
RiboGreen dye (Thermo Fisher, catalog # Quant-iT P 7581). Minimum 12 μl of DNA sample was 
plated in 96 well plate (0.8 mL deep well plate by ABgene, catalog # AB- 07565) to get minimum 
RNA mass of 500 ng/ sample. 
 
Extracted RNA was sent to the Northwest Genomics Center (NWGC) for library prep and 
sequencing. 
 
At the NWGC, initial QC entailed RNA quantification using the Quant-iT RNA assay (Invitrogen) 
and RNA integrity analysis using a fragment analyzer (Advanced Analytical). Samples were 
failed if the total amount, concentration, or integrity of RNA was too low. 
 
Total RNA was normalized to 7.5ng/ul in a total volume of 50ul on the Perkin Elmer Janus 
Workstation (Perkin Elmer, Janus II). Poly-A selection and cDNA synthesis were performed 
using the TruSeq Stranded mRNA kit as outlined by the manufacturer (Illumina, 
cat#RS-122-2103). All steps were automated on the Perkin Elmer Sciclone NGSx Workstation 
to reduce batch to batch variability and to increase sample throughput. Final RNASeq libraries 
were quantified using the Quant-it dsDNA High Sensitivity assay, and library insert size 
distribution was checked using a fragment analyzer (Advanced Analytical; kit ID DNF474). 
Samples where adapter dimers constitute more than 4% of the electopherogram area were 
failed prior to sequencing. Technical controls (K562,Thermo Fisher Scientific, cat# AM7832) 
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were compared to expected results to ensure that batch to batch variability was minimized. 
Successful libraries were normalized to 10nM for submission to sequencing. 
 
Barcoded libraries were pooled using liquid handling robotics prior to loading. Sequencing was 
carried out on the NovaSeq sequencer. 
 
The processing pipeline consisted of the following elements: (1) base calls generated in 
real-time on the NovaSeq6000 instrument (RTA 3.1.5); (2) demultiplexed, unaligned BAM files 
produced by Picard ExtractIlluminaBarcodes and IlluminaBasecallsToSam were converted to 
FASTQ format using SamTools bam2fq (v1.4); (3) sequence read and base quality were 
checked using the FASTX-toolkit (v0.0.13). 
 

Framingham Heart Study (FHS) 
Peripheral whole blood samples (2.5 mL) were collected from FHS participants using 
PAXgene™ tubes (PreAnalytiX, Hombrechtikon, Switzerland), incubated at room temperature 
for 4 h for RNA stabilization, and then stored at − 80 °C until use.  
 
For one subset of samples, total RNA was isolated using a standard protocol using a PAXgene 
Blood RNA Kit at the FHS Genetics Laboratory. Tubes were allowed to thaw for 16 h at room 
temperature. Cell pellets were collected after centrifugation and washing. Cell pellets were lysed 
in guanidinium-containing buffer. The extracted RNA was tested for its quality by determining 
absorbance readings at 260 and 280 nm using a NanoDrop ND-1000 UV spectrophotometer. 
The Agilent Bioanalyzer 2100 microfluidic electrophoresis (Nano Assay and the Caliper LabChip 
system) was used to determine the integrity of total RNA. For the rest of the samples, total RNA 
was isolated at the TOPMed contract laboratory at Northwest Genomics Center.  
 
Library prep and sequencing was performed at Northwest Genomics Center. Initial QC entails 
RNA quantification using the Quant-iT RNA assay (Invitrogen) and RNA integrity analysis using 
a fragment analyzer (Advanced Analytical). Samples are failed if the total amount, 
concentration, or integrity of RNA is too low. 
  
Poly-A selection and cDNA synthesis are performed using the TruSeq Stranded mRNA kit as 
outlined by the manufacturer (Illumina).  All steps are automated on the Perkin Elmer Sciclone 
NGSx Workstation to reduce batch to batch variability and to increase sample throughput.  Final 
RNASeq libraries are quantified using the Quant-it dsDNA High Sensitivity assay, and library 
insert size distribution is checked using a fragment analyzer (Advanced Analytical).  Samples 
where adapter dimers constitute more than 3% of the electopherogram area are failed prior to 
sequencing.  
  
Sequencing is carried out on the NovaSeq sequencer. The processing pipeline consists of the 
following elements: (1) base calls generated in real-time on the NovaSeq6000 instrument (RTA 
3.1.5); (2) demultiplexed, unaligned BAM files produced by Picard ExtractIlluminaBarcodes and 
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IlluminaBasecallsToSam are converted to FASTQ format using SamTools bam2fq (v1.4); (3) 
sequence read and base quality are checked using the FASTX-toolkit (v0.0.13). 
 

Subpopulations and Intermediate Outcome Measures In COPD Study 
(SPIROMICS) 
RNA was extracted from PAXgene blood tubes using a magnetic-bead extraction method using 
the Perkin-Elmer (now Revvity) Magnetic Separation Module I (MSMI) extraction robotics 
system. The principle behind magnetic bead separation is that after cell lysis the nucleic acid 
binds to the beads, while the proteins and other unwanted materials do not bind. Multiple 
washes of the beads remove any non-specific binding of these unwanted materials.  
 
After receipt of the samples into the UNC BioSpecimen Processing Facility the Paxgene blood 
tubes were kept at room temperature for a minimum of 4 hours to a maximum of 72 hours after 
which the tubes are frozen at -80°until extraction occurs, in multiple of 6 samples. If samples 
arrived frozen they were immediately placed into -80°C. Clinical sites were instructed to hold 
samples at room temperature prior to freezing for a minimum of 4 hours to a maximum of 72 
hours. Prior to lysate preparation, extraction and placement on the MSMI system, frozen 
PAXgene blood tubes to be processed are removed from the freezer and incubated at room 
temperature overnight. After overnight incubation the blood from the PAXgene tubes are 
pelleted at 3250 x g for 10 minutes at 15°C. The cell pellets are washed 1 time after being 
resuspended in RNASE-free water. At this time the pellet was resuspended in 500ul RLT lysis 
buffer (Qiagen) containing 1% 2-ME, pipetted to break up the pellet and frozen at -80°C for a 
week before extraction on the MSMI using the chemagic™ PAXgene RNA Reagent Kit - 
CMG-1084. Prior to loading on the machine for extraction the prepared lysates were removed 
from the freezer and allowed to thaw after which 1.5ml of RNAse-free water was added to each 
pellet in 500ul aliquots vortex gently and then 50ul of proteinase K was added to each tube prior 
to loading onto the machine. Extraction was performed using “chemagic™ RNA Blood 24 drying 
VD100806.che” protocol with DNase. Samples were eluted into 155ul of MSMI elution buffer 
and were quantitated by UV absorbance on a Denovix reader followed by RNA quality analysis 
on an Agilent Tapestation. 
 
Extracted RNA was sent to the Northwest Genomics Center (NWGC) for library prep and 
sequencing. 
 
At the NWGC, initial QC entailed RNA quantification using the Quant-iT RNA assay (Invitrogen) 
and RNA integrity analysis using a fragment analyzer (Advanced Analytical). Samples were 
failed if the total amount, concentration, or integrity of RNA was too low. 
 
Total RNA was normalized to 7.5ng/ul in a total volume of 50ul on the Perkin Elmer Janus 
Workstation (Perkin Elmer, Janus II). Poly-A selection and cDNA synthesis were performed 
using the TruSeq Stranded mRNA kit as outlined by the manufacturer (Illumina, 
cat#RS-122-2103). All steps were automated on the Perkin Elmer Sciclone NGSx Workstation 
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to reduce batch to batch variability and to increase sample throughput. Final RNASeq libraries 
were quantified using the Quant-it dsDNA High Sensitivity assay, and library insert size 
distribution was checked using a fragment analyzer (Advanced Analytical; kit ID DNF474). 
Samples where adapter dimers constitute more than 4% of the electopherogram area were 
failed prior to sequencing. Technical controls (K562,Thermo Fisher Scientific, cat# AM7832) 
were compared to expected results to ensure that batch to batch variability was minimized. 
Successful libraries were normalized to 10nM for submission to sequencing. 
 
Barcoded libraries are pooled using liquid handling robotics prior to loading. Sequencing was 
carried out on the NovaSeq sequencer. 
 
The processing pipeline consisted of the following elements: (1) base calls generated in 
real-time on the NovaSeq6000 instrument (RTA 3.1.5); (2) demultiplexed, unaligned BAM files 
produced by Picard ExtractIlluminaBarcodes and IlluminaBasecallsToSam were converted to 
FASTQ format using SamTools bam2fq (v1.4); (3) sequence read and base quality were 
checked using the FASTX-toolkit (v0.0.13). 
 

RNA-seq mapping 
RNA-seq reads were mapped to the GRCh38 reference genome. We used a GRCh38 reference 
fasta file that included ERCC spike-ins and excluded ALT, HLA, and decoy contigs, and used a 
collapsed GENCODE v30 gene annotation. The collapsed annotation was generated using a 
GTEx consortium script: 
https://github.com/broadinstitute/gtex-pipeline/commits/master/gene_model/collapse_annotation
.py, and ERCC annotations were appended.  
 
Reads were mapped with STAR v. 2.6.1d (except for MESA, which used STAR v 2.5.3a with an 
index built from the GENCODE v26 gene annotation), using default parameters except 
--twopassMode Basic --outFilterMultimapNmax 20  --alignSJoverhangMin 8 
--alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 
--outFilterMismatchNoverLmax 0.1 --alignIntronMin 20 --alignIntronMax 
1000000 --alignMatesGapMax 1000000 --outFilterType BySJout 
--outFilterScoreMinOverLread 0.33 --outFilterMatchNminOverLread 0.33 
--limitSjdbInsertNsj 1200000 --outSAMstrandField intronMotif 
--quantMode TranscriptomeSAM GeneCounts --outSAMtype BAM Unsorted 
--outSAMunmapped Within --chimSegmentMin 15 --chimJunctionOverhangMin 
15 --chimOutType Junctions WithinBAM SoftClip 
--chimMainSegmentMultNmax 1 --outSAMattributes NH HI AS nM NM ch 
--outSAMattrRGline ID:rg1 SM:sm1 
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Duplicates were marked using picard (v. 2.18.17) MarkDuplicates with default parameters 
except ASSUME_SORT_ORDER=coordinate. 
 
Gene counts, transcript per million (TPM) expression values, and QC metrics for each sample 
(including MESA samples) were computed using RNA-SeQC v. 2.3.3 (Graubert et al., 2021) 
with parameter --stranded rf, using the collapsed GENCODE v30 gene annotation. 

Matching RNA-seq samples to whole genome genotypes 
For each RNA-seq sample, we run vt discover2 on the RNA-seq .bam file, restricting to reads 
with mapping quality >= 20, to identify candidate variant sites.  The output from vt discover2 is 
converted to a crude diploid genotype at each site by approximately 'round(2 * AD / DP)'.  These 
genotypes are compared to the genotypes for all samples in TOPMed freeze 9b, restricted to 
PASS variants with minor allele frequency (MAF) >= 0.05 TOPMed-wide in coding exons as 
defined by GENCODE v34.  The comparison calculates non-reference genotype concordance 
as:  
 
   SUM ((GT_rna > 0) && (GT_rna == GT_ref))  /  SUM (GT_rna > 0) 
 
where the sums are over all sites with TOPMed-wide minor allele frequency >= 0.05 in coding 
exons, and integers GT_rna, GT_ref represent genotypes for the RNA-seq or a whole genome 
reference sample respectively, coded as 0, 1 or 2 non-reference alleles. The comparison to all 
sequenced samples in freeze 9b separates into three clusters: putative matches with high 
concordance (85% - 93%), putative matches to a related sample (55% - 65%), and then putative 
unmatched samples (40% - 50%).  We declare an RNA-seq sample as unmatched if its highest 
genotype concordance with any sample in freeze 9b is below 83%. 
 
For MESA cohort samples only, expected WGS - RNA matches are used and matches where 
the RNA-seq sample failed fingerprinting or expression-based sex check are dropped. 

 
733 donors contributed data from more than one tissue or cell type (Fig S62), including 334 
donors from the MESA cohort that contributed T cell, monocyte, and PBMC RNA-seq samples, 
and 324 donors from the COPDGene cohort that contributed nasal epithelial and whole blood 
samples. 

Glocal ancestry estimation 
Local ancestry was inferred using RFMix v2 (Maples et al., 2013) with the following option: 
--node-size=5. For reference haplotypes used in local ancestry inference, we obtained the 
Human Genome Diversity Panel (HGDP) (J. Z. Li et al., 2008) and processed the data 
according to (C. Wang et al., 2014), ending up with 938 individuals and 639,958 autosomal 
SNPs. We then condensed the 53 populations in HGDP into 7 super-populations: (1) 
Sub-Saharan Africa (n=104), (2) Central/South Asia (n=200), (3) East Asia (n=229), (4) Europe 
(n=154), (5) Native America (n=63), (6) Oceania (n=28), (7) Middle East (n=160). After running 
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RFMix, we summed up inferred local ancestry across all genetic windows of each individual to 
calculate global ancestry proportions, corresponding to the seven super-populations. Local 
ancestry was not used in our analyses; global ancestry was used to describe donor ancestry / 
admixture and define population groupings as described below. 
 
Genetic ancestry refers to segments of an individual’s genome that have been inherited from 
their ancestors. In practice we approximate this from some quantitative measure of genetic 
sharing between individuals in our study and reference populations. As such, genetic ancestry is 
an estimate that has some error and variability. (Lewis et al., 2022; Mathieson & Scally, 2020). 
 

Assignment of individuals to population clusters 
Unless otherwise specified, a sample was assigned to an ancestry if the sample’s estimated % 
global genetic ancestry for the ancestry in question was at least 75%. If a sample was < 75% for 
all ancestries (for example, 25% AFR, 25% AMR, and 50% EUR), it was left unassigned and 
omitted from the analysis; in some tissues, this left a substantial fraction of samples unassigned 
to an ancestry (e.g., 1,845 of 6,454 (28.6%) whole blood samples). The number of samples 
assigned to each ancestry in each tissue under these criteria are listed in Table S17. 
 
Genetic variation is continuous and we acknowledge that imposing a discrete structure using 
somewhat arbitrary cut-offs is problematic (Lewis et al., 2022; Mathieson & Scally, 2020). We 
selected global ancestry thresholds to create groupings for cross-population comparisons of 
e/sQTLs. These comparisons are intended to provide insight into genetic architecture of gene 
expression and the effects of varying demographic histories. Use of a broad global ancestry 
estimation also helps avoid the intrinsic challenges associated with the distinct population 
descriptors used between TOPMed studies and the demographic nuances of each study. 
 
We selected a lower threshold (50%) for the AMR ancestry to increase participant inclusion in 
the related analyses, and because AMR reference panels include many individuals with 
significant admixture themselves (esp. EUR and AFR) (The 1000 Genomes Project Consortium, 
2015). 

Genotypes 
Genotypes for WGS samples matching an RNA-seq sample were extracted from the freeze 9b 
TOPMed BCF files (Danecek et al., 2021). Only autosomal + chrX SNPs and short indels (< 50 
bp) were used. 

Selection of unrelated subjects 
Autosomal SNPs with FILTER=PASS and MAF >= 1% were used for determining subject 
relatedness. Relatedness was calculated using KING v. 2.2.7 (Manichaikul et al., 2010) (options 
--degree 5 --related). An unrelated set of subjects for downstream analysis was generated from 
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the KING output as follows. First, subjects were ranked according to the number of inferred 
relatives they had (related meaning 4th degree or greater relatedness). Next, the individual with 
the fewest relatives was added to the unrelated sample set, and any subjects that this individual 
was related to were dropped from further consideration. This step was iteratively performed until 
all samples had either been added to the unrelated sample set or had been dropped from the 
analysis. 

Genotype PCA 
PCA was performed on the genotypes of the unrelated subjects, utilizing a set of LD pruned and 
thinned common (MAF >= 1%) SNPs. EIGENSOFT (Patterson et al., 2006; Price et al., 2006) 
(git commit 09ed563f) was used for the PCA, computing the top 15 PCs (smartpca.perl with 
options -k 15 -m 0). The genotype PCA is plotted in Fig S63. 
 

RNA-seq QC 
No hard thresholds were set on individual QC metrics; a PCA-based approach was used to 
label samples as outliers or non-outliers, and outlier samples were excluded from e/sQTL scans. 
For each cohort/tissue combination, we performed DESeq2 size factor-based normalization of 
gene counts (Love et al., 2014) (as implemented in pyqtl (https://github.com/broadinstitute/pyqtl) 
function deseq2_normalized_counts), dropped genes for which fewer than 10% of samples 
had a normalized count of at least 10, filled zeros with a value equal to ½ of the minimum 
observed non-zero value for that gene, log10 transformed the matrix, and then performed PCA. 
A sample was labeled as an outlier in PC space if any of the following criteria were met: 

● The sample’s Mahalanobis distance, computed with the top 5 PCs, corresponded to a 
chi-square p-value < 0.001 

● Along any of the top 10 PCs, the sample’s absolute deviation from the median, 
normalized by the median absolute deviation across all samples for that PC, was >= 5. 

 

Selection of samples for e/sQTL scans 
For each tissue, samples for the cis-eQTL scan were selected via the following procedure: 
1). Exclude samples that were outliers in PC space 
2). Exclude samples without a known WGS match 
3). Exclude samples where the subject (WGS match) is not in the unrelated subject set. 
4). Exclude samples with unclear sex based on gene expression. Sex was inferred using TPM 
values for genes XIST (on chrX) and RPS4Y1 (on chrY) (Fig S64).  
5). Keep only one sample per subject. This was done randomly, except: 

● For samples from the SPIROMICS cohort, samples from the baseline timepoint were 
preferred, if the subject had a sample from this timepoint. 

● For samples from the MESA cohort, samples from exam 5 were preferred, if the subject 
had a sample from this timepoint. 
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cis-eQTL scans 
For each tissue, using the samples selected for inclusion in the cis-eQTL scan: 
1). Gene counts were filtered to include only autosomal and chrX genes 
2). Genes counts were normalized using the edgeR TMM procedure (Robinson et al., 2010), as 
implemented in pyqtl function edger_cpm. 
3). Lowly expressed genes, defined as those where < 20% of samples have a TPM value of > 
0.1, were dropped. 
4). TMM-normalized gene expression values were inverse normal transformed. 
 
To generate gene expression PCs to be used as covariates in the cis-eQTL scans, we 
performed PCA on the inverse normal transformed gene expression matrix, excluding genes 
with low mappability (mappability < 0.5, using mappability values from (Saha & Battle, 2018); 
genes without mappability scores were dropped prior to PCA as well). 
 
Covariates for each tissue were: 

● Whole blood: cohort + inferred sex + 10 genotype PCs + 100 gene expression PCs 
● Lung: inferred sex + 10 genotype PCs + 75 gene expression PCs 
● Nasal epithelial: inferred sex + 10 genotype PCs + 30 gene expression PCs 
● T-cells: inferred sex + 10 genotype PCs + 30 gene expression PCs 
● PBMCs: inferred sex + 10 genotype PCs + 30 gene expression PCs 
● Monocytes: inferred sex + 10 genotype PCs + 30 gene expression PCs 

 
SNPs and indels meeting the following criteria were tested: 

● Marked as PASS in the TOPMed VCF files. 
● MAF >= 1% in the scan samples (for whole blood, two sets of scans were run, one using 

MAF >= 1% and one using MAF >= 0.1%) 
 
For each gene, genetic variants within 1Mb of the gene TSS were tested. Gene TSS locations 
were determined using pyqtl’s gtf_to_tss_bed function. 
 
The number of gene expression PCs to use for each tissue was determined by examining the 
relationship between the number of cis-eGenes detected and the number of PCs used as 
covariates, and selecting the point at which the number of cis-eGenes began to level off (Fig 
S65). 
 
cis-eQTL scans were performed using tensorQTL v. 1.0.7 (Taylor-Weiner et al., 2019), modified 
to add a second inverse normalization of the gene expression values following residualization 
against the scan covariates (modified code at 
https://github.com/porchard/tensorqtl/tree/5ea048f2705035df1cb87e59eb143a54805cadeb). 
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Permutations were used to identify eGenes (tensorQTL mode = cis; q-value lambda = 0 and 
seed = 2021). Full summary statistics were computed using tensorQTL mode cis_nominal. 
cis-eQTL signals for cis-eGenes were fine-mapped using the SuSiE (G. Wang et al., 2020) 
implementation in tensorQTL. For monocytes, T cells, and nasal epithelial samples, we set the 
SuSiE L parameter (number of non-zero effects to consider when fitting the SuSiE model) to 10. 
For lung, PBMCs, and whole blood, we ran SuSiE with multiple L values (10 and 20 for lung and 
PBMCs; 10, 20, and 30 for whole blood) and for each gene selected the minimum L greater 
than or equal to the maximum number of credible sets discovered across tested Ls. By default 
the SNP PIP values reported by SuSiE represent an aggregation across single effects; we 
therefore calculated single-effect PIP values using the Bayes factor matrix (PIP_ij = BF_ij / 
sum(BF_j), for SNP i and single effect j, where BF represents Bayes factors and the sum is 
across SNPs; in practice the difference between the single-effect PIP values and the PIP values 
reported by SuSiE tends to be extremely minor). A small minority of credible sets were 
duplicates (credible sets containing the same SNPs and PIP values); such duplicate credible 
sets were collapsed into single credible sets. 
 
Cis-eQTL analyses on the subset of genetically-inferred EUR ancestry samples were performed 
in the same manner as full-sample cis-eQTL analyses, except for the number of phenotype PCs 
and SuSiE L parameters (listed in Table S18). The number of phenotype PCs was selected by 
examining the relationship between PCs used and eGenes discovered. 
 
For some downstream analyses, we utilized only the top PIP variant per credible set. In the 
case that two variants had the same PIP (i.e., were in perfect LD), we arbitrarily selected one of 
them (the first one based on ascending alphabetical-order sorting). 

cis-sQTL scans 
We quantified splicing using LeafCutter (Y. I. Li et al., 2018) intron excision ratios. 
 
Prior to quantifying splicing, samples were remapped in a variant-aware manner using STAR 
(Dobin et al., 2012) v. 2.6.1d with WASP (van de Geijn et al., 2015) filtering 
(--waspOutputMode SAMtag --varVCFfile $vcf --outSAMattributes NH HI AS 
nM NM ch vW), otherwise using the same mapping parameters used in the initial STAR 
mapping. Reads were filtered to uniquely mapped reads passing WASP filtering (samtools 
view -h -q 255 $bam | grep -v "vW:i:[2-7]") and exon-exon junction counts were 
computed using regtools (Cotto et al., 2023) v. 0.5.(Cotto et al., 2023) (regtools junctions 
extract -a 8 -m 50 -M 500000 -s 1 filtered.bam). 
 
We used LeafCutter’s leafcutter_cluster_regtools.py to cluster introns (--minclureads 
round(tissue N/5) --mincluratio 0.001 --maxintronlen 500000), additionally 
modifying the procedure to exclude introns supported by fewer than (round(tissue N / 10)) 
samples. We mapped the intron clusters to genes using the map_clusters_to_genes.R GTEx 
(GTEx Consortium, 2020) script (implementing LeafCutter function map_clusters_to_genes). 
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We removed introns with no counts in the majority of the samples, and removed introns with low 
variability across samples using the intron cluster fraction Z-score filter introduced in (GTEx 
Consortium, 2020) (removing introns where three or fewer samples have abs(cluster fraction 
z-score) > 6 and no more than three samples have abs(cluster fraction z-score) > 0.25). The 
resulting matrix was normalized using LeafCutter’s prepare_phenotype_table.py script, 
and then each splicing phenotype was inverse normalized. This matrix was used as input to the 
cis- and trans-sQTL scans, and splicing PCs used as scan covariates were calculated on this 
matrix. 
 
We used inferred sex, 10 genotype PCs, 10 splicing phenotype PCs, and (for whole blood) 
TOPMed cohort as scan covariates (Fig S66). 
 
SNPs and indels meeting the following criteria were tested: 

● Marked as PASS in the TOPMed VCF files. 
● MAF >= 1% in the scan samples (for whole blood, two sets of scans were run, one using 

MAF >= 1% and one using MAF >= 0.1%) 
 
For each gene, genetic variants within 1Mb of the gene TSS were tested. Gene TSS locations 
were determined using pyqtl’s gtf_to_tss_bed function. 
 
cis-sQTL scans were performed using tensorQTL v. 1.0.7 (Taylor-Weiner et al., 2019), modified 
to add a second inverse normalization of the splicing phenotypes following residualization 
against the scan covariates (modified code at 
https://github.com/porchard/tensorqtl/tree/5ea048f2705035df1cb87e59eb143a54805cadeb). 
 
Permutations were used to identify sGenes (tensorQTL mode = cis; q-value lambda = 0 and 
seed = 2021, grouping phenotypes by gene). To get gene-level cis-sQTL credible sets, we 
identified introns that have a variant association strong enough to pass genome-wide FDR 5% 
threshold (based on tensorQTL mode cis_nominal significant phenotype - variant pairs), 
fine-mapped cis-sQTL signals for each such intron using the SuSiE implementation in 
tensorQTL (SuSiE L = 10), and then, for each gene, collapsed credible sets across introns by 
identifying overlapping credible sets and keeping the credible set with larger max PIP. 
 
Cis-sQTL analyses on the subset of genetically-inferred EUR ancestry samples were performed 
in the same manner as full-sample cis-sQTL analyses (including leafcutter phenotype 
generation), except for the number of phenotype PCs and SuSiE L parameters (listed in Table 
S18). The number of phenotype PCs was selected by examining the relationship between PCs 
used and sGenes discovered. 
 
For some downstream analyses, we utilized only the top PIP variant per credible set. In the 
case that two variants had the same PIP (i.e., were in perfect LD), we arbitrarily selected one of 
them (the first one based on ascending alphabetical-order sorting). 
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Determining primary vs non-primary signals 
For any analyses performed prior to fine-mapping, ‘primary’ refers to the variant most strongly 
associated with the expression/splicing of each gene. 
 
Following fine-mapping, to rank cis-eQTL signals for each gene as primary, secondary, tertiary, 
etc., for each gene with a fine-mapped signal we fit a single, joint eQTL model using the same 
covariates and phenotypes as in the cis-eQTL scan and including all of the top PIP variants for 
each of the gene’s credible sets. The variants were then ranked by their corresponding 
coefficient p-values from this model. Rarely, a single variant was the top PIP variant for more 
than one cis-eQTL credible set (2 such cases for lung cis-eQTL scans; 4 such cases for PBMC 
cis-eQTL scan; 73 and 92 such cases for MAF < 0.001 and MAF < 0.01 for whole blood 
cis-eQTL scans, respectively). In such cases, the relative order of the credible sets was 
determined based on the credible set ID (credible set ‘1’ being ranked above credible set ‘2’, 
etc). 
 
The procedure for ranking cis-sQTL signals was the same, except that in the case that a gene’s 
cis-sQTL credible sets were derived from > 1 splicing phenotype, individual models were run for 
each of the splicing phenotypes to obtain the variant coefficient p-values before generating the 
gene-level credible set rankings. 
 
In some analyses, e.g. functional enrichment analyses, e/sVariants were collapsed across 
genes so as not to be double-counted in the case that the same variant was an e/sVariant for > 
1 gene. In such cases an e/sVariant might correspond to the primary signal for one gene but not 
another. If the e/sVariant was not either primary or non-primary for all related genes, it was 
excluded from that analysis. 

Gene and variant mappability and cross-mappability 
Gene mappability, variant mappability, and cross-mappability between genes was calculated as 
described in (Saha & Battle, 2018) using a NextFlow implementation of their pipeline (available 
at https://github.com/porchard/crossmap-nextflow) and the uncollapsed GENCODE v30 GTF 
file, with exon kmer length set to 100 bps, UTR kmer length set to 36 bps, and allowing two 
mismatches. 
 

trans-eQTL scans 
trans-eQTL scans were performed using the same normalized gene expression matrices and 
covariates as cis-eQTL scans, except we dropped some gene expression PCs from the 
covariate matrices to avoid adjusting out trans effects. To determine which gene expression PCs 
might capture trans effects and therefore should be dropped from the covariate matrix for the 
trans-eQTL scan, we used tensorQTL to test for an association between each variant and each 
gene expression PC, using the same covariates as in the cis-eQTL scan minus the gene 
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expression PCs. The strongest association observed for each gene expression PC and each 
tissue is shown in Fig S67. For whole blood, PCs 3, 25, and many PCs beyond PC50 strongly 
(p < 1x10-15) associated with a genetic variant. The variant most strongly associated with PC3 
was rs2814778 (chr1_159204893_T_C), which is the known causal variant for benign 
neutropenia and is associated with neutrophil percentage and lymphocyte percentage (Charles 
et al., 2018; D. Reich et al., 2009; Reiner et al., 2011); PC3 may therefore capture cell type 
abundance, and we elected to keep PC3 as a covariate. The variant most strongly associated 
with PC25 was chr3_56815721_T_C, which was previously identified as a trans-eQTL in 
several studies  (Kolberg et al., 2020; Mao et al., 2019; Nath et al., 2017); we elected to exclude 
PC25 it as a covariate. In addition, we excluded whole blood gene expression PCs beyond 
PC50. No PCs were dropped for any other tissues. 
 
All trans-eQTL scans tested variants with MAF >= 0.05. To reduce the probability of mapping 
artifacts, we removed variants with mappability < 1. To identify trans-eGenes and their 
respective trans-eVariants, we used tensorQTL mode --trans to test for associations between 
variant - gene pairs on separate chromosomes. Due to the large number of pairs tested, we 
saved summary statistics for pairs with nominal p-value < 1x10-5 only. Mappability-related 
artifacts may trigger false-positive trans signals as described in (Saha & Battle, 2018). We 
therefore excluded genes with mappability < 0.8 from analysis, filtered out variant - gene pairs 
where the gene cross-maps to a gene w/in 1Mb of the variant, and tested only protein-coding 
genes and lincRNAs. 
 
We used permutations to determine the significance of associations. We repeatedly generated 
an inverse normalized phenotype and tested it against all variants, performing 20,000 such 
permutations and recording the strongest association per chromosome achieved in each 
permutation. We then used the beta-approximated p-value approach from FastQTL (Ongen et 
al., 2016) to compute the adjusted p-value for each gene’s strongest association, based on the 
most extreme permuted associations on any chromosome except the gene’s chromosome. We 
then applied Benjamini-Hochberg correction to these adjusted p-values to get genome-wide 
FDRs. trans-eGenes were those with FDR <= 5%. 
 
For each trans-eGene, we fine-mapped trans-eQTL signals in the 2Mb region centered on the 
primary trans-eVariant using the tensorQTL SuSiE implementation with SuSiE L = 10. 
 
Trans-eQTL analyses on the subset of genetically-inferred EUR ancestry samples were 
performed in the same manner as full-sample trans-eQTL analyses, except for the number of 
phenotype PCs and SuSiE L parameters (listed in Table S18). For whole blood (EUR) 
trans-eQTL scans, phenotype PCs 19, 22 and 27 were dropped as they associated with a likely 
trans-eVariant. 

trans-sQTL scans 
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trans-sQTL scans were performed using the same normalized splicing phenotype matrices and 
covariates as cis-sQTL scans. 
 
All trans-sQTL scans tested variants with MAF >= 0.05. To reduce the probability of mapping 
artifacts, we removed variants with mappability < 1. To identify trans-sGenes and their 
respective trans-sVariants, we used tensorQTL mode --trans to test for associations between 
variant - splicing phenotype pairs on separate chromosomes. Due to the large number of pairs 
tested, we saved summary statistics for pairs with nominal p-value < 1x10-5 only. 
Mappability-related artifacts may trigger false-positive trans signals as described in (Saha & 
Battle, 2018) . We therefore excluded genes with mappability < 0.8 from analysis, filtered out 
variant - gene pairs where the gene cross-maps to a gene w/in 1Mb of the variant, and tested 
only protein-coding genes and lincRNAs. 
 
We used permutations to determine the significance of associations in a similar manner as was 
done for trans-eQTL scans, additionally adjusting for the number of splicing phenotypes tested 
per gene as done in (GTEx Consortium, 2020). In short, we repeatedly generated an inverse 
normalized phenotype and tested it against all variants, performing 20,000 such permutations 
and recording the strongest association per chromosome achieved in each permutation. To 
determine the significance of the most extreme p-value for a gene with X splicing phenotypes, 
we used the CDF of the first order statistic for a sample size of X from the beta-approximated 
CDF. We then applied Benjamini-Hochberg correction to these adjusted p-values to get 
genome-wide FDRs. trans-sGenes were those with FDR <= 5%. 
 
For each trans-sGene, we fine-mapped trans-sQTL signals in the 2Mb region centered on the 
primary trans-sVariant using the tensorQTL SuSiE implementation with SuSiE L = 10. For each 
trans-sGene we ran fine mapping using only the splicing phenotype corresponding to the 
primary trans-sQTL, i.e. the phenotype with the strongest association. 
 
Trans-sQTL analyses on the subset of genetically-inferred EUR ancestry samples were 
performed in the same manner as full-sample trans-sQTL analyses, except for the number of 
phenotype PCs and SuSiE L parameters (listed in Table S18).  
 

Clumping of primary trans signals 
For analyses involving primary trans-e/sVariants (for example, counting the number of 
trans-eGenes per trans-eVariant), highly-linked primary trans-e/sVariants were clumped together 
to limit double-counting signals that likely derived from the same trans-e/sVariant but that were 
by chance assigned to separate variants. For each tissue and modality, we calculated the 
in-sample R2 between all trans-e/sVariants and sorted trans-e/sQTL variants according to the 
most significant trans-e/sQTL p-value for each trans-e/sVariant.  All trans-e/sQTL variants in 
high LD (R2 >= 0.9) with the most significant trans-e/sVariant was clumped with that variant, and 
this procedure was iteratively applied using the remaining unclumped trans-e/sVariants until no 
variants remained. The trans-e/sVariant with the most significant p-value in each clump became 
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the representative of that clump, and all trans-e/sQTL pairs involving a variant within the clump 
was reassigned to that representative variant. 
 
For the tissue and modality with the greatest number of hits (whole blood trans-eQTL), this 
reduced the number of trans-eVariants from 810 to 614. 
 
When fine-mapping trans-e/sQTL signals, the 2Mb fine-mapping windows were centered on the 
original (unclumped) trans-e/sVariants. 
 

Allelic fold change 
Allelic fold change (Mohammadi et al., 2017) was calculated using the calculate_afc 
function in tensorQTL (v. 1.0.7) and the top PIP variants per credible set (for cis-eQTL signals) 
or the single variant with the strongest association (for trans-eQTL signals). 

Saturation analyses 
Saturation analyses were performed using nested subsets of whole blood samples ranging in 
size from 500 to 6,000 samples in steps of 500. Generation of the gene expression / splicing 
phenotype matrix (including Leafcutter intron clustering) and the scan itself was performed in an 
identical manner as for the full cis-e/sQTL and trans-eQTL scans, except for cis-e/sQTL scans 
the fine-mapping was performed using a range of different phenotype PCs in order to show that 
differences between sample sizes were not due to number of PCs used. For cis-eQTL scans, 
fine-mapping was run with both SuSiE L = 10 and 20, and the final value of L was selected for 
each gene using the same criteria as in the full cis-eQTL scans; for cis-sQTL scans 
fine-mapping was run with SuSiE L = 10. For trans-eQTL scans, any phenotype PCs beyond 50 
and any phenotype PCs that associated most strongly with variant chr3_56815721_T_C (the 
variant correlated with gene expression PC25 in the full whole blood cis-eQTL covariates) were 
dropped from the covariate matrix to avoid inadvertently adjusting out trans effects. 

Chromatin states 
 
Hg38 chromatin states were taken from (Roadmap Epigenomics Consortium et al., 2015). We 
matched TOPMed tissues to corresponding Roadmap Epigenomics cell type as follows: 
 

TOPMed tissue Roadmap Epigenomics cell type 

Whole blood Primary mononuclear cells from peripheral 
blood (E062) 
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PBMCs Primary mononuclear cells from peripheral 
blood (E062) 

Lung Lung (E096) 

Monocytes Primary monocytes from peripheral blood 
(E029) 

T cells Primary T cells from peripheral blood (E034) 

Nasal epithelial A549 EtOH 0.02pct Lung Carcinoma Cell 
Line (E114) 

 

Functional enrichments 
SnpEff annotations (Cingolani et al., 2012) were extracted from the TOPMed freeze 9b VCF file. 
 
Enrichments of cis-e/sQTL credible sets in annotations were determined relative to control 
credible sets matched on chromosome, MAF, LD, and number of genes tested against. For 
each variant included in the scan, we calculated the number of variants that it is in LD with (R2 
>= 0.9; LD calculated using the TOPMed samples in the scan), the number of genes it was 
tested against in the scan, and the MAF. Then, for each credible set, we took the top PIP variant 
and selected a control variant that was tested against a similar number of genes and has 
approximately N LD proxies where N = (size of credible set - 1), and has a similar MAF (as 
similar as possible after filtering on the first two conditions). Then, the control credible set is that 
control variant and its LD proxies.  
 
Clumped primary variants were used for trans-e/sQTLs enrichments. Enrichments were 
determined relative to control variants matched on chromosome and MAF (variants were binned 
into 50 equally-spaced MAF bins). Only variants included in the trans scan were considered 
(e.g., all control variants had mappability = 1). Each trans-e/sVariant was represented only once 
(e.g., a variant that was a trans-eVariant for 2 genes was not double-counted). 
 
We used logistic regression to score enrichments. For a given annotation type (e.g., chromatin 
states or SnpEff annotations), we build a logistic regression model using the true signals and the 
control signals (credible sets + control credible sets in the case of cis-e/sQTL signals; primary 
hits + controls in the case of trans-e/sQTLs). The regression outcome was whether the signal 
was a true signal (1) or a control signal (0), and predictors were binary indicators of whether any 
variants in the true / control signal overlapped each of the annotations from that annotation type 
(e.g. for chromatin states, all the possible chromatin states were predictors in the model). 
Annotations overlapped by fewer than 1% of signals + control signals were dropped from the 
model. 
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TF motif cis-eVariant overlap vs gene expression directionality 
analysis 
Motif scans were performed using the 540 non-redundant motifs from (D’Oliveira Albanus et al., 
2021), using FIMO (v. 5.5.3, with default parameters and a 0-order Markov background model 
generated using fasta-get-markov) (Grant et al., 2011). We used variant-sensitive motif 
scans to account for the fact that an alternative allele might create a TF binding site missing 
from the reference genome, or destroy a TF binding site present in the reference genome, by 
scanning both the reference sequence as well as replacing the reference alleles with alternative 
alleles. 
 
Using the variant-sensitive motif scans, for each PWM, we counted the number of whole blood 
cis-eQTL signals overlapping a motif for that PWM (using the top PIP variant in each credible 
set from the MAF >= 0.001 cis-eQTL scan). We then calculated how often the allele that 
increased expression of the target gene increased the strength (FIMO score) of the motif hit. We 
excluded PWMs with less than 20 eQTL - motif hit overlaps. To determine whether any deviation 
from 0.5 was significant, we computed a p-value with a two-sided binomial test and performed 
Bonferroni correction across PWMs. 
 

trans-e/sQTL enrichment in cis-e/sQTL credible sets 
Enrichment of clumped primary whole blood trans-e/sQTLs in whole blood cis-e/sQTL credible 
sets was calculated with a Fisher’s exact test relative to the MAF-matched trans-e/sQTL control 
variants used in the functional enrichments. Each trans-e/sVariant was counted only once, 
regardless of the number of trans-e/sGenes associated with it. 
 

TF gene enrichment amongst cis-eGenes for cis-eQTL 
overlapping trans-eQTL 
This was calculated using a permutation test. First, for each cis-eGene with at least one credible 
set, we determined whether the gene encodes a TF based on the list of TF gene Ensembl IDs 
from (Lambert et al., 2018). Then, for each trans-eVariant, we determined which cis-eGenes had 
a cis-eQTL credible set containing the trans-eVariant, and whether any of those cis-eGenes 
were TF genes. We then counted the number of trans-eVariants that had at least one 
associated TF cis-eGene. To generate a null distribution for this statistic, we permuted the gene 
→ is_TF relationships and re-computed the number of trans-eVariants having at least one 
associated TF cis-eGene, repeating this process 1000 times. 
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trans-eQTL GO term enrichment 
For each set of >= 10 trans-eGenes sharing a whole blood trans-eVariant (after LD clumping), 
we performed a GO/KEGG pathway enrichment analysis using gprofiler (Raudvere et al., 2019). 
As the background set of genes we used all genes tested in the whole blood trans-eQTL scan 
that had at least one nominal p-value < 1x10-5. We only tested GO:BP and KEGG 
terms/pathways with at least 5 genes and no more than 1000 genes. P-values were Bonferroni 
corrected within each trans-eVariant. 
 

Colocalization 
Colocalizations were performed with coloc v. 5.2.1 (C. Wallace, 2021) using Bayes factor 
matrices from SuSiE (coloc.susie function) and default priors. A colocalization was called in the 
case that the posterior probability of H4 (the posterior probability that the same variant underlies 
the signal in both modalities) was at least 0.8. In the case that an implausible one-to-many 
colocalization was implied by the coloc output (e.g., a single cis-eQTL credible set colocalizing 
with two GWAS credible sets from the same GWAS), the colocalization with the highest 
posterior probability was kept. 
 
For whole blood cis-e/sQTL - GWAS colocalizations, we used MAF >= 0.01 cis-e/sQTL for 
consistency across tissues and in the comparison with GTEx. Colocalization results using MAF 
>= 0.001 were highly similar to results using MAF >= 0.01. 
 

PanUKBB GWAS fine-mapping 
We used EUR and AFR LD matrices and GWAS summary statistics from PanUKBB (v. 0.3; in 
hg19 coordinates) for fine-mapping UKBB GWAS signals. For each ancestry we included only 
pass-QC phenotypes, and to avoid analyzing multiple highly correlated phenotypes we kept only 
phenotypes from the maximally independent set. We additionally dropped potentially sensitive 
phenotypes, such as those relating to mental health, sexual activity, alcohol use, and 
intelligence. This left 172 EUR GWAS phenotypes and 32 AFR GWAS phenotypes (Table S11). 
Of the 172 EUR GWAS phenotypes and 32 AFR GWAS phenotypes, 166 and 17 phenotypes 
had at least one genome-wide significant variant. 
 
To determine genomic windows to fine-map, for each GWAS we identified the most 
genome-wide significant variant not yet in a fine-mapping window, took the 500kb window 
centered on that variant as a fine-mapping window, and repeated this procedure until no 
genome-wide significant variants (p <= 5x10-8) remained. We then merged overlapping 
fine-mapping windows such that they would be fine-mapped together. After merging, we 
dropped windows > 10Mb in size (LD matrices were available only up to a radius of 10Mb). We 
additionally dropped a small number of windows with an excessive number of variants (> 
40,000) in the LD matrix. 
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Signals were fine-mapped using SuSiE (v. 0.11.92; susie_rss function). Low-confidence variants 
were excluded, as were variants that failed to lift from hg19 to hg38 or that lifted to the same 
position as another hg19 variant. We set the SuSiE L parameter to 10, and iteratively raised it to 
20, 30, and then 40 in the case that (1) the model failed to converge at the current value of L, or 
(2) the number of credible sets discovered met or exceeded (L * 0.7). If more than one L was 
used, we calculated the maximum number of credible sets discovered across all tested values 
of L, and selected the final model as the one with the smallest L exceeding the maximum 
number of credible sets discovered. We then lifted SuSiE results to hg38, excluding any 
fine-mapping windows that did not lift. 
 

Presence of TOPMed whole blood cis-eQTL signals in GTEx 
whole blood / DIRECT / eQTLGen 
We considered a TOPMed whole blood cis-eQTL signal to be present in GTEx whole blood if 
the TOPMed cis-eQTL credible set overlapped a GTEx whole blood cis-eQTL credible set. 
 
We considered a TOPMed whole blood cis-eQTL signal to be present in eQTLGen if the 
TOPMed cis-eQTL credible set overlapped a eQTLGen primary eQTL or it’s LD proxies (R2 > 
0.8 based on TOPMed whole blood samples). 
 
We considered a TOPMed whole blood cis-eQTL signal to be present in DIRECT if the TOPMed 
cis-eQTL credible set overlapped a DIRECT conditional eQTL or it’s LD proxies (R2 > 0.8 based 
on TOPMed whole blood samples). 

Code availability 
Source code for analyses and figures is available at:  
https://github.com/porchard/topmed-rnaseq-index 

Data availability 
Individual level data is available through the database of Genotypes and Phenotypes (dbGaP). 
All accessions are listed in acknowledgments. Cis- and trans-e/sQTL summary statistics and 
fine-mapping results will be available in the TOPMed Genomic Summary Results repository 
(dbGaP phs001974). 
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Figure 1. Study design. (A) RNA-seq sample sizes for cis- and trans-e/sQTL scans, by TOPMed study
and tissue. The full TOPMed study names and accompanying abbreviations are: Framingham Heart Study
(FHS); Gene-Environments and Admixture in Latino Asthmatics (GALA II); Study of African Americans,
Asthma, Genes, & Environments (SAGE); Subpopulations and Intermediate Outcome Measures In COPD
Study (SPIROMICS); Women’s Health Initiative (WHI); COPDGene Study (COPDGene); Multi-Ethnic
Study of Atherosclerosis (MESA); Lung Tissue Research Consortium (LTRC). Diagram generated with
SankeyMATIC. (B) cis-e/sQTL scans tested MAF → 0.01 variants within 1Mb of gene TSS (for whole blood,
a scan with variant MAF → 0.001 was also performed). Trans scans tested variant - gene pairs on separate
chromosomes (variants with MAF → 0.05). Splicing phenotypes (intron excision ratios) were derived using
LeafCutter (Li et al., 2018). (C) cis-e/sQTL signals were colocalized with trans-e/sQTL signals to nominate
genes mediating trans e!ects, and cis- and trans-e/sQTL signals were colocalized with 34,107 GWAS signals
from 164 UK BioBank GWAS to nominate genes and molecular mechanisms underlying GWAS signals.
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Figure 2. cis-e/sQTL summary. (A) Sample sizes per tissue (top panel), number of genes with a significant
cis-e/sQTL (cis-e/sGenes) and number of SuSiE credible sets discovered per cis-e/sGene (second from top),
credible set sizes (third from top), and number of primary or secondary (including tertiary, quaternary,
etc.) cis-e/sQTL signals per tissue (bottom). (B) Cis-eQTL saturation analysis, and comparison to other
published datasets (from eQTL-Catalogue or GTEx). Number of cis-eGenes discovered at each downsampled
sample size (left) and total number of cis-eQTL signals discovered (right; 95% credible sets). Results are
shown for 1% FDR cis-Genes, as eQTL-Catalogue fine-maps QTL signals for 1% FDR cis-e/sGenes. (C)
Functional annotation enrichments for whole blood cis-e/sQTLs. Enrichment calculated relative to control
credible sets matched on MAF, LD, and number of genes tested against; error bars represent 95% confidence
intervals. (D) E!ect size (absolute allelic fold change) for cis-eQTL in whole blood scan with MAF 0.1%
threshold.
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Figure 3. trans-e/sQTL results. (A) number of trans-eGenes and trans-sGenes as a function of sample size.
TOPMed tissues are linked to the corresponding GTEx and DIRECT tissues. Unlike TOPMed and GTEx,
DIRECT did not apply a MAF threshold. TOPMed and GTEx defined trans as ‘di!erent chromosome’,
while DIRECT defined trans as ’di!erent chromosome or gene - variant pair → 5Mb apart’. (B) E!ect size
(absolute allelic fold change) for trans-eQTL and cis-eQTL with MAF → 0.05 in whole blood (cis-eQTL e!ect
sizes from MAF → 0.001 scan). (C) Number of trans-eQTL and trans-sQTL credible sets discovered when
fine-mapping the region around primary trans-e/sQTL signals (+/- 1Mb). (D), (E) Two (of three total)
whole blood trans-eQTL signals for gene AGAP2. One colocalizes with a RREB1 cis-sQTL, one contains a
RREB1 missense variant, suggesting that both variants impact AGAP2 expression via distinct functional
e!ects on RREB1. The credible set variants for the third AGAP2 trans-eQTL signal are in an RREB1
intron.
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Figure 4. Colocalization of e/sQTL with UKBB GWAS signals. (A) Number of GWAS signals colocalizing
with at least one e/sQTL credible set from each tissue and modality (cross-ancestry e/sQTL scans). (B)
Heatmap displaying, for each GWAS signal with at least one e/sQTL colocalization, the maximum coloc
posterior probability of colocalization for each tissue and modality. (C,D) Two IL2RA cis-eQTL signals
colocalize with two albumin/globulin ratio GWAS signals. Marginal p-values are displayed in (C), and log
Bayes factors for each of the two colocalizing e!ects, represented by the two colors, are displayed in (C);
for the eQTL panel, the sign of each variant reflects the direction of e!ect on the gene’s expression for the
GWAS trait-increasing allele in the colocalizing GWAS e!ect. (E,F) Three HK1 cis-eQTL signals colocalize
with three mean corpuscular volume GWAS signals.
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