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Abstract  

Background: Abnormalities in resting-state electroencephalogram (rsEEG) posterior alpha 

rhythm are promising biomarkers of neurodegenerative diseases (NDDs), often assessed via 

spectral analysis, ignoring the signal's non-rhythmic (aperiodic) component. Evidence 

assessing aperiodic and oscillatory rsEEG abnormalities across NDDs is scarce and often 

underpowered. Multicenter studies could tackle these limitations, but data pooling might 

introduce site-related rsEEG differences (batch effects). This study aims to characterize rsEEG 

oscillatory and aperiodic patterns across NDDs, minimizing potential batch effects. 

Methods: RsEEGs (n = 639; 11 sites) were automatically preprocessed. Signals comprised 

healthy controls (HC = 153), Lewy Body Dementias (LBD = 95), Parkinson's Disease (PD = 

71), Alzheimer's Disease (AD = 186), Frontotemporal Dementia (FTD = 23), Mild Cognitive 

Impairment (MCI) in positive Lewy Body pathology or PD (MCI-LBD = 34), and MCI in 

positive AD pathology (MCI-AD = 77). Power spectrum batch effects were harmonized using 

reComBat (age, sex, and diagnosis-adjusted). Harmonization was evaluated with functional 

and mass-univariate ANOVAs. Oscillatory and aperiodic parameters were extracted from the 

batch-harmonized power spectrum. NDDs-related differences were estimated with functional 

and mass-univariate tests, bootstrapped pairwise comparisons, and logistic regressions. 

Results: Qualitative visualizations and statistical testing showed reduced batch effects after 

harmonization. Statistically significant findings included steeper aperiodic parameters and 

lower oscillatory center frequency in LBD compared to other NDDs. Additionally, oscillatory 

extended alpha power was lower in AD vs. LBD. 

Conclusions: Batch effects in the rsEEG power spectrum can be mitigated with harmonization. 

Oscillatory alpha power reduction may better reflect AD abnormalities, whereas pronounced 

oscillatory frequency slowing and greater aperiodic activity characterize LBD. 

 

Keywords: EEG; Neurodegenerative Diseases; spectral parameterization; aperiodic activity; 

oscillatory activity 
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Introduction  

Since Hans Berger's pioneering reports on the human electroencephalogram, The reduction in 

posterior dominant alpha rhythm has been observed in both physiological and pathological 

aging, being particularly evident in dementia patients (Berger, 1933). Beyond qualitative 

descriptors, quantitative analysis of the resting-state electroencephalogram (rsEEG) paved the 

way for its broader application in dementia research (Al-Qazzaz et al., 2014). The "slowing" 

of posterior dominant rsEEG rhythms from alpha (8 – 13 Hz) to theta frequencies (4 – 8 Hz),  

has been consistently reported in multiple neurodegenerative diseases (NDDs) that lead to 

dementia syndrome, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Dementia 

with Lewy Bodies (DLB), and Frontotemporal Dementia (FTD) (Babiloni et al., 2020b; 

Dauwels et al., 2011; Dringenberg, 2000; Eichelberger et al., 2017; Franciotti et al., 2020; 

Zimmermann et al., 2015). As a case in point, posterior alpha peak frequency slowing, with or 

without increased variability, is included as a supportive biomarker in the current DLB 

diagnostic criteria (McKeith et al., 2017), whereas reductions in alpha power and peak 

frequency have been recommended by expert panels as candidate features for diagnosis, 

treatment monitoring, and prognosis in the AD continuum (Babiloni et al., 2021). 

Despite this promising background, the methodological nuances in the analysis of rsEEG 

studies often limit the generalization of their results. Differences in analysis pipelines across 

research laboratories preclude direct comparability of their statistical estimations via secondary 

studies (e.g., meta-analysis) (Bigdely-Shamlo et al., 2020). Furthermore, the small sample sizes 

typical of most single-site rsEEG studies undermine both statistical power and external validity 

(Button et al., 2013; Larson and Carbine, 2017; Newson and Thiagarajan, 2019). Multicentric 

collaborations aim to address these limitations by aggregating data from various research sites, 

resulting in larger and more heterogeneous datasets (Bonanni et al., 2016; Li et al., 2022; Prado 

et al., 2023; Thompson et al., 2014). Although simple pooling of single-site data increases the 
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sample size, insights from recent multicenter initiatives highlight the importance of assessing 

and mitigating batch effects (i.e., non-biological, systematic cross-site differences in rsEEG 

data distributions that can confound the results) (Bayer et al., 2022; Hu et al., 2023; Li et al., 

2022; Marzi et al., 2024). 

Batch effects stem from technical factors, including distinct scanners (headsets/amplifiers) or 

acquisition parameters (Bigdely-Shamlo et al., 2020; Li et al., 2022). Besides, differences in 

the rsEEG data distributions could arise from biological characteristics of the pooled sample 

(such as site-specific age distributions) (Bayer et al., 2022; Hu et al., 2023; Li et al., 2022). 

Among the statistical strategies to mitigate batch effects while preserving the effects of 

biological covariates of interest (Bayer et al., 2022; Fortin et al., 2018; Hu et al., 2023), the 

Combining Batches (ComBat) method has gained popularity in genetics (Adamer et al., 2022), 

proteomics (Voß et al., 2022), and neuroimaging (Bell et al., 2022; Fortin et al., 2018, 2017; 

Horng et al., 2022a, 2022b; Pomponio et al., 2020), with numerous validations and adaptations 

improving the original ComBat algorithm (initially formulated for microarray expression data) 

(Johnson et al., 2007). Nonetheless, evidence evaluating ComBat-derived methods to 

harmonize batch effects on rsEEG-derivative metrics is scarce (Jaramillo-Jimenez et al., 2024; 

Li et al., 2022). 

In earlier publications (Bonanni et al., 2016; Franciotti et al., 2020), our group pooled datasets 

from individual research centers to assess rsEEG spectral patterns in DLB (i.e., remarkable 

posterior peak frequency shifting and variability) exhibiting consistent results with single-site 

observations (Law et al., 2020; Massa et al., 2020; Schumacher et al., 2020; van der Zande et 

al., 2018). Nevertheless, these prior works did not account for batch effects assessment and 

correction.  

On the other hand, most of our preliminary analyses in DLB used the rsEEG power spectrum 

to represent brain rhythms without modeling the contribution of non-rhythmic activity (so-
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called 1/frequency, scale-free, fractal, aperiodic, or non-oscillatory). Recent models propose 

that the neuronal power spectrum displays a mixture of aperiodic activity (observed as a power 

slope that decreases as frequency increases) with superimposed oscillatory peaks (Brake et al., 

2024). Moreover, results from simulations and real rsEEG data suggest that descriptors of the 

power spectrum (such as absolute and relative power or peak frequency) could be conflated 

due to the effect of the aperiodic activity obscuring real oscillatory differences (Donoghue et 

al., 2020; Gerster et al., 2022). Parameterizing aperiodic activity is also supported by its 

neurophysiological relevance (Brake et al., 2024), with potential applications in 

neurodevelopment and age-related medicine (Donoghue et al., 2020; McSweeney et al., 2023; 

Merkin et al., 2023; Voytek et al., 2015), anesthesia (Colombo et al., 2019), and sleep (Bódizs 

et al., 2024). Compared to rsEEG oscillatory descriptors, the characterization of aperiodic 

activity has not been extensively assessed across the different clinical phenotypes of NDDs, 

except by recent reports in small samples suggesting the hypotheses of predominantly 

oscillatory abnormalities in AD (Kopčanová et al., 2024)  and aperiodic changes in PD and 

DLB (McKeown et al., 2023; Rosenblum et al., 2023; Wang et al., 2024). 

In light of the above, this study aims to: A) characterize rsEEG oscillatory and aperiodic 

patterns across multiple clinical phenotypes of NDDs, and B) evaluate and mitigate potential 

batch effects in multicentric rsEEG data. Through a standardized preprocessing and analysis 

workflow, we provide an open pipeline that can be extended for group-level analysis of other 

multicentric rsEEG datasets. 
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Materials and methods  

Study Design and Settings  

This secondary analysis capitalized on data from cross-sectional individual studies (n = 11) 

conducted in eight countries (Colombia, Finland, France, Greece, Italy, Norway, the United 

Kingdom, and the United States) to assess rsEEG biomarkers in NDDs and healthy aging. 

Beyond openly available (open) datasets (Anjum et al., 2020; Hatlestad-Hall, 2022; Miltiadous 

et al., 2023; Railo, 2021; Rockhill et al., 2021), we used in-house clinical research data 

collected cross-sectionally by the European Dementia with Lewy Bodies Consortium (EDLB) 

(Oppedal et al., 2019), the Dementia Disease Initiation Study (DDI) (Fladby et al., 2017), and  

Grupo de Neurociencias de Antioquia (GNA) (Carmona Arroyave et al., 2019; Jaramillo-

Jimenez et al., 2021). 

Briefly, datasets from the following locations were included: California, United States (open); 

Chieti, Italy (EDLB); Genoa, Italy (EDLB); Iowa, United States (open); Medellin, Colombia 

(GNA); Newcastle, United Kingdom (EDLB); Oslo, Norway (open); Paris, France (EDLB); 

Stavanger, Norway (EDLB); Stavanger, Norway (DDI); Thessaloniki, Greece (open) and 

Turku, Finland (open). Supplementary Table 1 provides an extended description of locations 

and sources of data.  

Participants 

The pooled sample (n = 639) comprised rsEEG signals from 153 healthy controls (HC) and 

486 individuals with a clinical diagnosis of NDD. Phenotypes of early and late-onset 

neurodegenerative causes of dementia were included, such as probable AD, FTD, DLB, and 

dementia in PD (PDD). Additionally, subgroups comprised mild cognitive impairment (MCI) 

in the context of different NDDs: positive Lewy Body pathology (MCI-LB), Parkinson’s 
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disease (MCI-PD), and positive Alzheimer’s disease-related pathology (MCI-AD). These, in 

conjunction with an additional cognitively normal Parkinson’s disease group (PD), served to 

appraise the continuum of predementia stages. Detailed information on clinical criteria used 

for diagnosis is presented in Supplementary Table 2. In all the primary data sources, 

neuropsychiatric diseases other than the abovementioned NDDs were excluded. All individuals 

provided their informed consent prior to recruitment in the primary studies. All primary studies 

were approved by their local, institutional, or regional ethics committees preserving the World 

Medical Association Declaration of Helsinki. 

Given preliminary evidence indicating shared pathological substrates in PDD and DLB 

(Jellinger and Korczyn, 2018), we merged these subgroups into a Lewy Body Dementia (LBD) 

group. In line with this, we combined the MCI-LB and MCI-PD subgroups, henceforth 

referring to them collectively as MCI-LBD.  

In the Oslo, Norway dataset (with young and old healthy individuals), a subsample of 

comparable HC subjects was retained for subsequent analyses based on the minimum age value 

across subjects with NDDs. Thus, only healthy participants aged 44 or older were included, 

excluding younger individuals. 

 

RsEEG acquisition and signal preprocessing 

The raw rsEEG data from open datasets is publicly available in online repositories (Anjum et 

al., 2020; Hatlestad-Hall, 2022; Miltiadous et al., 2023; Railo, 2021; Rockhill et al., 2021).  

Acquisition parameters varied broadly across primary studies. RsEEG signals were recorded 

during the eyes closed condition in all datasets except data from Iowa, USA, which was 

recorded under the eyes open condition. The cross-study differences in the number of channels, 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 18, 2025. ; https://doi.org/10.1101/2025.02.14.25322283doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.14.25322283


8 

 

sampling frequency, amplifier/headset, and recording length are presented in Supplementary 

Table 3. 

To achieve comparability, signals were down-sampled to a common sample frequency of 128 

Hz (ranging from 128 – 1024 Hz). Electrodes were placed and named following the 

international 10-20, 10-10, and 10-05 system distributions (Seeck et al., 2017), and the number 

of electrodes ranged from 19 to 128 leads across sites. Therefore, 18 common rsEEG channels 

placed accordingly to the international 10-05 system were preserved for further analysis ['Fp1', 

'Fp2', 'F3', 'F4', 'F7', 'F8',  'Fz', 'C3', 'C4', 'Cz', 'T7', 'T8', 'P3', 'P4', 'P7', 'P8', 'O1', 'O2'].  

All primary datasets were standardized following the Brain Image Data Structure (BIDS) 

specification (Pernet et al., 2019) and automatically preprocessed using sovaharmony 

(available at https://github.com/GRUNECO/eeg_harmonization), validated elsewhere by our 

group (Isaza et al., 2023; Jaramillo-Jimenez et al., 2023, 2021; Suarez-Revelo et al., 2016, 

2018). Briefly, our preprocessing workflow is a wrapper of multiple utilities. First, to obtain a 

comparable reference scheme across studies without the influence of noisy channels, robust 

average re-referencing, adaptative line-noise correction, and bad channel interpolation were 

conducted using the PyPREP library (Appelhoff et al., 2022; Bigdely-Shamlo et al., 2015). 

Subsequently, a 1 Hz high-pass Finite Impulse Response filter was used to remove low-

frequency drifts before applying wavelet-enhanced independent component analysis (ICA) 

artifact smoothing (Castellanos and Makarov, 2006). For this purpose, the FastICA algorithm 

implemented in the MNE library (Gramfort et al., 2013) was applied to obtain both artifactual 

and brain components; then wavelet thresholding was used to subtract strong muscular and 

eye-blink components. Next, signals were low-pass filtered at 45 Hz and segmented into five-

second-length epochs (5 s). Finally, artifactual epoch rejection was conducted based on signal 

parameters (e.g. extreme amplitude and spectral power values) and statistical properties (e.g. 

linear trends, joint probability, and kurtosis). 
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The number of non-artifactual epochs varied across studies depending on each specific 

protocol. For this study, only signals with a length greater or equal to 100 seconds (20 epochs) 

after preprocessing were included, following preliminary evidence supporting good test-retest 

reliability of spectral rsEEG features in healthy (Gudmundsson et al., 2007) and DLB subjects 

(Jin et al., 2023) with more than 60 - 90 seconds length. Supplementary Figure 1 presents the 

positions of included electrodes and available non-artifactual epochs across sites. 

 

Feature Extraction and Batch Harmonization 

Before feature extraction, we equalized the number of epochs across all subjects selecting the 

20 epochs with the highest quality based on the scorEpochs algorithm (Fraschini et al., 2022), 

available at https://github.com/Scorepochs-tools/scorepochs_py. ScorEpochs computes a 

similarity score (Spearman correlation coefficient) from the power spectrum (computed with 

the Welch method) at the channel and epochs level, assessing the quality of each epoch. 

Further, power spectrum vectors were obtained at the sensor level using the 

psd_array_multitaper function implemented in MNE Python with default parameters and a 

frequency range from 1 – 30 Hz. This frequency range was chosen based on a systematic review 

showing that 50% of the clinical studies estimating aperiodic activity used a range of 1-43 Hz 

and 85% have adopted the 3–30 Hz range (Donoghue, 2024). Then, the median power spectrum 

across the 20 epochs was computed, returning a single power spectrum vector per channel. As 

this study targeted the dominant alpha rhythm, a median power spectrum vector across 

channels in the posterior region of interest ['P3', 'P4', 'P7', 'P8', 'O1', 'O2'] was calculated per 

subject. 

Batch harmonization of the median posterior power spectrum vectors was performed using the 

reComBat algorithm version 0.1.4 (Adamer et al., 2022), available at 
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https://github.com/BorgwardtLab/reComBat. ReComBat assumes that the harmonized features 

can be modeled as a linear combination of the site-related batch effects, biological covariates, 

and a site-specific error term. Extending other versions of ComBat (Fortin et al., 2017; Horng 

et al., 2022a; Johnson et al., 2007; Pomponio et al., 2020; Voß et al., 2022), reComBat mitigates 

batch effects from the extracted features by modeling site-specific scaling factors while 

preserving biological covariates even in cases of singular design matrixes (e.g., subjects from 

the same site with a single unique diagnosis). To solve the singular design covariates matrix, 

reComBat implements Lasso, Ridge, or Elastic-net regularization. A graphical representation 

of the reComBat model is presented in Supplementary Figure 2. In this study, we fitted a 

parametric reComBat model with Elastic-net regularization (alpha=1e-6; max_iter=50000) to 

harmonize the posterior power spectrum across sites adjusting for sex, age, and diagnosis 

effects.  

 

Spectral Parameterization 

Given the potential confounder effects of aperiodic activity in the median posterior power 

spectrum vectors, spectral parameterization was conducted using the Fitting Oscillations & 

One Over Frequency algorithm (FOOOF) version 1.1 (Donoghue et al., 2020), available at 

https://fooof-tools.github.io/fooof/. The FOOOF method has been successfully applied to study 

age-related rsEEG aperiodic changes in healthy and diseased populations (Kopčanová et al., 

2024; McKeown et al., 2023; Merkin et al., 2023; Rosenblum et al., 2023; Wang et al., 2024) 

with good test-retest reliability (McKeown et al., 2024; Popov et al., 2023). 

The power spectrum is an admixture of neuronal oscillations (peaks) superimposed on non-

oscillatory (aperiodic) activity which follows a 1/frequency distribution (i.e., higher power 

values at slow frequencies that decrease as frequency increases). Thus, spectral 
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parameterization decomposes the oscillatory and non-oscillatory activity from the power 

spectrum. First, the FOOOF algorithm takes an input power spectrum in the linear scale and 

runs a linear fit to the aperiodic trend in the log-log scale with a Lorentzian function. This 

aperiodic fit is then subtracted from the input power spectrum, “exposing” the oscillatory 

peaks. Oscillatory peaks are subsequently modeled through iterative Gaussian fits. Finally, 

FOOOF returns the fitted aperiodic and oscillatory activity vectors. An extensive review is 

available elsewhere (Donoghue et al., 2020; Gerster et al., 2022). In this study, the FOOOF 

model was fitted between 1 – 30 Hz using the following parameters (peak_width_limits=[1, 

8], min_peak_height=0.05, max_n_peaks=6). 

From the derivative vectors (i.e., isolated oscillatory and aperiodic activity), FOOOF computes 

the following descriptors: Oscillatory parameters (Power – PW, Bandwidth – BW, Center 

Frequency – CF), Aperiodic parameters (Exponent, Offset), Fitting parameters (error and R-

squared). For the present study, we estimated oscillatory parameters in the extended alpha band 

(5 – 14 Hz) (Moretti et al., 2013). Similarly, the aperiodic exponent (representing the slope 

estimated from the fitted 1/frequency activity) and the aperiodic offset (representing the y-axis 

intercept of the 1/frequency activity) were also estimated. Only subjects with good quality of 

FOOOF fitting were included (i.e., Model’s R-squared greater or equal to 0.8). Supplementary 

Figure 3 illustrates the spectral parameterization fitting with FOOOF, and the derivative vectors 

and parameters. 

 

Statistical Analysis 

All statistical analyses were performed in Python (v. 3.10.15), using the scikit-fda (v. 0.9.1), 

MNE Python (v. 1.5.1), and pingouin (v. 0.5.5) libraries (Cuevas et al., 2004; Gramfort et al., 
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2013; Vallat, 2018). The alpha significance level was set below 0.05 (multiple-testing 

corrected). 

Demographic characteristics of the samples were presented with descriptive statistics. Welch 

ANOVA and Chi-squared tests were performed to explore potential age, sex, and diagnosis 

differences across sites. 

Following previously published recommendations on batch effects harmonization (Hu et al., 

2023), we evaluated potential batch and harmonization effects using qualitative visualizations 

and statistical testing across batches. Specifically, bivariate plots (power vs. frequency) and 

Principal Component Analysis (PCA) plots were generated from the unharmonized and batch-

harmonized power spectrum. PCA reduces the dimensionality of the power spectrum (146 

values across all frequency bins for each subject) into a lower space, maximizing the variance 

across subjects. The Euclidian distances between PCA site centroids indicated batch effects 

(pairwise and cross-sites). Further, functional and mass-univariate ANOVAs were used to 

quantify batch effects before and after harmonization. Functional ANOVA (Cuevas et al., 

2004) applies principles from Functional Data Analysis (Jaramillo-Jimenez et al., 2023; 

Ramsay, 2012; Tian, 2010; Ullah and Finch, 2013) to model the entire power spectrum of each 

subject as a single functional observation (dependent variable) rather than discrete points. This 

approach estimates the differences across sites (independent variable) based on the ANOVA 

design, quantifying batch and harmonization effects in the power spectrum as continuous 

functions. Functional ANOVA was performed using the function oneway_anova (unequal 

variance, with b-spline basis order = 4, number of bases = 14) from the scikit-fda utility 

available at https://github.com/GAA-UAM/scikit-fda. Complementarily, site-related 

differences were estimated across each frequency bin of the power spectrum using mass-

univariate ANOVAs. Multiple testing was addressed with permutation tests clustered on 
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frequencies as implemented in MNE Python’s function permutation_cluster_test 

(n_permutations = 2000, two tails). 

NDDs-related differences were estimated in the batch-harmonized power spectrum as well as 

the derivative oscillatory and activity. Functional and mass-univariate ANOVAs explored 

differences in the power spectrum across all NDDs (independent variable). To determine 

specific frequencies with distinctive rsEEG activity, pairwise differences across diagnosis 

subgroups were estimated on the batch-harmonized power spectrum and on the derivative 

oscillatory and aperiodic-fitted vectors using mass-univariate permutation cluster tests 

(n_permutations = 1000, two tails). Complementarily, differences in the extended alpha 

oscillatory parameters (CF, PW, BW), and the broadband aperiodic parameters (exponent, 

offset) were assessed through pairwise comparisons. Thus, t-tests with bootstrapped confidence 

intervals (1000 iterations) were performed across diagnosis subgroups utilizing the 

pairwise_tests and compute_bootci implemented in Python’s statistical library: pingouin. 

Multiple testing was addressed with the Benjamini-Yekutieli False Discovery Ratio correction 

method (Benjamini and Yekutieli, 2001). Finally, separate multinomial logistic regression 

models were fitted for each oscillatory and aperiodic parameter (independent variable) to 

estimate age- and sex-adjusted associations with diagnosis subgroups (dependent variable).  

A graphical abstract summarizing the study methods is presented in Figure 1. 

This manuscript adheres to the STROBE statement guidelines to provide clear reporting  

(Vandenbroucke et al., 2007). The codes used for analysis and figures will be made available 

on GitHub upon peer-reviewed publication of the manuscript. 
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Figure 1. Graphical abstract of methods. (A) Resting-state EEG (rsEEG) data underwent an automated 

preprocessing regime comprising robust-average reference, bandpass filtering (1-45 Hz), wavelet-based 

independent component analysis for artifact rejection, downsampling to common electrode positions (19 

channels) and frequency (128 Hz), bad epochs rejection based on statistical properties of the signal, and best 

epochs selection according to high power spectrum similarity. (B) Pooling multisite data (11 sites; 8 countries) 

introduces site-related variability (batch effects) in the distributions of rsEEG derivative features. Batch effects 

on the rsEEG power spectrum were assessed and subsequently mitigated using the reComBat algorithm (adjusting 

for age, sex and diagnosis-related variability). (C) On downstream analyses, the batch-harmonized rsEEG power 

spectrum was parameterized to separate oscillatory and aperiodic activity fit vectors, as well as spectral 

parameters (center frequency, power, bandwidth, aperiodic exponent, and aperiodic offset).  (D) Characterization 

of oscillatory and aperiodic rsEEG activity fit vectors in neurodegenerative diseases (NDDs) was assessed with 

functional data analysis and mass-univariate statistics. Differences in the derivative spectral parameters across 

NDDs were evaluated using bootstrapped pairwise comparisons. Multinomial logistic regression models 

examined the separability across NDDs based on spectral parameters. HC: Healthy Controls; MCI-AD: Mild 

Cognitive Impairment – AD; AD: Alzheimer's Disease; PD: Parkinson's Disease; MCI-LBD: Mild Cognitive 

Impairment – Lewy Body Diseases; LBD: Lewy Body Dementias; FTD: Frontotemporal Dementia. 

Results  

Demographic characteristics of the sample 

In the pooled sample (n = 639 subjects in 11 sites), a total of 321 females (50.23%) and 318 

males (49.77%) subjects were included. Age ranged from 44 to 89 years (Mean = 70.13, SD = 
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9.72, Median = 71, IQR = 64 – 77). Although age was comparable among males and females 

(Welch’s F = 0.11, p = 0.75), statistically significant differences were observed across sites 

(Welch’s F = 44.57, df = 10, p-uncorrected < 0.001, partial eta-squared = 0.40), with younger 

subjects predominantly in the California and Oslo datasets (Games-Howell test p < 0.05). 

Similarly, statistically significant age differences across NDDs were observed (Welch’s F = 

38.39, df = 6, p-uncorrected < 0.05, partial eta-squared = 0.25), with significantly younger 

individuals, particularly in the HC, PD, and MCI-LBD subgroups (Games-Howell test p < 

0.05). See Figure 2A and Supplementary Tables 4 – 6. On the other hand, a statistically 

significant cross-site difference in the proportion of female and male participants was observed 

(Chi-squared = 38.24, p < 0.001, df = 10). Similarly, sex proportion significantly varied across 

NDDs (Chi-squared = 28.95, p < 0.001, df = 6). Absolute and relative frequencies of sex by 

site and group are presented in Figures 2A and 2B. 

 

Batch-Harmonization of rsEEG Power Spectrum 

Qualitative visualizations of batch effects in the posterior rsEEG power spectrum are presented 

in Figure 3 and Supplementary Figure 4. Univariate plots show the power spectrum 

distributions before and after harmonization. The distributions of batch-harmonized data were 

centered across sites, reducing the dispersion in some datasets (e.g., the Turku dataset), see 

Supplementary Figure 4. Bivariate plots suggested potential batch effects in the power 

spectrum with prominent variations in frequencies lower than 10 Hz. After batch-

harmonization, the power spectrum vectors were better aligned across sites. Besides, PCA 

visualizations suggested less dispersed site centroids. Pairwise and cross-site average distances 

quantified on PCA components were lower in the batch-harmonized data; see Figure 3. 
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A) 

 

B)

 

C) 

 

Figure 2. Demographical characteristics of the pooled sample (n = 639). A) From left to right, raincloud plots 

depict the age distributions by site, in the pooled sample, and by diagnosis groups. Bar plots show the absolute 

and relative frequency of female and male individuals across sites (B), and diagnosis (C). F: Female. M: Male. 

AD: Alzheimer's Disease; MCI-AD: Mild Cognitive Impairment – AD; PD: Parkinson's Disease; MCI-LBD: 

Mild Cognitive Impairment – Lewy Body Diseases (comprising MCI in PD and MCI with reported Lewy Body 

pathology); LBD: Lewy Body Dementias; FTD: Frontotemporal Dementia; HC: Healthy Controls. 
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Figure 3. Inspection of batch and harmonization effects. The left column shows the unharmonized data (A), 

while the right side depicts the batch-harmonized data (B). The top row shows bivariate plots of the power 

spectrum across sites. Color lines illustrate the mean power spectrum in each site and its standard error with a 95 

% confidence interval (dashed region). The second row shows Principal Component Analysis (PCA) plots by site. 

Each subject is represented in a single point, color-coded by the site. Bigger bold dots represent the centroid of 

each site. The bottom row presents the pairwise distance matrixes (Euclidean distances) between site centroids as 

a descriptor of batch effects. The cross-site average distance is computed from each matrix representing the overall 

batch effects in the unharmonized and harmonized data. 

 

 

In line with qualitative visualizations, functional and mass-univariate ANOVAs supported the 

hypothesis of pre-existing statistically significant batch effects that were reduced after batch 

harmonization. Cross-site differences were observed across the whole bandwidth in the 

unharmonized data, with greater F-values in frequency bands lower than alpha. The batch-
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harmonized power spectrum exhibited greater differences in the theta band, followed by beta 

and alpha bands, see Figure 4. 

 

 

A) 

 

B)

 

Figure 4. Statistical testing across batches. (A) Functional Data – One-way ANOVA with "site" as the 

independent variable and power spectrum (modeled through cubic B-spline basis, number of basis functions = 13) 

as the dependent variable. Histograms show a simulated distribution of the null hypothesis (i.e., no batch effects) 

in the unharmonized (Unharm.  H0, red) and the harmonized power spectrum (Harm. H0, blue). The Vn statistic is 

an asymptotic version of the classical ANOVA F-value, representing the variability between batches. Dashed 

vertical lines depict the estimated Vn statistic testing the hypothesis of batch effects (H1) before (red) and after 

harmonization (blue); higher Vn values represent larger batch effects. (B) Mass-univariate permutation test for 

batch effects on power spectrum (2000 permutations, clustered on frequencies). F-values represent batch effects 

before (red) and after harmonization (blue); higher F-values represent larger batch effects (F-values 

Unharmonized -  H1, min = 2.62 max = 21.02; F-values Harmonized -  H1, min = 0.93 max=12.42). Statistically 

significant differences at the cluster level are highlighted in green. 
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In addition, functional and mass-univariate ANOVAs consistently indicated that cross-

diagnosis differences were greater in the batch-harmonized power spectrum. Of note, the 

unharmonized power spectrum showed the most prominent cross-diagnosis differences in the 

delta, theta, and beta bands, but did not show significant results in the alpha band. By contrast, 

the batch-harmonized power spectrum revealed statistically significant cross-diagnosis 

differences across most of the frequency range, see Figure 5. 

A) 

B) 

Figure 5. Statistical testing across diagnosis subgroups. (A) Functional Data – One-way ANOVA with "site" 

as the independent variable and power spectrum (modeled through cubic B-spline basis, number of basis functions 

= 13) as the dependent variable. Histograms show a simulated distribution of the null hypothesis (i.e., no batch 

effects) in the unharmonized (Unharm.  H0, red) and the harmonized power spectrum (Harm. H0, blue). The Vn 

statistic is an asymptotic version of the classical ANOVA F-value, representing the variability between batches. 

Dashed vertical lines depict the estimated Vn statistic testing the hypothesis of batch effects (H1) before (red) and 

after harmonization (blue); higher Vn values represent larger batch effects. (B) Mass-univariate permutation test 

for batch effects on power spectrum (2000 permutations, clustered on frequencies). F-values represent batch 

effects before (red) and after harmonization (blue); higher F-values represent larger batch effects (F-values 

Unharmonized -  H1, min = 0.79 max = 23.38; F-values Harmonized -  H1, min = 1.55 max=37.23). Statistically 

significant differences at the cluster level are highlighted in green. 
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Pairwise differences across NDDs in the unharmonized and batch-harmonized power spectrum 

are depicted in Supplementary Figure 5. Altogether, qualitative visualizations and statistical 

testing supported the hypothesis of reduced batch effects after harmonization of the rsEEG 

power spectrum. 

 

Oscillatory and Aperiodic Activity across NDDs 

The parameterization of the batch-harmonized power spectrum exhibited good fitting (R-

squared greater or equal to 0.8) in most subjects (97.97%; n = 626), as shown in Supplementary 

Figures 6 and 7.  

Pairwise differences across NDDs in the derivative fitting vectors of oscillatory and aperiodic 

activity are presented in Figure 6. Statistically significant clusters of reduced oscillatory alpha-

band power (8-13 Hz) were observed in AD, compared to most NDDs except for the FTD 

group. We found a significant shifting of the oscillatory activity peak to frequencies lower than 

alpha in the LBD group, compared to other NDDs. Oscillatory activity between PD, MCI-LBD, 

and MCI-AD was not statistically different, see Figure 6A. The lowest peak frequency was 

observed in the LBD group (7.4 Hz), while the AD group exhibited the lowest peak power 

values, see Supplementary Figure 8. On the other hand, significant clusters of greater aperiodic 

activity were found in frequencies lower than alpha in LBD, compared to other diagnosis 

groups, see Figure 6B. 
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A) 

 

B)

 

Figure 6. Pairwise comparisons of parameterized oscillatory aperiodic activity across neurodegenerative 

diseases (NDDs). (A) Mean oscillatory activity fits (lines) and 95 % standard error (shaded area); green regions 

on the x-axis bottom represent significant p values ( p < 0.05) on mass univariate permutation F-value tests (1000 

permutations) clustered on frequencies. (B) Mean aperiodic activity fits (lines) and 95 % standard error (shaded 

area); green regions on the x-axis bottom represent significant clusters (p < 0.05).  HC: Healthy Controls; FTD: 

Frontotemporal Dementia; AD: Alzheimer's Disease; PD: Parkinson's Disease; LBD: Lewy Body Dementia 

(comprising dementia in PD and Dementia with Lewy Bodies – DLB); MCI-LBD: Mild Cognitive Impairment 

in Lewy Body Dementia (comprising MCI in PD and MCI with reported Lewy Body pathology); MCI-AD: Mild 

Cognitive Impairment with reported AD pathology (or without Lewy Bodies). 

 

Complementarily, we assessed pairwise comparisons on spectral parameters estimated from 

the derivative fitting vectors of oscillatory and aperiodic activity, see Figure 7.  
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Figure 7. Differences in Spectral Parameters across neurodegenerative diseases (NDDs). Subplots present 

matrixes with the effect size (Cohen’s D) of pairwise differences for each derivative oscillatory (top) and aperiodic 

(bottom) spectral parameter: (A) Oscillatory Extended Alpha Center Frequency, (B) Oscillatory Extended Alpha 

Power, (C) Aperiodic Exponent, and (D) Aperiodic Offset. Effect sizes were calculated from parametric t-tests 

with bootstrapped confidence intervals (1000 iterations). P-values were corrected for multiple tests using the 

Benjamini-Yekutieli procedure. Non-statistically significant findings (i.e., corrected p-value greater or equal to 

0.05) were masked in white.  HC: Healthy Controls; FTD: Frontotemporal Dementia; AD: Alzheimer's Disease; 

PD: Parkinson's Disease; LBD: Lewy Body Dementia (comprising dementia in PD and Dementia with Lewy 

Bodies – DLB); MCI-LBD: Mild Cognitive Impairment in Lewy Body Dementia (comprising MCI in PD and 

MCI with reported Lewy Body pathology); MCI-AD: Mild Cognitive Impairment with reported AD pathology 

(or without Lewy Bodies); Ext. Alpha: Extended Alpha band; CF: Center Frequency; PW: Power. 
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Oscillatory extended alpha CF showed significant differences between LBDs and other groups 

with large effect sizes. Similarly, extended alpha CF was significantly different in HCs vs all 

NDDs comparisons (except for FTD) exhibiting moderate to large effect sizes, see Figure 7A. 

Besides, significantly lower extended alpha PW was observed when comparing AD vs other 

groups with moderate effect sizes, see Figure 7B. Extended alpha BW did not yield statistically 

significant findings. Further, significant results on aperiodic parameters supported consistent 

differences in LBD vs. other groups with large effect sizes on the aperiodic exponent (Figure 

7C) and aperiodic offset (Figure 7D). Forest plots of bootstrapped pairwise differences in the 

derivative oscillatory and aperiodic parameters are presented in Supplementary Figures 9 and 

10. 

Finally, Receiver Operating Characteristics (ROC) curves assessing the discriminatory ability 

of derivative spectral parameters in the separation of NDDs are presented in Figure 8. 

Unadjusted multinomial logistic regression models (each spectral parameter as a single 

predictor of diagnosis) showed good discrimination particularly in the LBD individuals when 

compared to other groups. Thus, in the LBD group, the highest area under the ROC curve 

(AUC) was observed in the Aperiodic Offset (Cutoff-Youden Index = -9.49; AUC = 0.83;  

Sensitivity = 0.82; Specificity = 0.69; Positive Predictive Value – PPV = 0.32; Negative 

Predictive Value – NVP  = 0.96), followed by the Aperiodic Exponent (Cutoff-Youden Index 

= 1.07; AUC = 0.82;  Sensitivity = 0.75; Specificity = 0.76; PPV = 0.36; NVP  = 0.95), and the 

Extended Alpha CF (Cutoff-Youden Index = 6.03; AUC = 0.81;  Sensitivity = 0.90; Specificity 

= 0.63; PPV = 0.30; NVP  = 0.97). Age- and sex-adjusted models yielded consistent findings 

with similar or marginally increased AUCs.  
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Figure 8. Associations Between Spectral Parameters and Neurodegenerative Diseases (NDDs) Diagnosis. 

Unadjusted (top) and age + sex-adjusted results (bottom) from multinomial logistic regressions showing the 

Receiver Operating Characteristic (ROC) curves for each Spectral Parameter as a predictor of the NDDs groups. 

A baseline model with age and sex as predictors of diagnosis was also fitted. HC: Healthy Controls; FTD: 

Frontotemporal Dementia; AD: Alzheimer's Disease; PD: Parkinson's Disease; LBD: Lewy Body Dementia 

(comprising dementia in PD and Dementia with Lewy Bodies – DLB); MCI-LBD: Mild Cognitive Impairment 

in Lewy Body Dementia (comprising MCI in PD and MCI with reported Lewy Body pathology); MCI-AD: Mild 

Cognitive Impairment with reported AD pathology (or without Lewy Bodies); AUC: Area Under the ROC curve; 

Ext. Alpha: Extended Alpha band; CF: Center Frequency; PW: Power; BW: Bandwidth. 

 

Based on the AUC ROC, the highest discrimination of LBD individuals was achieved by the 

Aperiodic Offset (Cutoff-Youden Index = -9.41; AUC = 0.86;  Sensitivity = 0.87; Specificity 

= 0.70; PPV = 0.34; NVP  = 0.97), followed by the Aperiodic Exponent (Cutoff-Youden Index 

= 0.90; AUC = 0.85;  Sensitivity = 0.84; Specificity = 0.74; PPV = 0.36; NVP  = 0.96), and the 

Extended Alpha CF (Cutoff-Youden Index = 7.04; AUC = 0.84;  Sensitivity = 0.81; Specificity 

= 0.77; PPV = 0.38; NVP  = 0.96). Similarly, age- and sex-adjusted models achieved good 

discrimination of HC individuals when using the Extended alpha CF (Cutoff-Youden Index = 

8.82; AUC = 0.80;  Sensitivity = 0.91; Specificity = 0.57; PPV = 0.40; NVP  = 0.95) or the 

Aperiodic Exponent (Cutoff-Youden Index = 0.58; AUC = 0.80;  Sensitivity = 0.85; Specificity 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 18, 2025. ; https://doi.org/10.1101/2025.02.14.25322283doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.14.25322283


25 

 

= 0.66; PPV = 0.44; NVP  = 0.93) as predictors of diagnosis. No other predictors exhibited 

good or high performance (AUC ROC greater or equal to 0.80) in the discrimination of NDDs. 

A comprehensive summary of performance metrics obtained from multinomial logistic 

regression models is presented in Supplementary Figure 11. 

Discussion  

In this multicentric study, we characterized spectral patterns across multiple clinical 

phenotypes of NDDs by isolating the oscillatory and aperiodic activity from the rsEEG power 

spectrum. Besides, we assessed and controlled for potential site-related batch effects that could 

confound the downstream analysis of rsEEG derivative features. We found that batch-

harmonization can effectively mitigate site-related differences on the rsEEG power spectrum 

and preserve diagnosis-related differences (with an increased effect size). Notably, spectral 

parameterization exhibited a distinctive pattern in the LBD group, characterized by the 

prominent slowing (< 7.3 Hz) of the extended alpha center frequency in the posterior channels 

with greater aperiodic activity (steeper exponents and higher offsets). Complementarily, the 

lower posterior extended alpha power was a signature of AD (with smaller effects on center 

frequency and aperiodic parameters). Our findings support the external validity of previous 

smaller studies reporting oscillatory alpha power differences in AD (Kopčanová et al., 2024; 

Wang et al., 2024), and oscillatory alpha slowing with abnormal aperiodic activity in alpha-

synuclein-related disorders (including PD and LBD) (Burelo et al., 2024; McKeown et al., 

2023; Rosenblum et al., 2023). Given the relevance of abnormal posterior alpha rhythms in 

NDDs, spectral parameterization is crucial to measure oscillatory activity (without conflation 

of the underlying aperiodic activity) and to explore candidate patterns for differential diagnosis 

across clinical phenotypes. This expands the current evidence mainly focused on AD and PD 

populations, as highlighted by recent systematic reviews (Donoghue, 2024; Fernández-Rubio 
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et al., 2024). By pooling multisite datasets while controlling for batch effects, we provide a 

robust pipeline to tackle replicability issues arising from small sample sizes (Button et al., 

2013) typically observed in rsEEG studies assessing pathological aging (Fernández-Rubio et 

al., 2024; Newson and Thiagarajan, 2019). 

Batch-Harmonization of rsEEG Power Spectrum 

Convergent evidence obtained from multisite datasets has demonstrated batch effects on the 

rsEEG time series (Bigdely-Shamlo et al., 2020), and derived features, including spectral 

parameters (Jaramillo-Jimenez et al., 2024), functional connectivity (Moguilner et al., 2022; 

Prado et al., 2022), power spectra and Riemannian geometry embeddings computed from 

channel covariance matrixes (Li et al., 2022; Mellot et al., 2024, 2023). Consistent with these 

reports, our results on unharmonized rsEEG power spectra revealed significant batch effects 

affecting the 1 – 30 Hz frequency range (with greater effect sizes in the delta band compared 

to the theta, alpha, and beta bands). Batch-harmonization reduced the overall magnitude of 

batch effects (see Figure 4) achieving better cross-site alignment of the power spectrum. 

Moreover, batch harmonization enhanced diagnosis-related differences in the alpha band, 

while preserving preexisting differences in the delta, theta, and beta bands (see Figure 5).  

Insights from multicentric neuroimaging collaborations recommend modeling site-specific 

parameters to statistically correct potential batch effects  (Hu et al., 2023). Among the most 

widely used methods for statistical batch effects correction, ComBat-derived algorithms have 

gained traction as reliable and straightforward tools for multicentric harmonization, suitable 

for inferential statistics and machine learning predictive modeling (Bell et al., 2022; Da-ano et 

al., 2020; Horng et al., 2022a; Hu et al., 2023; Marzi et al., 2024). Inspired by the success of 

ComBat-based algorithms for harmonization of batch effects (related to site, scanner, or 

radiotracer) across multiple features and data modalities — and their scarce application in 
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electrophysiological data (Li et al., 2022) — we benchmarked these harmonization methods in 

rsEEG spectral parameters CF, PW, BW, aperiodic exponent, and offset (Jaramillo-Jimenez et 

al., 2024). However, our previous study assessed rsEEG age-related changes in healthy subjects 

only, not including ComBat-based algorithms capable of handling a singularity of the design 

matrix with biological covariates (e.g., adjusting for site and diagnosis effects when all subjects 

at a given site share the same diagnosis). Following this rationale, when site and diagnosis 

represent the same population, batch effects become undistinguishable from biological 

covariate effects and cannot be removed with traditional ComBat implementations. Although 

not frequently discussed, design matrix singularity issues could be expected when repurposing 

or pooling several retrospective datasets. To overcome this, the reComBat model estimates 

site-related parameters with regularization techniques that allow the resolution of singular 

design matrixes (Adamer et al., 2022). Interestingly, batch effects in the median posterior 

power spectra were not as prominent as those previously observed on rsEEG spectral 

parameters (Jaramillo-Jimenez et al., 2024). The latter might be explained as the distribution 

of the power spectrum vector tends to normality after log-transformation, and it has smaller 

scale variations compared to spectral parameters such as CF (ranging from 7.3 – 9.5 Hz), PW 

(0.8 – 1.2 microVolts), or offset (-9.7 – -8.9 microVolts), which might result in larger batch-

effects more evident on qualitative visualizations. Although the present results support the 

hypothesis of reduced batch-related differences on the rsEEG power spectrum after 

harmonization, we recognize that further research is needed to shed light on knowledge gaps 

including the effect of unbalanced covariates across batches, transfer-learning approaches for 

unseen batches, preserving dependencies on data structure (e.g., covariance, shape and spatial 

patterns), or handling some limitations of ComBat based algorithms such as outliers, extreme 

values, multimodal distributions, among others (Cetin-Karayumak et al., 2020; Han et al., 

2023). 
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Slow oscillatory alpha frequency and increased aperiodic 

activity in LBD 

Seminal publications have shown consistent rsEEG spectral patterns in LBD (Bonanni et al., 

2016, 2008; Chatzikonstantinou et al., 2021; van der Zande et al., 2018), characterized by a 

reduced posterior dominant peak frequency (< 8 Hz) with or without increased dominant 

frequency variability. These findings were incorporated as part of the current supportive 

diagnostic criteria for dementia and prodromal stages of LBD (McKeith et al., 2020, 2017). 

Although most studies converged on LBD-related abnormalities in posterior oscillatory 

activity, batch effects were typically overlooked and not addressed in prior research (Watanabe 

et al., 2024). Our findings in the LBD group were compatible between the unharmonized and 

batch-harmonized power spectrum, reflecting significant pairwise differences in the extended 

alpha frequency band. Though oscillatory findings in alpha-synucleinopathies could be 

undermined by confounding aperiodic activity, typically not parameterized in LBD clinical 

research (Donoghue, 2024; Donoghue et al., 2020), few recent publications have performed 

rsEEG spectral parameterization on small sample size data, showing steeper aperiodic activity 

in PD, and even greater in LBD (Burelo et al., 2024; McKeown et al., 2023; Rosenblum et al., 

2023). Along with the high aperiodic activity of alpha-synucleinopathies documented in 

preliminary reports, a prominently low oscillatory center frequency (in the 4 – 15 Hz range) 

prevails as a robust hallmark of LBD when compared to cognitively normal PD, MCI, and AD 

groups (Burelo et al., 2024; Rosenblum et al., 2023). Consistently, our results elucidated large 

pairwise differences in LBD, with the largest effect size observed for reduced oscillatory 

extended alpha CF, followed by aperiodic exponent and aperiodic offset. Although aperiodic 

parameters were similar among MCI-LBD and PD groups, MCI-LBD vs. LBD, PD vs. LBD, 

and HC vs. LBD comparisons yielded a significant pattern of low aperiodic activity in HC, 

moderate in MCI-LBD and PD, and high in LBD.  
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Current models propose a neurophysiological basis for aperiodic activity by accounting for the 

interaction of synaptic kinetics, excitatory/inhibitory balance, aperiodic network dynamics, and 

non-rhythmic neural activity (Brake et al., 2024). Albeit augmented (steeper) aperiodic activity 

in LBD has been hypothesized as a surrogate biomarker of increased inhibition, consensus on 

these conclusions is not sustained, and future research with more control of experimental 

designs is required to clarify these relevant aspects. For a detailed discussion on aperiodic 

activity in clinical research, the reader is referred to a recent systematic review (Donoghue, 

2024). 

Low oscillatory alpha PW in AD 

Reduced alpha power and peak frequency along with increasing delta and theta power have 

been reported as consistent signatures of AD in clinical (Babiloni et al., 2011; Brueggen et al., 

2017; Modir et al., 2023; Moretti, 2015; Moretti et al., 2004; Triggiani et al., 2017) and 

simulation studies (Alexandersen et al., 2023). Neurophysiological data exhibiting synergistic 

interactions with neuropathology (Gallego-Rudolf et al., 2024), and cerebrospinal fluid (CSF) 

biomarkers (Smailovic et al., 2018) of AD-related pathology have also contributed to expert 

recommendations supporting spectral analysis of the delta-theta and alpha band powers in 

combination with the alpha peak frequency as promising markers of AD and prodromal MCI-

AD stages (Babiloni, 2022; Babiloni et al., 2021, 2020a). The validity of findings related to 

alpha oscillations has been repeatedly assessed via spectral parameterization of the power 

spectrum, often achieving improved associations between oscillatory activity and clinical 

features of interest (Donoghue, 2024; Kopčanová et al., 2024). As a case in point, a previous 

study found reduced oscillatory alpha PW with generalizable results in two small sample size 

cohorts (Cohort 1 n = 45, AD = 18; Cohort 2 n = 31, AD = 25), whereas aperiodic parameters 

were comparable among AD and HCs. Similarly, one previous investigation of the 
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Thessaloniki dataset (included in our study), parameterized the rsEEG power spectrum in AD 

(n = 36) vs HC (n = 29), observing significantly lower oscillatory alpha PW in AD (with 

increased F-values after spectral parameterization). Nonetheless, these authors also reported 

increased posterior aperiodic exponent and offsets in AD (Wang et al., 2024). Our observations 

on reduced oscillatory alpha PW in AD (with significant moderate-to-large effect sizes across 

all NDDs) support earlier reports. Aperiodic findings were less concluding, supporting 

increased aperiodic exponent and offset in AD, compared to HC (Donoghue, 2024; Wang et 

al., 2024). Inconsistent aperiodic findings in AD have been attributed to i) potential sample 

heterogeneity in disease etiology and severity, and ii) a dynamic response of aperiodic 

parameters across the progression of the AD continuum not reflected in a gross clinical 

phenotype. Multimodal data integration could emerge as a promising strategy to fill current 

knowledge gaps on the association between clinical, biological, and neurophysiological 

trajectories of AD (Hebling Vieira et al., 2022; Prado et al., 2023). 

 

Limitations 

Standardized experimental conditions are crucial to enhance comparability when pooling 

multisite datasets in clinical investigations. However, this was not possible as we were not 

directly involved in the design of all primary studies. In addition, the scarcity of longitudinal 

rsEEG data precluded us from the estimation of change trajectories, or test-retest reliability 

assessments. In line with this, clinical diagnosis of NDDs was performed by specialized 

clinician evaluations based on operationalized criteria, although similar, those criteria varied 

across sites, potentially resulting in increased clinical and biological heterogeneity. Sensitivity 

analyses using biological definitions of AD (Aisen et al., 2017), PD, and LBD (Simuni et al., 

2024) could complement results derived from clinical phenotypes of neurodegeneration.  
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We selected methods accounting for robust estimators (based on iterative statistics), 

nonetheless, present results were conducted at the group level, requiring future dedicated 

studies to evaluate the performance of batch-harmonized spectral parameters for the individual-

level classification of NDDs. Besides, the reader must consider that our scope was focused on 

NDDs rather than age-related changes in spectral parameters. The latter was comprehensively 

assessed by our group in a prior publication (Jaramillo-Jimenez et al., 2024). Beyond this, we 

did not estimate source-space reconstructions due to their associated computational demand, 

which complicates the local analysis of large-scale datasets. Even if sensor space features 

reflect mixed source activity across adjacent channels due to volume conduction, we supported 

our selection of posterior channels, as occipital dipoles are the most relevant generators of the 

posterior rsEEG power spectrum (Schaworonkow and Nikulin, 2022). Finally, extensive 

benchmarking of the reComBat model using synthetic data as ground truth fell outside the 

scope of our study but could be explored by researchers working with pooled multisite datasets 

(Marzi et al., 2024). Other factors potentially affecting the batch harmonization, include cross-

batches sample size differences (Parekh et al., 2022), outlier effects (Han et al., 2023) and data 

leakage when using ComBat-derived methods without dedicated implementations for 

predictive machine learning models (Marzi et al., 2024). 

Conclusions  

This study capitalizes on multicentric data accounting for diverse clinical phenotypes of NDDs. 

We present a detailed characterization of oscillatory and aperiodic activity while addressing 

limitations from preliminary publications, especially in LBD clinical research.  Our 

observations support that batch effects in the rsEEG power spectrum can be mitigated with 

harmonization while preserving (and increasing) diagnosis-related differences. Oscillatory 

alpha PW reduction may better reflect AD abnormalities, whereas pronounced oscillatory CF 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 18, 2025. ; https://doi.org/10.1101/2025.02.14.25322283doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.14.25322283


32 

 

slowing and greater aperiodic activity characterize the LBD group. We propose an adaptable 

open pipeline with a common preprocessing regime, batch harmonization, and spectral 

parameterization along with visualizations and statistical testing of batch, harmonization, and 

group-related effects. Further investigations can benefit from data pooling to build up larger 

datasets suitable for predictive modeling at the individual level. 

Data availability  

Publicly available repositories host the open datasets (refer to the Participants section). Access 

to in-house clinical rsEEGs is restricted due to ethical considerations and can only be granted 

upon approval of a project proposal by the EDLB Steering Committee; for inquiries, please 

contact the corresponding author. All codes for data preprocessing and analysis will be made 
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