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Abstract 

Agricultural injuries remain a significant occupational hazard, causing substantial human and 

economic losses worldwide. This study investigates the prediction of agricultural injury 

severity using both linear and ensemble machine learning (ML) models and applies explainable 

AI (XAI) techniques to understand the contribution of input features. Data from AgInjuryNews 

(2015–2024) was preprocessed to extract relevant attributes such as location, time, age, and 

safety measures. The dataset comprised 2,421 incidents categorized as fatal or non-fatal. 

Various ML models, including Naïve Bayes (NB), Decision Tree (DT), Support Vector 

Machine (SVM), Random Forest (RF), and Gradient Boosting (GB), were trained and 

evaluated using standard performance metrics. Ensemble models demonstrated superior 

accuracy and recall compared to linear models, with XGBoost achieving a recall of 100% for 

fatal injuries. However, all models faced challenges in predicting non-fatal injuries due to class 

imbalance. SHAP analysis provided insights into feature importance, with age, gender, 

location, and time emerging as the most influential predictors across models. This research 

highlights the effectiveness of ensemble ML models in injury prediction while emphasizing 

the need for balanced datasets and XAI techniques for actionable insights. The findings have 

practical implications for enhancing agricultural safety and guiding policy interventions. 
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Highlights:  

 

• This study analyzed 2,421 agricultural injury incidents from AgInjuryNews (2015–

2024) and utilized machine learning models to predict injury severity, focusing on 

both fatal and non-fatal outcomes. 

• Ensemble models, such as XGBoost and Random Forest, outperformed linear models 

in accuracy and recall, especially in predicting fatal injuries, although challenges in 

non-fatal predictions due to class imbalance were observed. 

• Key predictors identified through SHAP analysis included age, gender, location, and 

time, providing interpretable insights into the factors influencing injury severity. 

• The integration of explainable AI (XAI) enhanced the transparency of machine 

learning predictions, enabling stakeholders to prioritize targeted safety interventions 

effectively. 

• This research highlights the potential of combining ensemble ML models with XAI 

techniques to improve agricultural safety practices and provides a foundation for 

addressing data challenges in future studies. 

 

Graphical Abstract:  
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1. Introduction 

Occupational incidents can significantly impact workers’ lives, both on and off the job, and 

impose a substantial economic burden on employers, employees, insurance companies, 

medical care systems, and society as a whole (Suárez Sánchez et al., 2011). The International 

Labor Organization estimates that nearly 337 million occupational incidents are reported 

globally each year (Organization, 2008). These incidents result from multiple factors that 

contribute to their occurrence (Sarkar et al., 2018). Given the vast human and financial losses 

associated with occupational injuries, researchers have continuously sought to better 

understand the factors influencing incident occurrence and severity, as well as to improve the 

accuracy of predicting future injuries (Lord and Mannering, 2010). 

Agriculture is a high-risk occupational environment. The agricultural sector consistently 

ranks among the most hazardous for workers in the U.S., with 23.5 injuries per 100,000 

workers reported in 2022 (U.S. Bureau of Labor Statistics, 2023). To reduce this injury rate, 

stakeholders require detailed information about the nature of these injuries, enabling the 

development and evaluation of targeted interventions and policies. However, formal reporting 

requirements in this industry remain relatively minimal, resulting in limited and incomplete 

national datasets. 

Agricultural injury surveillance data plays a crucial role in understanding the circumstances 

surrounding incidents, aiding prevention efforts. Previous agricultural safety research has 

focused on collecting, coding, and analyzing injury data from various sources, such as surveys, 

news reports, workers' compensation data, and electronic health records. Despite these efforts, 

agricultural safety and health researchers continue to face challenges in documenting nonfatal 

injuries, accessing public data systems for surveillance, and assessing the cost-effectiveness of 

potential data sources or methods (Murphy et al., 2019). Agricultural injury surveillance 

databases often include basic fields for reporting incident details, such as victim demographics 

and injury variables. However, manually extracting variables from narrative descriptions is 

both costly and time-consuming. Measure (2014) estimates that the annual effort required to 

initially code incidents reported in the Survey of Occupational Injury and Illness (SOII) is 

approximately 25,000 person-hours for about 300,000 incidents (12 incidents per hour). 

In recent years, the AgInjuryNews collection, a publicly accessible repository of news 

articles and reports on agricultural injuries and fatalities, has been developed to address 

reporting gaps (Weichelt et al, 2018). Launched by the National Children’s Center for Rural 

Health and Safety (NCCRAHS) and curated by the National Farm Medicine Center (NFMC), 

AgInjuryNews has gathered over 4,500 incident reports involving more than 6,000 victims 

between 2015 and 2024 (AgInjuryNews, 2024). Data collection methods have been detailed 

elsewhere (Weichelt et al, 2018; Burke et al., 2021; Gorusu et al., 2020; Becklinger, 2024), but 

in brief, articles are sourced through a digital media service, screened, and summarized with 

key details and a link to the original report. Filters and keyword searches allow users to easily 

find relevant articles for research.  

Over a dozen research articles based on this data have been published, with a full list 

available on the AgInjuryNews website (AgInjuryNews, 2024). The structured and searchable 

format of AgInjuryNews makes it a valuable resource for researchers and policymakers 

(AgInjuryNews, 2024). AgInjuryNews aims to provide an accessible resource for tracking 

trends, identifying emerging issues, promoting safety messaging, and raising awareness of 
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agricultural injury prevention. However, the current scope of AgInjuryNews is limited. The 

process of identifying relevant articles and extracting necessary information for database 

entries is primarily manual and performed by volunteers, requiring a thorough understanding 

of the content. Developing a custom automated system to extract data from diverse news 

sources, especially one tailored to the specific format of each source, is neither economically 

nor technically feasible. 

Predicting agriculture related injury severity is a crucial and promising area of research in 

safety studies. Gaining a deeper understanding of the factors that contribute to injury severity 

is essential for proactively implementing appropriate mitigation strategies. The severity of 

injuries is influenced by a combination of human factors, environmental conditions, roadway 

characteristics, and some special situations (Jamal et al., 2021). However, agriculture related 

injuries are random events that exhibit spatial variability, meaning the factors influencing 

severity can differ from one location to another. As a result, a localized analysis of risk factors 

is necessary for accurate crash prediction and the effective implementation of appropriate 

countermeasures. 

In the literature, different statistical regression models have been widely used to model 

crash injury severity. Crash severity modeling often involves discrete outcome models such as 

binary, multinomial logit, and probit models, which have been widely used due to the discrete 

nature of crash severity levels (Azimi et al., 2020; Rifaat & Chin, 2007). More advanced 

models have emerged to address issues of heterogeneity and correlation, including Bayesian 

hierarchical (Huang et al., 2008), ordered logit (Azimi et al., 2020), multivariate (Aguero-

Valverde & Jovanis, 2009), and random parameter models (Milton et al., 2008). Applications 

of logit, probit, and random parameter models have shown promise in analyzing injury severity 

based on various factors such as driver demographics, crash conditions, and vehicle types 

(Garrido et al., 2014; Kockelman & Kweon, 2002). Recently, Bayesian hierarchical models 

have also been used to explore factors like signalized intersections and camera presence in 

crash injury severity (Huang et al., 2008; Haque et al., 2010). 

While these models offer clear mathematical interpretation and insight into individual 

predictor variables, they have several limitations. They often rely on assumptions about data 

distribution and linear relationships between variables, which, if violated, lead to biased results 

(Li et al., 2012; Wang & Kim, 2019; Zahid et al., 2020). Additionally, they tend to have poor 

prediction accuracy because of unobserved heterogeneity and multicollinearity within crash 

data (Savolainen & Mannering, 2007). To address these issues, more complex models are 

required, making them computationally intensive and difficult to implement (Savolainen et al., 

2011). Alternatively, with recent advances in machine learning, new models have emerged to 

address these issues, though many still focus on prediction accuracy without enhancing 

understanding of severity risk factors. Feature-based analysis or explainable AI (XAI) methods 

are crucial for addressing this gap. 

Machine learning (ML) methods have been increasingly used in crash severity modeling to 

address the limitations of traditional statistical models. Standard or linear ML models such as 

Artificial Neural Networks (ANN), Support Vector Machines (SVM), Naïve Bayes (NB) and 

Decision Trees (DT) have demonstrated their capability to model complex, nonlinear 

relationships between crash factors and injury outcomes. ANN models have shown superior 

predictive performance compared to statistical methods, particularly in studies using multi-
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layer perceptron (MLP) architectures. For example, Abdelwahab and Abdel-Aty (2001) 

reported that MLP outperformed ordered logit models with a classification accuracy of 65.6%. 

Other studies have applied ANN for crash severity prediction with notable success, including 

Kunt et al. (2012), who used ANN to predict crash outcomes on the Tehran-Ghom Freeway, 

achieving high performance based on R-values and error measures. SVM models, known for 

their ability to handle complex, high-dimensional data, have also been effective. Li et al. (2012) 

applied SVM to predict crash severity on Florida’s freeway diverge segments and found it 

superior to ordered logit models.  

Similarly, Mokhtarimousavi et al. (2019) showed that SVM models, enhanced by 

optimization algorithms like particle swarm and harmony search, performed better than mixed 

logit models for work zone crashes. Naïve Bayes (NB) is a fast and effective machine learning 

classifier based on Bayes' rule, assuming conditional independence between variables, which 

simplifies parameter estimation (Kakhki et al., 2019). Despite its simplicity, NB performs well 

in various classification tasks, particularly in binary classifications such as injury severity 

(Marucci-Wellman et al., 2017). Decision Trees (DT) have been popular in crash severity 

classification due to their simplicity and interpretability. Chong et al. (2004) and Abellán et al. 

(2013) used DT to classify crash injury severity levels, with results showing DT models 

outperforming ANN in some cases. 

Ensemble ML models, particularly Random Forest (RF) and eXtreme Gradient Boosting 

(XGB), have gained significant attention in recent years for crash severity prediction due to 

their ability to combine multiple weak learners to improve predictive accuracy. RF, an 

ensemble of decision trees, has been widely used in crash severity studies because of its 

robustness and high performance. Zhang et al. (2018) compared RF with other machine 

learning and statistical models like SVM and ordered probit models, finding that RF 

consistently provided better predictions across different severity levels in freeway crashes. 

Similarly, Dadashova et al. (2020) demonstrated that RF outperformed traditional discrete 

choice models in predicting injury severity, identifying factors such as roadway design and 

crash type as crucial predictors.  

XGB, a gradient boosting technique, has also emerged as a highly efficient and accurate 

model. Studies have shown that XGB surpasses other machine learning algorithms in both 

accuracy and computational efficiency. For instance, Parsa et al. (2020) applied XGB for real-

time crash detection, achieving high detection rates and accuracy. Chen et al. (2020) used XGB 

to analyze crash severity in automated vehicle crashes and found it superior to classification 

and regression tree (CART) models. Similarly, Ma et al. (2019) reported that XGB, with a 

prediction accuracy of 86.73%, outperformed models like RF and SVM in predicting fatal 

crashes in Los Angeles, making it a powerful tool for road safety analysis. Despite their 

potential, these models face challenges such as the black-box nature of predictions, requiring 

explainable artificial intelligence (XAI) to enhance their interpretability and usability. 

All the ML models previously discussed exhibit black-box characteristics. This means that 

the end user has access only to the input data and final predictions generated by the models 

(Saeed & Omlin, 2020; Sit et al., 2021). Consequently, users are often unaware of the reasoning 

behind the predictions made by complex AI systems and algorithms (Demiray et al., 2024). 

Recently, explainable artificial intelligence (XAI) has emerged to overcome the ‘black-box’ 

nature of ML models (Arrieta et al., 2020; Mermer et al., 2024). Among the various explanation 
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techniques, Shapley additive explanation (SHAP) is the most representative post hoc analysis 

technique (Lundberg & Lee, 2017). SHAP can estimate the magnitude of the positive or 

negative contribution of the input features to a model's output (Lundberg et al., 2020). 

Additionally, SHAP analysis is also utilized in accident injury severity prediction because it 

can effectively visualize the importance and effect of contributing factors on injury (Aboulola, 

2024; Cicek et al., 2023; Yang et al., 2022). 

The literature review above demonstrates that ML methods have been widely used for 

classifying and predicting future events across various fields, including occupational injury 

analysis. However, there is a gap in the literature regarding the evaluation of ML techniques 

for classifying and predicting the severity of occupational incidents in agriculture domain 

within the United States. Furthermore, to the best of our knowledge, there is no study to explore 

contributing factor with XAI and to compare different ML models’ performance to each other 

for agricultural injuries with US.  

The primary goal of this study is to develop ensemble machine learning based injury 

severity prediction model and to identify major contributing factors utilizing an explainable AI 

approach. A comprehensive model comparison explores diverse models, enhancing 

understanding and highlighting ensemble ML adaptability. Specifically, our contributions are 

(1) utilizing extensive datasets that include various parameters for agriculture injury; (2) 

conducting experiments on various ML models including NB, SVM, XGB, stacking and voting 

models; (3) prediction of agricultural injury severity using these models; and (4) Demonstrating 

the significance of features through the utilization of the SHAP value.  

The paper is structured as follows: Section 2 outlines the methodology, detailing the data 

collection process, feature preprocessing, and the implementation of various linear and 

ensemble machine learning models. Section 3 presents the results and discussion, including 

model performance evaluations, SHAP-based feature importance analysis, and interpretability 

insights. Section 4 concludes with a summary of key findings, practical implications for 

agricultural safety, and recommendations for future research directions. 

 

2. Methodology 

2.1. Case Study Dataset 

The data used for this study was scraped from web by AgInjuryNews.com (Weichelt et al., 

2018; AgInjuryNews, 2024). The website contains agricultural related injury incidents between 

2015 and 2024 that occurred in US and Canada. For each incident, information about the 

location, data, age, as well as other factors related to the person during the time of the incident, 

such as if alcohol or any other drugs were present. The retrieved data was cleaned and 

preprocessed by deleting outliners, duplicate records, and records with missing information. 

The final dataset had a total of 2421 valid incident records that contained 757 non-fatal injuries 

and 1664 fatalities. The dataset had five explanatory categories with 30 child features (sub-

levels) for categorical variables and two for continuous numerical variables.  

Temporal characteristics include the time of the accident (morning, afternoon, evening or 

night hours), in which the incidents occurred. Variables under roadway or environmental 

characteristics comprised of location of the accident, confined space, grain involved, and 

agritourism. The explanatory variables under accident attribute includes injury agent where the 

accident occurred. The personal attribute consisted of gender, age, and role (part the occupant 
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played in the incident), and state. Likewise, variables related to safety include alcohol, seatbelt, 

and helmet usage. The dependent variable in this study was the severity outcome of the incident 

and was classified in two levels (non-fatal and fatal). In this case, two level of severity outcome 

can be defined as follow: fatal that indicates that at least one person was killed during the 

incident and non-fatal includes property damage only and other minor injuries. 

 

Table 1. Descriptive statistics of all variables in the dataset 

Attribute Data Description  Min Max Mean Std. Dev  Percent  

Temporal 

Time  1: Morning (6am – 12pm) 

2: Afternoon (12pm – 6pm)  

3: Evening (6pm – 12am) 

4: Night (12am – 6am) 

1 4 2.024 0.803 27.71  

45.51  

23.37  

3.38 

Roadway / Environmental 

Location  1: On Farmland or Ag. Environments  

2: Forestry or Fishing Environments  

3: Roadways 

1 3 1.972 0.981 49.58 

3.68 

46.74 

Confined Space  0: No 

1: Yes 

0 1 0.001 0.025 93.74 

6.26 

Grain Involved  0: No 

1: Yes 

0 1 0.068 0.250 93.24 

6.76 

Agri-tourism  0: No 

1: Yes  

0 1 0.008 0.087 99.24 

0.76 

Accident 

Injury Agent  1: ATV/Off-Road Vehicle 

2: Building  

3: Environment  

4: Fall  

5: Fishing/Forestry  

6: Livestock 

7: Machinery  

8: Pesticides/Plants  

9: Vehicle  

1 9 7.342 2.717 10.49 

2.60 

1.69 

1.82 

2.10 

2.68 

10.94  

6.03  

61.62 

Personal 

Gender 1: Male  

2: Female  

1 2 1.132 0.339 86.74 

13.26 

Age [0, 98]  0 98 50.351 22.169 ------- 

State [1, 59] 1 59 30.558 15.465 ------- 

Safety  

Alcohol  0: No  

1: Yes 

0 1 0.016 0.129 98.30 

1.69 

Seatbelt  0: No 

1: Yes 

0 1 0.021 0.145 97.85 

2.15 

Helmet  0: No 

1: Yes 

0 1 0.0054 0.073 99.46 

0.53 
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Table 1 summarizes the descriptive statistics of all the variables used in the machine 

learning study, offering insights into the temporal, environmental, accident-related, personal, 

and safety attributes of the incidents analyzed. The time-of-day variable is divided into four 

categories: morning (27.71%), afternoon (45.51%), evening (23.37%), and night (3.38%), with 

afternoon being the most frequent. In the roadway/environmental category, incidents mostly 

occurred on farmland or agricultural environments (49.58%) and roadways (46.74%), with a 

small percentage happening in forestry or fishing environments (3.68%). Only 6.26% of 

incidents involved confined spaces, and 6.76% involved grain, while agritourism was rare, with 

less than 1% occurrence each. The injury agent variable indicates that vehicles were the most 

common cause of incidents (61.62%), followed by machinery (10.94%) and ATVs/off-road 

vehicles (10.49%). For the personal category, males accounted for the vast majority of 

incidents (86.74%), with a mean age of 50. In terms of safety, very few incidents involved 

alcohol (1.69%) or the use of seatbelts (2.15%), or helmets (0.53%). 

 

Table 2. Frequency and percentage distribution of injury severity categories over the years.  

Year Injury Severity Category Frequency Percent (%) 

2016 Non-Fatal 97 30% 

Fatal 225 70% 

2017 Non-Fatal 107 32% 

Fatal 225 68% 

2018 Non-Fatal 110 31% 

Fatal 248 69% 

2019 Non-Fatal 97 29% 

Fatal 246 72% 

2020 Non-Fatal 105 33% 

Fatal 212 67% 

2021 Non-Fatal 76 31% 

Fatal 170 69% 

2022 Non-Fatal 76 30% 

Fatal 181 70% 

2023 Non-Fatal 78 37% 

Fatal 133 63% 

2024 Non-Fatal 11 31% 

Fatal 24 69% 

 

Table 2 provides the frequency and percentage distribution of injury severity categories 

(non-fatal and fatal) across different years from 2016 to 2024, highlighting a clear trend of 

decreasing injury frequencies over time. Out of the total 2,421 incident, 757 (31%) are 

classified as non-fatal injuries, 1,664 (69%) as fatal injuries. Fatal injuries consistently made 

up the majority of incidents, peaking in 2018 with 110 cases. However, from 2019 onwards, 

both fatal and non-fatal injuries begin to decline, with a notable shift in 2020 where non-fatal 

injuries rise to 33% of the total despite fewer overall incidents. By 2023 and into 2024, the 

frequency of both categories drops dramatically, especially in 2024, where only 11 non-fatal 

injuries (31%) and 24 fatal injuries (69%) are recorded, covering the period until May. This 
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overall decline reflects a significant reduction in injury severity over the years, particularly in 

the most recent data. 

 

2.2. Machine Learning Models 

This section reviews the linear and ensemble machine learning classification algorithms and 

discusses their application for agricultural injury severity prediction. Machine learning 

classifiers are supervised training algorithms used in classifying datasets that can produce 

promising results due to their multi-dimensional data processing capability, flexibility in 

implementation, versatility, and superior predictive capabilities (Sit et al., 2020; Zhang et al., 

2023). In this study, the target (dependent) variable (injury severity level) has two possible 

outcomes (non-fatal, and fatal). All the algorithms for current study were implemented using 

Python. The detailed methodology is further discussed in the following sections. 

Naïve Bayes (NB): The Naive Bayes algorithm is a widely used classifier known for its 

simplicity and efficiency in building probabilistic models (Hastie et al., 2009). It is based on 

Bayes' Theorem, which calculates conditional probabilities to predict outcomes. As a 

supervised classification technique, it assumes strong independence among features, meaning 

that the presence of one feature in a class is independent of any other feature. Despite its high 

bias, Naive Bayes performs well even with small datasets due to its low variance. The algorithm 

predicts the probability that a data point belongs to a class, and the class with the highest 

posterior probability is selected as the predicted outcome. Bayesian classification provides 

practical learning algorithms and prior knowledge for observed data. This algorithm has been 

applied for crash severity prediction successfully (Sarkar et al., 2020; Arhin & Gatiba, 2020) 

and has success when dealing with classification tasks. 

Decision Tree (DT): Decision trees are a popular machine learning algorithm which can 

be used in a variety of classification-based tasks (Quinlan, 1986; Xu et al., 2019; Alabbad et 

al., 2022). Each tree contains multiple nodes and edges, where nodes represent different 

“questions”, while edges represent the answers to those questions. Any path taken using any 

combination of edges is a possible result produced by the decision tree. During training, 

decision trees are designed to minimize loss and error by weighing different paths differently 

depending on the dataset. To optimize the training process, splitting and pruning are employed. 

Splitting divides the dataset into multiple smaller sections, helping models generalize better on 

unseen data. Pruning, which removes sections of the decision tree that do not improve 

classification accuracy reduces overfitting and reduces the size of decision trees. Decision trees 

have recently been applied in forming new ensemble algorithms (Moral-García et al., 2019) 

and other classification and regression tasks (Azhar et al., 2022; Chang & Wang, 2006) for 

analyzing traffic accident. 

K Nearest Neighbors (KNN): The KNN is another commonly applied machine learning 

method in classification tasks that uses different types of distance metrics to identify the K 

most similar points and predict outputs on new data (Guo et al., 2003; Cikmaz et al., 2024). It 

is important to identify the most optimal value of k to achieve the highest accuracy because a 

k too small could lead to inaccurate predictions, while a k too large can lead to the overfitting 

of the model. Then, when considering the k nearest neighbors and their respective output 

classes, a weighted average is performed to determine the result of that specific data point. The 
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KNN has been used successfully in both classification and regression tasks in many fields, 

especially in crash injury severity prediction (Santos et al., 2022). 

Multi-Layer Perceptron (MLP): The multi-layer perceptron (MLP) is a variation of the 

artificial neural network. It consists of three layers: the input layer, the hidden layer, and the 

output layer. Each layer of the MLP contains multiple perceptrons, which perform simple 

logistic regressions and are the base for the calculations in the model. The hidden layer can 

also be represented as a fully connected dense network of multiple perceptrons. During training, 

the MLP constantly updates the weights in each perceptron through backpropagation and the 

calculation of error (Bayar et al., 2009; Li and Demir, 2024). Finally, activation functions are 

differentiable functions that can learn these weights through gradient descents. The MLP has 

also been widely applied in vehicle accident injuries (Zhang et al., 2022). 

Stochaistic Gradient Descent (SGD): The stochastic gradient descent model is an ML 

method that starts with a random set of parameters and iteratively updates these parameters 

until it finds the minimum value of a function. It generates a hyperplane to separate data from 

two different classes, and it updates its parameters iteratively. One key hyperparameter of the 

stochastic gradient descent classifier is the learning rate, which determines the step size along 

the negative gradient. Finally, regularization and data randomness techniques are employed to 

reduce overfitting. The SGD classifier has been used in tasks where a linear relationship is 

present (Candefjord et al., 2021).  

Support Vector Machine (SVM): The support vector machine (SVM) is a supervised ML 

method and is commonly used in classification and regression analysis due to its good 

classification accuracy, ability to handle non-linear data, and its reduced tendency to the over-

fitting problem (Xiang et al., 2021; Han et al., 2014; Sit et al., 2023). The algorithm fits the 

most optimal hyperplane to characterize data into two separate groups, where the further apart 

two different data points of different classes are, the better the hyperplane. Moreover, an 

additional advantage of the SVM is that it is robust to outliers in data. Finally, another essential 

part of the SVM is the kernel function, where data can be transformed to be mapped differently 

to improve the probability of finding an accurate hyperplane. The method has been successful 

with high accuracies in a traffic accident detection/prediction (Li et al., 2012; Jamal et al., 2021).  

 

2.3. Ensemble Learning Models 

Ensemble learning is a concept in machine learning that involves the fusion of multiple weaker 

learners to form one stronger and more powerful model. This technique is especially important 

in injury control and safety science because it helps reduce uncertainty in models and improve 

redundancy and accuracy, but there still remains a lack of a comparative analysis of the 

capabilities of these models, especially in injury prevention and safety. In this study, ensemble 

ML models were examined under 3 main categories: bagging, boosting, and other (i.e., voting, 

and stacking).  

 

2.3.1. Bagging Classifiers Methods  

Random Forest (RF): Random Forest is a popular bagging ensemble method consisting of 

multiple decision trees (Islam et al., 2024). By combining several weak learners, Random 

Forest enhances model performance (Breiman, 2001). Bagging involves bootstrapping, where 

models are trained on different subsets of the data, and their predictions are aggregated. The 
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algorithm's diversity and robustness come from training each tree on a different subset of 

features. While RF performs well with continuous variables and large datasets, it can be 

sensitive to noisy data due to uneven distribution and requires sufficiently deep trees to perform 

well. It has been used in both classification and regression tasks, as well as in crash severity 

predictions (Zhang et al., 2018; Jamal et al., 2021). 

Deep Forest (DF): Developed by Zhou et al. (2019), Deep Forest (DF) is a novel method 

that uses a stacking ensemble technique within a cascade structure, integrating deep learning 

with ensemble methods. Layers of random forests replace neurons in a neural network-like 

structure, and a sliding window scans the raw features. Inspired by stacking ensemble 

techniques, DF emphasizes model diversity by training each learner on different parts of the 

dataset. Though DF has limited applications in safety and transportation, it shows promise, 

especially in fields like injury/crash severity prediction. 

 

2.3.2. Boosting Classifiers Methods:  

Gradient Boosting (GB): Gradient Boosting is another decision tree-based ensemble 

technique that uses boosting (Friedman, 2001). In boosting, each new model corrects errors 

made by its predecessor, with trees built sequentially. The model adjusts weights and minimizes 

loss through gradient descent. GB is widely used for model fusion and improving overall 

performance for severity prediction of car or motor crashes (Jeong, et al., 2018). 

Extreme Gradient Boosting (XGBoost): XGBoost is an enhancement of gradient 

boosting that includes regularization penalties to reduce overfitting (Chen & Guestrin, 2016). 

Like gradient boosting, XGBoost adds learners iteratively, focusing on errors made by previous 

learners. Its primary improvement lies in its regularization techniques, which boost 

generalization and scalability. XGBoost is highly efficient with large datasets and has been 

used in diverse fields (Sit et al., 2022), from pedestrian injury severity prediction (Wu et al., 

2024) to railroad accident analysis (Bridgelall & Tolliver, 2021). 

Light Gradient Boosting (LightGBM): LightGBM is another popular boosting method 

that speeds up training by binning data points (Ke et al., 2017). Unlike traditional gradient 

boosting, LightGBM builds its tree leaf-wise rather than depth-wise, improving efficiency and 

reducing loss. Its use of gradient one-sided sampling allows it to focus on high-error data points, 

making it faster than XGBoost and effective in tasks requiring high efficiency (Dong et 

al.,2022). 

Adaptive Boosting (Adaboost): Adaboost combines several weak learners into a strong 

learner by adjusting weights based on their accuracy. Weak learners are trained on weighted 

versions of the data, with new weights assigned after each iteration to focus on incorrect 

predictions. Adaboost has been applied in a variety of fields, including accident severity 

prediction (Kashifi, & Ahmad, 2020; Li et al., 2023). 

 

2.3.3. Other Classifier Methods 

Voting Classifier: The voting classifier is an ensemble learning technique used for 

classification tasks that combines the predictions of multiple individual classifiers to improve 

accuracy (Bauer and Kohavi, 1999). Unlike bagging and boosting ensemble methods, the 

Voting Classifier simply aggregates predictions from several models that are trained 

independently and then combines their results. There are two main types of voting used in the 
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voting classifier: hard voting and soft voting. Hard voting is simply a majority vote, where the 

most common class among the base estimators is the final predicted class. Soft voting outputs 

the probabilities for each class, and these probabilities are averaged to determine the weight of 

each class. The voting classifier aggregates the strengths of multiple models, which prevents 

the weaknesses of a single model from impeding accuracy significantly (Fahad et al., 2023).  

Stacking Classifier: The stacking classifier is another ensemble learning technique that 

combines multiple different models to improve performance by taking advantage of their 

individual strengths (Wolpert, 1992). Unlike the voting classifier, which directly averages the 

predictions of each model, the stacking classifier uses another model to make the final 

prediction. This model is known as the final estimator or the meta-learner, and it optimally 

reduces prediction errors. The meta-learner can learn to integrate the strengths of each model, 

and it compensates for their individual model weaknesses. This allows the stacking classifier 

to improve accuracy and is powerful in situations with difficult datasets to analyze (Tang et al., 

2019).  

 

 
Figure 1. Workflow diagram for all scenarios in agricultural injury severity prediction. 

 

2.4. Model Development 

Figure 1 shows a comprehensive workflow diagram for ML agricultural injury severity 

prediction. Initial step involves obtaining and preparing data from AgInjuryNews. After 

applying the preprocessing, organized data are split into training and test dataset, where the 

chosen ML models are trained using the training dataset, and test dataset are employed to 

observe the behavior of the trained ML models. Since our dataset contains many more samples 

than features, we were careful not to reduce the number of features too much to avoid losing 

important information. This strategy helps us balance capturing a wide range of influencing 

factors and maintaining the robustness of our model. The min-max method (MinMaxScaler) 
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was applied to standardize the features to eliminate potential model bias due to difference in 

scales and units (Ahsan et al. 2021). The min-max method transforms the data into a range 0 

and 1 and ensures that all features contribute equally to the model by bringing them to a 

common scale, which helps improve the performance of machine learning algorithms. 

A variety of ML models are then trained and tested to predict agricultural injury severity. 

Table 3 lists the training parameters for each of the selected ML models used in this study. The 

tuning of these hyperparameters was achieved through cross validation, where the performance 

of models under different parameters would be evaluated until the most accurate model setting 

was determined. Various combinations of individual ML models were evaluated for ensemble 

modeling. For the voting and stacking classifiers, different combinations of two to five linear 

ML models were tested. These models included NB, SVM, MLP, KNN, SGD, and DT, as they 

all achieved R² values above 0.5 but showed significant variation among themselves. Therefore, 

different combinations of these models were explored to assess the impact on accuracy when 

combining stronger and weaker learners. 

 

Table 3. Summary of training parameters of models developed in this study 

Models Parameters 

NB alpha = 21.62 

KNN n_neighbors = 47, leaf_size = 38 

DT min_samples_split = 43, min_samples_leaf = 36, max_depth = 5 

SGD max_iter = 1129, tol = 0.602, alpha = 3.076 

MLP Max_iter = 1000, tol = 1e-4 

SVM C = 3.846, tol=0.601, degree = 1732 

RF Max_depth = 100, max_feature_split = 0.1, max_sample_split = 50.0, 

n_estimator = 250  

DF N_estimators = 10 

GB Learning_rate = 0.2526, max_depth 1, max_feature_split = 83, 

min_samples_split = 33, n_estimators = 173.0 

LightGBM  Learning_rate = 0.1303, max_depth = 54, n_estimators = 16, num_leaves= 2 

XGBoost Colsample = 1.0, gamma = 4.264, learning_rate = 0.5384, max_depth = 4, 

n_estiators = 240 

AdaBoost  Learning_rate = 0.05818, n_estimators = 217 

 

2.5. Model Evaluation 

When comparing classification models, various performance metrics derived from a confusion 

matrix are commonly used. Table 4 presents the confusion matrix for a binary classifier. This 

matrix, structured as a contingency table, illustrates how observations are distributed across 

actual and predicted classes (Guns et al., 2012). In classification problems, the confusion matrix 

comprises four possible outcomes: true positives (TP), true negatives (TN), false positives (FP), 

and false negatives (FN), as shown in Table 3. It provides a clear representation of both correct 

and incorrect classifications under a specified target, allowing for the calculation of accuracy 

and other performance metrics.  
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Table 4. Confusion Matrix for Binary Classification 

 

Actual Class 

Predicted Class 

Positive Negative 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

In this study, the binary confusion matrix for each machine learning model was utilized to 

compute various quantitative performance metrics. The metrics used for evaluating model 

performance are outlined and explained below (Sokolova and Lapalme, 2009; Guns et al., 

2012; Mathew, 2016; Shreve et al., 2011). Accuracy, expressed by Equation 1, represents the 

proportion of correctly classified samples out of the total number of samples. Precision 

(equation 2) assesses the alignment between data labels and the positive labels predicted by the 

classifier. Recall, or sensitivity (equation 3), indicates how effectively the classifier identifies 

positive labels. Finally, the F1-score (equation 4) is the harmonic mean of recall and precision, 

providing a balanced measure of the that considers both false positives and false negatives in a 

classification model. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

Eq. 1 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Eq. 2 

𝑅𝑒𝑐𝑎𝑙𝑙 =
 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Eq. 3 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ·
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

Eq. 4 

 

3. Results and Discussion 

Figure 2 presents the distribution of injury severity, comparing fatal and non-fatal injuries over 

the years from 2016 to 2024, with the 2024 data covering the period until May. In 2016, the 

frequency of fatal injuries is relatively high, with around 225 incidents. This trend continues to 

rise, peaking in 2018 when the number of fatal injuries reaches nearly 250. However, after 

2019, there is a noticeable decline in fatal injuries. By 2023 and the early months of 2024, the 

frequency of fatal injuries sharply decreases. On the other hand, non-fatal injuries exhibit a 

more stable pattern from 2016 to 2020. In 2018, non-fatal injuries peak slightly above 110, 

before beginning to decline. The reduction becomes more noticeable after 2021, following a 

downward trajectory similar to fatal injuries.  

By 2023, and up until May 2024, the frequency of non-fatal injuries has drastically 

decreased. The trends in both fatal and non-fatal injuries suggest a significant improvement in 

safety measures or preventive strategies after 2020. The earlier and more gradual decline in 

fatal injuries begins in 2019, while non-fatal injuries show a sharper decrease starting in 2021. 

The data for 2024, though incomplete, already indicates a continuation of this downward trend, 

with both fatal and non-fatal injury frequencies approaching zero. This suggests that, by mid-

2024, substantial progress has been made in reducing injury rates, likely due to enhanced 

interventions or safety regulations. 
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Figure 2. The distribution of injury severity categories over the years from 2016 to 2024 

 

Table 5 presents the confusion matrices for six linear machine learning models—NB, DT, 

KNN, MLP, SGD, and SVM—used to predict injury severity in agriculture. The matrices 

provide insight into the models' abilities to classify injuries as 'Fatal' or 'Non-Fatal', 

highlighting varying levels of accuracy across the models. The NB model shows a pronounced 

tendency to classify most cases as 'Fatal', resulting in a high sensitivity (98.82% correct 

classification of actual 'Fatal' cases) but poor specificity, as evidenced by the 94.44% 

misclassification of 'Non-Fatal' cases.  

In contrast, DT and KNN provide more balanced results, though they still misclassify a 

significant number of 'Non-Fatal' cases as 'Fatal'. The MLP model performs similarly to KNN, 

displaying moderate classification capabilities for both categories. Notably, SGD exhibits 

severe bias, classifying all cases as 'Fatal', leading to zero specificity and raising concerns about 

its utility in applications where identifying 'Non-Fatal' cases is crucial. SVM offers a balanced 

performance, akin to KNN and MLP, with a reasonable trade-off between sensitivity and 

specificity.  

This lower performance for 'Non-Fatal' predictions can largely be attributed to the issue of 

data imbalance, which biases model estimations toward the majority class. This finding aligns 

with intuition and is consistent with observations reported in the literature (Jamal et al., 2021; 

Jiang et al., 2022). In this dataset, 'Fatal' injuries likely constitute the majority class, leading 

the models to skew their predictions toward this category. As a result, the models provide 

biased estimations that favor the majority class, sacrificing specificity in identifying 'Non-Fatal' 

injuries. This imbalance impacts the models' ability to generalize effectively across both 

categories, underscoring the importance of addressing class distribution in training data to 

enhance model performance, particularly for the minority class. 

In Table 6, the performance of linear machine learning models is evaluated using key 

metrics such as accuracy, precision, recall, and F1-score. These metrics provide a 

comprehensive assessment of each model's ability to predict injury severity in agriculture. 
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Accuracy measures the overall correctness of predictions, precision focuses on the model's 

ability to minimize false positives, recall highlights the model's sensitivity to true positives, 

and F1-score balances precision and recall, particularly useful when dealing with imbalanced 

datasets. Together, these metrics illustrate each model's strengths and trade-offs between 

identifying true positives and avoiding false positives.  

 

Table 5. Confusion Matrix for All Linear ML Methods 

Model Actual 

Class 

 Predicted Class 

 Non-Fatal Fatal 

NB Non-Fatal  8 (5.56%) 136 (94.44%) 

Fatal   4 (1.18%) 337 (98.82%) 

DT Non-Fatal  38 (26.39%) 106 (73.61%) 

Fatal  41 (12.02%) 300 (87.97%) 

KNN Non-Fatal   20 (13.89%) 124 (86.11%) 

Fatal   17 (4.98%) 324 (95.02%) 

MLP Non-Fatal  18 (12.50%) 126 (87.50%) 

Fatal   19 (5.57%) 322 (94.43%) 

SGD Non-Fatal   0 (0.00%) 144 (100.00%) 

Fatal   0 (0.00%) 341 (100.00%) 

SVM Non-Fatal   19 (13.19%) 125 (86.81%) 

Fatal   17 (4.98%) 324 (95.02%) 

 

Comparing the models, the NB model shows the highest recall (99%), making it highly 

sensitive to positive cases, though its precision (70%) and F1-score (61%) reflect some trade-

off in false positives. The DT model performs the weakest overall, with lower metrics across 

the board, including an accuracy of 69.7% and F1-score of 66%. KNN achieves a strong 

balance with high recall (95%) and accuracy (71%), though its precision (67%) is slightly 

lower. MLP model performs similarly to KNN, with strong recall (94%) but slightly lower 

precision (65%) and F1-score (63%).  

 

Table 6. Performance Metrics for all Linear ML Models 

Model Accuracy Precision Recall F1-Score 

NB 0.711 0.698 0.988 0.613 

DT 0.697 0.662 0.879 0.660 

KNN 0.711 0.674 0.953 0.644 

MLP 0.701 0.650 0.944 0.633 

SGD 0.703 0.494 1.000 0.580 

SVM 0.707 0.664 0.950 0.639 

 

The SGD model, despite its perfect Recall (100%), suffers from very low precision (49%), 

indicating many false positives and a lower F1-score (58%). Lastly, the SVM offers a good 

overall balance with high recall (95%), moderate precision (66%), and an accuracy of 70.7%, 

making it one of the better-performing models in the table. In summary, KNN and SVM offer 
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a balanced performance, while models such as NB and SGD excel in recall but face challenges 

with precision. This comparative evaluation provides valuable insights into each model's 

predictive capabilities and highlights the trade-offs between sensitivity and precision in 

predicting injury severity in agricultural settings. 

Table 7 presents the confusion matrices for various ensemble machine learning models 

applied to predict injury severity in agriculture, categorized into Non-Fatal and Fatal outcomes. 

The table highlights the classification performance of Bagging, Boosting, Stacking, and Voting 

ensemble methods by summarizing the true positives (TP), true negatives (TN), false positives 

(FP), and false negatives (FN) for each model. Across all models, there is a noticeable trend of 

high accuracy in predicting Fatal cases, with most models achieving TP rates exceeding 93%. 

However, challenges persist in correctly identifying Non-Fatal cases, as indicated by the 

consistently high FN rates, ranging from 81.25% to 100% for certain configurations.  

The Bagging model, specifically Random Forest (RF), demonstrates robust performance in 

Fatal predictions, achieving a TP rate of 96.77%. However, it struggles with Non-Fatal 

predictions, misclassifying 86.81% of actual Non-Fatal cases as Fatal, indicating a strong bias 

towards the dominant class. Boosting models, including Gradient Boosting (GB), XGBoost 

(XGB), and AdaBoost, exhibit similar trends. Among these, XGB achieves the highest TP rate 

of 96.48% for Fatal cases, while GB demonstrates a slightly better balance with a lower FN 

rate for Non-Fatal predictions (83.33%). Conversely, LightGBM, although achieving 100% 

accuracy for Fatal cases, completely fails to classify Non-Fatal outcomes correctly, suggesting 

extreme sensitivity to the class imbalance in the dataset. 

In this work, the stacking model was developed using DT algorithm as a meta learning 

model due to its ability to capture complex, non-linear relationships between diverse base 

learner predictions. Additionally, DTs are robust to noisy or conflicting base model predictions, 

providing more stable and accurate final classifications. Models with the highest accuracy score 

were chosen and paired with a DT and based on the results obtained we realized that combining 

a strong model with DT increases its accuracy value Stacking models combine predictions from 

multiple base models, yielding varied results based on the chosen configuration. The stacking 

model S#3 (DT+NB) stands out, achieving the highest TP rate for Fatal cases (98.83%) while 

also maintaining the lowest FN rate for Non-Fatal cases (95.14%). This indicates its superior 

ability to balance predictions across both classes. In contrast, more complex configurations, 

such as S#4 (DT+SVM+SGD+NB), although achieving high accuracy for Fatal cases 

(93.84%), show reduced performance for Non-Fatal predictions, with an FN rate of 81.25%. 

Voting ensembles, which aggregate predictions through majority or weighted voting, show 

varied effectiveness depending on the model combination. V#5 (SGD+SVM+DT) and V#3 

(DT+KNN+NB) demonstrate the most balanced performance, achieving TP rates of 98.83% 

and 96.72%, respectively, for Fatal cases while maintaining relatively low FN rates for Non-

Fatal predictions. However, other configurations, such as V#1 (DT+KNN+MLP+SGD+NB), 

prioritize Fatal predictions, achieving a TP rate of 97.07% but at the expense of higher FN rates 

for Non-Fatal outcomes (91.67%). This suggests that ensemble learning methods, particularly 

boosting and voting strategies, in accurately identifying high-severity Fatal injuries. However, 

the elevated FN rates for Non-Fatal cases across most models point to the need for further 

optimization to address class imbalance. These findings highlight the potential of ensemble 
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models while emphasizing the require further tuning to improve precision in critical 

agricultural injury prediction scenarios. 

 

Table 7 Confusion Matrix for All Ensemble ML Models 

Ensemble Model Actual Class  Predicted Class 

    Non-Fatal Fatal  

Bagging RF Non-Fatal  19 (13.19%) 125 (86.81%) 

Fatal  11 (3.23%) 330 (96.77%) 

DF 

 

Non-Fatal  23 (15.97%) 121 (84.03%) 

Fatal  18 (5.28%) 323 (94.72%) 

Boosting GB Non-Fatal  24 (16.67%) 120 (83.33%) 

Fatal  17 (4.99%) 324 (95.01%) 

XGB Non-Fatal  16 (11.11%) 128 (88.89%) 

Fatal  12 (3.52%) 329 (96.48%) 

Adaboost Non-Fatal  18 (12.50%) 126 (87.50%) 

Fatal  13 (3.81%) 328 (96.19%) 

LightGBM Non-Fatal  0 (0.00%) 144 (100%) 

Fatal  0 (0.00%) 341 (100%) 

Stacking S#1 (DT+KNN+NB) Non-Fatal  25 (17.36%) 119 (82.64%) 

Fatal  22 (6.45%) 319 (93.55%) 

S#2 (DT+MLP+NB) Non-Fatal  11 (7.64%) 133 (92.36%) 

Fatal  16 (4.69%) 325 (95.31%) 

S#3 (DT+NB)  Non-Fatal  7 (4.86%) 137 (95.14%) 

Fatal  4 (1.17%) 337 (98.83%) 

S#4 (DT+SVM+SGD+NB) Non-Fatal  27 (18.75%) 117 (81.25%) 

Fatal  21 (6.16%) 320 (93.84%) 

Voting V#1 (DT+KNN+MLP+SGD+NB) Non-Fatal  12 (8.33%) 132 (91.67%) 

Fatal  10 (2.93%) 331 (97.07%) 

V#2 (DT+KNN+MLP) Non-Fatal  16 (11.11%) 128 (88.89%) 

Fatal  13 (3.81%) 328 (96.19%) 

V#3 (DT+KNN+NB)  Non-Fatal  15 (10.42%) 129 (89.58%) 

Fatal  11 (3.23%) 330 (96.72%) 

V#4 (NB+MLP+SVM) Non-Fatal  18 (12.50%) 126 (87.50%) 

Fatal  17 (4.99%) 324 (95.01%) 

V#5 (SGD+SVM+DT) Non-Fatal  7 (4.86%) 137 (95.14%) 

Fatal  4 (1.17%) 337 (98.83%) 

 

Table 8 shows a comprehensive analysis of performance metrics across various ensemble 

ML models, including bagging, boosting, stacking, and voting approaches. Among the bagging 

models, RF performs best with an accuracy of 72%, high recall (99%), and moderate precision 

(76%), reflecting its strong ability to identify Fatal cases. However, DF, while achieving a 

similar recall (97%), shows lower precision (67%), indicating a higher rate of false positives 

and reduced overall balance compared to RF. For boosting models, AdaBoost achieves the 

highest accuracy (71%) and F1-score (64%) in its category, demonstrating a good balance 

between precision (68%) and recall (96%).  
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GB follows closely with comparable accuracy (71%) and a slightly higher F1-score (66%), 

although it exhibits slightly lower precision (67%). XGB and LightGBM exhibit perfect recall 

(100%), excelling in identifying Fatal cases. However, their precision values (48% and 49%, 

respectively) are significantly lower, resulting in compromised F1-scores of 57% and 58%. 

These results highlight that while XGB and LightGBM are sensitive to Fatal cases, they 

frequently misclassify non-fatal cases, reflecting an imbalance in their predictions. 

Stacking ensemble models present more varied performance. Stacking configuration S#4 

achieves the highest accuracy (71.5%) and F1-score (66%) in this category, with balanced 

precision (68%) and recall (94%), making it the most robust stacking approach. S#3 shows the 

highest recall (99%) among stacking models, indicating strong sensitivity to Fatal outcomes, 

but its moderate precision (69%) results in a lower F1-score (61%). S#2 delivers the weakest 

performance with an accuracy of 69% and F1-score of 61%, indicating limited predictive 

capability in this configuration. 

 

Table 8. Performance Metrics for All Ensemble ML Models 

Ensemble Model Accuracy Precision Recall F1-Score 

Bagging RF 0.715 0.759 0.986 0.621 

DF 0.707 0.665 0.973 0.619 

Boosting GB 0.709 0.670 0.933 0.655 

XGB 0.714 0.477 1.000 0.565 

Adaboost  0.713 0.680 0.962 0.641 

LightGBM 0.703 0.494 1.000 0.580 

Stacking S#1 (DT+KNN+NB) 0.709 0.669 0.935 0.653 

S#2 (DT+MLP+NB) 0.692 0.619 0.953 0.610 

S#3 (DT+NB) 0.709 0.688 0.988 0.608 

S#4 (DT+SVM+SGD+NB) 0.715 0.681 0.938 0.661 

Voting V#1 (DT+KNN+MLP+SGD+NB) 0.707 0.664 0.970 0.621 

V#2 (DT+KNN+MLP) 0.709 0.669 0.961 0.633 

V#3 (DT+KNN+NB)  0.711 0.676 0.967 0.632 

V#4 (NB+MLP+SVM) 0.705 0.658 0.950 0.635 

V#5 (SGD+SVM+DT) 0.709 0.688 0.988 0.608 

 

Voting ensemble models demonstrate consistent performance, with accuracy ranging from 

70% to 71%. Among these, V#3 and V#4 configurations achieve balanced precision (68% and 

66%, respectively) and recall (98% and 95%), resulting in F1-scores of 63% and 64%. V#5 

shows the highest recall (99%) but achieves only moderate precision (69%), leading to an F1-

score of 61%. These results indicate that while voting ensembles effectively predict Fatal cases, 

their ability to correctly identify Non-Fatal cases vary depending on the model combination. 

This suggests that while ensemble ML models are highly effective in identifying Fatal injury 

outcomes, their performance in classifying Non-Fatal cases remains a challenge due to 

imbalanced precision and recall. This highlights the need for further optimization, such as 

incorporating cost-sensitive learning, class balancing techniques, or domain-specific feature 

engineering, to enhance their predictive balance. These findings emphasize the importance of 
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selecting and fine-tuning ensemble configurations to achieve a more equitable balance between 

sensitivity and specificity in injury severity prediction. 

Shapley Additive exPlanations (SHAP) values are used to decode the "black box" behind 

machine learning models by assigning interpretability to their predictions. Derived from game 

theory, SHAP values distribute a model’s prediction by evaluating each feature’s contribution 

to the outcome. This is achieved by calculating the average contribution of a feature across all 

possible combinations of inputs, including the impact of removing that feature. Through this 

method, we gain insight into the relative importance of input features in determining 

predictions.  

In this study, we utilized the SHAP values to analyze the contributions of input features 

within various ML models for predicting agricultural injury severity. Both TreeSHAP and 

KernelSHAP can be used to estimate the SHAP values in each model. These functions allow 

us to generate bar plots and bee swarm plots of the effect of different features on the output for 

each data point. The relative importance values (i.e., the mean |SHAP| value) provide insights 

into the contribution of each feature to the model's predictions, enabling us to understand the 

driving factors behind the predictions. Table 9 highlights the mean SHAP values for the top 

five features in each model, illustrating their relative importance. The higher the SHAP value 

for a feature, the more it influences the model's prediction.  

The results indicate notable variations in feature importance across the evaluated models. 

NB emphasizes Gender and Time as the most significant predictors, highlighting the 

importance of demographic and temporal factors, while DT assigns significant weight to State, 

followed by Age, Location, Gender, suggesting the influence of geographical and demographic 

factors. The KNN model focuses on Location and Gender, emphasizing spatial and 

demographic features, while the MLP demonstrates a relatively balanced distribution, with 

Time, Age, and Gender as the top contributors.  

Linear models like SGD and SVM show lower overall SHAP values, with SGD relying on 

Location and Agent and SVM emphasizing Gender and State. Tree-based ensemble models 

such as RF and DF place higher importance on Time, Age and Gender, reflecting their 

sensitivity to demographic and temporal factors. Boosting algorithms, including GB, XGB, and 

LightGBM, consistently prioritize Age and Gender, with GB and XGB assigning the highest 

SHAP values to these features. AdaBoost, while more evenly distributed, also emphasizes 

Gender and Seatbelt as the primary contributors. 

Across all models, Age, Gender, Time, and Location emerge as consistent predictors of 

agricultural injury severity, underscoring their universal relevance. Ensemble models like GB 

and XGB exhibit the strongest emphasis on these features, while linear models like SGD show 

a weaker influence. The integration of SHAP values provides critical insights into the 

interpretability of these models, enabling a better understanding of how individual features 

drive predictions, which is essential for practical application in agricultural safety initiatives. 

SHAP provides both the direction and magnitude of feature contributions to prediction 

results, offering a transparent way to interpret machine learning models. Figure 3 illustrates 

SHAP summary plots for the KNN and XGB models, showing the relative effect of each input 

feature on the models’ predictions. In these plots, the input features are sorted by their SHAP 

values, with the most impactful features appearing at the top. Each dot represents a SHAP value 

for a specific prediction, plotted along the x-axis to indicate the contribution of the feature to 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 7, 2025. ; https://doi.org/10.1101/2025.02.05.25321769doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.05.25321769
http://creativecommons.org/licenses/by/4.0/


the model's output. The color of the dots represents the actual observed values of the features, 

ranging from high (red) to low (blue).  

 

Table 9. SHAP Values for Individual Ensemble and Linear ML Models 

ML Model Input Features (mean|SHAP|) 

NB 
Seatbelt 

(0.035) 

Gender 

(0.055) 

Location 

(0.008) 

Injury Agent 

(0.007) 

Time  

(0.05) 

DT 
Age  

(0.141) 

Location 

(0.100) 

Gender  

(0.080) 

Time 

(0.070) 

State 

 (0.370) 

KNN 
Location 

(0.062) 

Gender 

(0.060) 

Age  

(0.050) 

State 

 (0.045) 

Time  

(0.035) 

MLP 
Time  

(0.065) 

Age 

(0.049) 

Gender 

(0.048) 

Location 

(0.045) 

Seatbelt 

(0.026) 

SGD 
Location 

(0.014) 

Agent 

(0.006) 

Gender 

(0.0059) 

State 

(0.0025) 

Age  

(0.001) 

SVM 
Gender 

(0.08) 

State 

(0.03) 

Seatbelt  

(0.027) 

Time  

(0.025) 

Age 

(0.024) 

RF 
Age  

(0.135) 

Location  

(0.10) 

Agent 

(0.085) 

State 

(0.082) 

Time 

(0.080) 

DF 
Gender 

(0.060) 

Age 

 (0.048) 

State 

(0.036) 

Time 

(0.034) 

Location 

(0.032) 

GB 
Age  

(0.25) 

Gender  

(0.14) 

Time 

(0.13) 

Location  

(0.11) 

Agent  

(0.10) 

XGB 
Age  

(0.22) 

Agent 

(0.125) 

Location 

(0.117) 

Gender  

(0.100) 

Time 

(0.095) 

LGBM 
Age  

(0.13) 

Location 

(0.078) 

Gender 

(0.072) 

Time  

(0.02) 

Seatbelt 

(0.019) 

Adaboost 
Gender 

(0.042) 

Seatbelt 

(0.030) 

Location 

 (0.027) 

Age  

(0.026) 

Time 

(0.017) 

 

As shown in Figure 3, the Location of the incident emerges as the most influential feature 

in both models. Higher values of this feature, such as incidents occurring in roadways, result 

in lower SHAP values, corresponding to a negative impact on the model’s prediction. This 

aligns with the observation that rural and farmland environments are more prone to severe 

accidents due to unique risk factors associated with agricultural activities (Aboulola et al., 

2024). The next significant feature is Gender, with lower values (indicating male individuals) 

contributing more strongly to predictions of severe injuries. This finding aligns with studies 

showing that male individuals are generally at higher risk due to behavioral factors such as 

increased risk-taking tendencies (Bener & Crundall, 2008).  

Another critical feature is Age, which shows a positive correlation with injury severity. As 

age increases, the SHAP values indicate a stronger contribution to the likelihood of severe 

injuries, consistent with research suggesting that older individuals are more vulnerable to 

severe outcomes in accidents (Tavris et al., 2001). Overall, the SHAP summary plots provide 
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an interpretable and actionable explanation of the KNN and XGB models, emphasizing the 

importance of demographic, environmental, and situational factors in predicting agricultural 

injury severity. These insights are critical for designing targeted interventions and enhancing 

safety strategies in high-risk agricultural environments. 

 

 

 
Figure 3. Beeswarm plot of SHAP value of features and impact on the model output for (a) 

KNN and (b) XGB 

 

4. Conclusion 

This study demonstrated the potential of machine learning models, particularly ensemble 

methods, in predicting the severity of agricultural injuries and uncovering critical contributing 

factors using explainable artificial intelligence. By utilizing a dataset from AgInjuryNews 

(2015–2024), covering 2,421 incidents for all over the US, and examining various ML 

algorithms, we provided a comprehensive evaluation of predictive performance and feature 

importance. Ensemble models, including Random Forest, XGBoost, and LightGBM, 
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consistently outperformed ensemble ML models in terms of accuracy and recall, with XGBoost 

achieving a perfect recall for fatal injuries.  

While ensemble models provided the highest accuracy, their computational cost was higher 

compared to simpler models like Naïve Bayes, KNN and Decision Trees. This trade-off 

between model complexity and performance suggests that the choice of model should be 

aligned with the specific needs of the application, whether real-time prediction or post-incident 

analysis. However, challenges in classifying non-fatal injuries due to class imbalance were 

observed across all models, indicating the need for further optimization in data preprocessing 

and model training strategies. 

SHAP analysis revealed that age, gender, location, and time were the most influential 

features across models, offering interpretable insights into the factors driving agricultural 

injury severity predictions. The findings align with previous studies highlighting the role of 

demographic and environmental variables in injury outcomes. This transparency not only 

enhances model interpretability but also aids stakeholders in prioritizing interventions, such as 

targeted safety training for older workers, male operators, or specific locations with high injury 

rates. 

Despite these advances, the study underscores several limitations, including the manual 

effort required for data extraction, the need for a more balanced dataset, and the black-box 

nature of certain ensemble models. Future work should focus on developing automated data 

extraction systems, incorporating cost-sensitive learning techniques to mitigate class 

imbalance, and exploring domain-specific feature engineering to improve model performance 

further. 

The practical implications of this research are significant. By combining high-performance 

predictive models with explainable AI, stakeholders in agricultural safety can better understand 

injury risk factors, design effective preventive strategies, and allocate resources more 

efficiently. This study serves as a foundation for integrating advanced ML techniques into 

agricultural safety practices, ultimately contributing to reducing injury rates and enhancing the 

well-being of agricultural workers. 
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