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Abstract 

Background  

The growing use of whole exome/genome sequencing for diagnosing hereditary diseases 

has increased the interpretive workload for clinical laboratories. Efficient methods are 

needed to identify pathogenic variants and maximize diagnostic yield without overwhelming 

resources. 

Methods  

We developed DiagAI, an AI-powered system trained on 2.5 million ClinVar variants to 

predict ACMG pathogenicity classes. DiagAI ranks variants, proposes diagnostic shortlists, 

and identifies probands likely to receive molecular diagnoses. It integrates molecular 

features, inheritance patterns, and phenotypic data when available. We retrospectively 

analyzed 966 exomes from a nephrology cohort, including 196 with causal variants and 770 

undiagnosed cases. 

Results   

DiagAI identified 94.9% of causal variants in diagnostic exomes with HPO terms, compared 

to 90.8% without, with median shortlist sizes of 12 and 9 variants, respectively. It achieved a 

sensitivity of 57.1% and a specificity of 92.6% in tagging exomes likely to contain a 

diagnostic variant. With HPO terms, 74% of top-ranked (top 1) variants were diagnostic, 

versus 42% without, and DiagAI outperformed Exomiser and AIMARRVEL in this setting. 

Conclusion  

DiagAI generates accurate shortlists of variants that streamline the variant interpretation 

process. It provides a scalable solution for managing growing diagnostic test volumes 

without compromising quality. 
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Introduction 
 
Hereditary diseases are a significant health concern worldwide, and exome sequencing (ES) 

and whole genome sequencing (WGS) have become essential for their diagnosis1,2. Efficient 

genomic variant interpretation is a critical step in clinical genomics3.  

 

To provide a molecular diagnosis, a large number of variants detected by high throughput 

sequencing needs to be interpreted. The American College of Medical Genetics and 

Genomics (ACMG) offers standardized guidelines for variant classification, grouping variants 

into five categories: pathogenic, likely pathogenic, uncertain significance, likely benign, and 

benign. However, these guidelines can lead to discordant classifications among laboratories 

for a given variant4 due to the absence of an universal algorithm or precisely defined 

numerical thresholds, although updated recommendations proposed more quantitative 

criteria for pathogenicity classification5. 

 

To address these challenges, artificial intelligence (AI) has emerged as a promising solution. 

Several studies have demonstrated AI’s potential to improve the efficiency of variant 

interpretation workflows, reduce analysis times, and alleviate the human workload6–9. 

 

We have developed DiagAI, a commercially available AI-powered system designed to 

predict ACMG variant classifications and prioritize the most likely causal variants. DiagAI 

relies on a classifier trained on 2.5 million variants annotated in ClinVar10. It integrates expert 

knowledge, curated datasets, and machine learning models to comprehensively analyze 

genomics data. Furthermore, when phenotypic information coded with Human Phenotype 

Ontology (HPO) terms is available, DiagAI upweights genes associated with reported 

phenotypes to enhance diagnostic precision. 

 

To evaluate the performance of DiagAI, we conducted a retrospective analysis of 966 

exomes from patients admitted to an adult nephrology unit. DiagAI successfully shortlisted 

diagnostic variants in 94.9% of cases when phenotypic information, encoded with HPO 

terms, was included. In comparison, the success rate was 90.8% when HPO terms were not 

included. The average shortlist contained 9 variants when using HPO terms and 12 variants 

without them. 

 

Materials and Methods 
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Study design 

To validate DiagAI, we conducted a retrospective analysis from exome sequencing (ES) data 

generated from adult participants (n=966) with nephropathy of unknown origin, sequenced 

from March 2018 to July 2022 (Supplemental Table 1). Of these, 196 (24%) were considered 

positive cases, defined as containing a causal variant previously identified by a geneticist. 

The remaining 770 (76%) were considered negative cases, where no diagnosis could be 

established by a geneticist based on the exome sequencing data. 

Exome sequencing 

DNA was extracted from peripheral blood using the QIAsymphony DSP DNA Mini Kit on a 

QIAsymphony instrument following the manufacturer's (QIAGEN) guidelines. Library 

preparation and capture was performed with Twist reagents (Human Comprehensive Exome 

or Human Exome 2.0 Plus Comprehensive Exome Spike-in). Sequencing was performed on 

the Illumina NovaSeq6000 in paired-end mode (2×150 bp reads). Raw data (bcl format) 

were converted to fastq format using BCL Convert. Reads were aligned to the human 

reference genome (UCSC Genome Browser build hg37) with Burrows-Wheeler Aligner for 

maximal exact matches aligner. Calling was performed with an internal procedure, the 

GermVar pipeline, of SeqOne Genomics.  

The GermVar pipeline implements a comprehensive variant detection strategy utilizing 

multiple variant calling algorithms. For panel-based analyses, the pipeline integrates 

Freebayes, GATK, GRIDSS, AluMEI, and GATK-Mutect2-Mitochondrial (versions ≥2.0), 

whereas exome analysis employs Freebayes, GRIDSS, AluMEI, and 

GATK-Mutect2-Mitochondrial. This strategic combination of callers enables robust detection 

of various variant types, including single nucleotide variants (SNVs), multiple nucleotide 

variants (MNVs), and insertions/deletions (indels). 

Detection sensitivity parameters are optimized according to the analysis type. In 

panel-based analyses, the Freebayes algorithm is configured to detect variants with allele 

frequencies ≥5%, while exome analysis maintains a more stringent threshold of ≥10% for 

SNVs. Notably, GRIDSS, AluMEI, and GATK operate independently of variant allele 

frequency thresholds for small variant detection, allowing for maximum sensitivity in 

structural variant identification.. 
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DiagAI priorisation algorithm 

SeqOne DiagAI is a suite of tools that prioritizes genetic variants (both SNVs and indels) 

using molecular and phenotypic information. 

 

A molecular pathogenicity score UP2 (Universal Pathogenicity Predictor) is computed using a 

machine-learning classifier that predicts the ACMG class for each variant observed in the 

sequencing data. The training dataset for the classifier comprised 2.5 millions variants from 

ClinVar, labeled according to the five ACMG pathogenicity categories. Each variant is 

represented by 72 molecular features derived from various evidence sources and related to 

the ACMG criteria (PVS1, PS1, etc.). The feature values were calculated using information 

from several databases including ClinVar for variant annotations and interpretations, 

Gnomad v4.1 for population frequencies and constraint metrics, dbNSFP dbscSNV for in 

silico predictors, CI-SpliceAI for in silico splice prediction11, VEP transcript annotations and 

effect prediction12, and RepeatMasker for the distance to repetitive genomic regions (related 

to the PM4 criterion). 

 

A comprehensive prioritization score, referred to as the DiagAI score, was built upon the UP2 

molecular score by incorporating additional contextual information when available. This 

includes phenotypic data, variant inheritance mode consistency from databases such as 

PanelApp13, OMIM, and MedGen, variant calling data (DP, AO, VAF) and quality (base 

quality phred score), and parental variant data in cases where trio sequencing was 

performed. Phenotypic information was incorporated using HPO terms, with gene 

prioritization performed by Phenogenius, a tool that leverages gene-HPO term associations 

from literature-based matrices14. To effectively integrate ACMG-related molecular features 

with HPO-based phenotypic features, a machine learning regression model was trained 

using a dataset of 307 diagnosed exomes from multiple cohorts, encompassing a total of 26 

million variants.  

 

To build a shortlist of variants most likely to be causal, two thresholds—one for the molecular 

UP2 score and another for the comprehensive DiagAI score—were applied to define the 

shortlist. The DiagAI threshold values varied depending on whether HPO terms were 

incorporated. A third threshold was applied to discard variants with a frequency above 1.5% 

in the phenotypically matched cohort. 

In addition to generating a shortlist of variants, DiagAI identifies exomes or genomes most 

likely to result in a molecular diagnosis. An exome is tagged only if it contains at least one 
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variant, referred to as a 'smartpick,' with both DiagAI and UP2 scores exceeding predefined 

thresholds. While a shortlist is generated for every exome or genome, only some are tagged 

as likely to lead to a molecular diagnosis, while others remain untagged. 

Interpretability features 

To assess the relative importance of different ACMG criteria in our classification model, we 

calculated Shapley values for all 72 features used in the molecular pathogenicity score. 

These Shapley values were then aggregated in order to be mapped to the known ACMG 

criteria. This approach allowed us to quantify the contribution of each ACMG tag to the 

molecular UP2 score, providing insight into which criteria were most influential in determining 

variant pathogenicity according to our model. To calculate a Shapley value for each ACMG 

criterion, we sum the Shapley values of all features associated with that specific criterion. 

Evaluation of performance 

To benchmark the performance of DiagAI, we compared its ranking performance to 

AI-MARRVEL and Exomiser (v13), which prioritizes genes or variants  by leveraging 

information on variant frequency, predicted pathogenicity, inheritance modes, and 

gene-phenotype association 6,15.  

Exomiser13 was run using default pathogenicity sources MVP and REVEL, and 

failedVariantFilter, inheritanceFilter, frequencyFilter and pathogenicityFilter with the 

keepNonPathogenic option set to true. After filtering the OmimPrioritizer and 

hiPhivePrioritizer steps were used. AI-MARRVEL ran with the lite version, and no access to 

the HGMD resource. Because DiagAI uses in its scoring a filter profile based on quality, 

variant allele frequency, depth and number of observed alternate alleles, we applied the 

same filtering prior to the run of Exomiser13 and AI-MARRVEL. We evaluated the rankings 

at the gene level. For Exomiser13 we used the gene ranks from the json output file. For both 

DiagAI and AI-MARRVEL genes were ranked based on the highest-priority variant among all 

their associated variants. 

 

Results 

Proportion of Causal Variants Identified in Shortlists 

For exomes with a confirmed molecular diagnosis, 94.9% (186/196) of causal variants were 

contained in the shortlist when HPO terms were used, compared to 90.8% (176/196) when 
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HPO terms were not used. The median shortlist size was 9 variants when HPO terms were 

not used (min=2, max=44) and 12 variants when HPO terms were used (min=4, max=29). 

Sensitivity and Specificity of DiagAI in Diagnosing Exomes 

DiagAI demonstrated a sensitivity of 57.1% (112/196) in tagging probands likely to result in a 

molecular diagnosis. Among 770 exomes that did not result in a diagnosis, DiagAI correctly 

excluded 713 exomes while incorrectly tagging 57 as likely diagnosable. This corresponds to 

a specificity of 92.6%. 

Variant ranking 

We compared DiagAI's variant ranking accuracy with and without utilizing HPO-based 

clinical information (Figure 1) on the 196 exomes with a confirmed diagnostic variant. 

Incorporating clinical data significantly improved the ranking accuracy for the top-ranked 

variant. Specifically, 42% of top-ranked variants were diagnostic when HPO terms were not 

included, whereas this percentage increased to 74% when HPO terms were accounted for. 

The improvement was less pronounced when considering a larger list of 20 genes, with 93% 

of diagnostic variants included without HPO terms versus 97% with HPO terms. DiagAI 

achieved improved ranking performance compared to Exomiser v13 and AI-MARRVEL when 

HPO terms were provided, and for top-ranked lists of three or more variants when HPO 

terms were not included (Figure 1). 

 

 

Figure 1: Performance of variant ranking evaluated on the 196 exomes with a 
confirmed molecular diagnosis. The ranking accuracy of top-ranked genes was assessed 

using two approaches when evaluating DiagAI: the molecular pathogenicity score alone (no 
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HPO) and a comprehensive score integrating molecular pathogenicity and HPO-based 

clinical information (with HPO).  Variants with a cohort frequency above 1.5% were excluded 

from the DiagAI ranking. Exomiser v13 and AI-MARRVEL, which also use HPO for gene 

ranking, were used for comparison. 

 

Interpretability of the classifier 

We applied our interpretability framework to identify the ACMG criteria most influential in 

determining the ACMG classifications of 176 diagnostic variants, which were identified 

across 196 exomes with a molecular diagnosis, noting that some variants were shared 

between exomes. Among the 85 diagnostic variants with ClinVar submissions, features 

related to the number of pathogenic and benign submissions were the most influential 

(Figure 2). However, for 13 variants, other ACMG criteria were more impactful, including 6 

with PP3/BP4 (in-silico predictors of pathogenicity and benignity), 5 with PVS1 (predicted 

impact by VEP), and 2 with PM2/BA1 (absent or at extremely low frequency in general 

population). 

For the 91 diagnostic variants without ClinVar submissions, PP3/BP4 features were 

instrumental for 66% (60/91) of the variants, while PVS1 features were key for 29% (26/91). 

The scores for the remaining five variants were primarily determined by a combination of 

other ACMG features. 

 

 

Figure 2: Explicability profile of the 176 diagnostic variants for the Universal Pathogenicity 

Predictor. The heatmap shows for each variant if the impact of the features related to an 

ACMG criteria is rather pathogenic (red) or benign (blue). Variants that have ClinVar 

Submissions (Panel A, left) have UPP predictions that are mostly influenced by the ClinVar 

submission predictors with an average absolute SHaP value of .86 for ClinVar predictors.  

Variants that have no ClinVar Submission (Panel B, right) have UPP predictions that are 

mostly influenced by features from PP3/BP4 or PVS1 criteria. The right side histogram 
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shows that the average absolute SHaP value is .46 for PP3/BP4 and .30 for PVS1 on the 

UP2 value for variants without ClinVar submission. The top plots show UP2  values that are 

between -1 and 1.  

Causal variants absent from the shortlists 

A total of 10 diagnostic variants were absent from the DiagAI shortlists, despite being 

considered diagnostic by the geneticists. Of these, five were classified as benign in ClinVar, 

and three were labeled as variants of uncertain significance (VUS) or had conflicting 

classifications in ClinVar, with no additional evidence supporting pathogenicity. The 

remaining two variants were missed by DiagAI due to specific limitations: one was a 

low-quality variant, and the other was located in a recessive gene without a second 

heterozygous variant with a sufficiently high DiagAI score to support a composite diagnosis. 

 

Discussion: 
 
Our study demonstrates DiagAI's effectiveness in prioritizing causal variants in exomes from 

nephrology patients, analyzed as single cases rather than trios. Depending on the availability 

of phenotypic data, 90-96% of shortlists contained the causal variant. DiagAI also 

outperformed Exomiser v13 and AI-MARRVEL in gene-level ranking comparisons. 

 

We examined some of the causal variants missed by the shortlist of DiagAI. We identified 

one variant in the PODXL gene, whose pathogenic effect has been linked to kidney 

diseases16. We also identified a variant in CFI, which dysregulates the complement 

alternative pathway. However, CFI variants are challenging to interpret; they are difficult to 

classify using ACMG criteria17, and due to their incomplete penetrance, they are often 

considered risk factors rather than causative in a Mendelian disease18. Additionally, a 

synonymous variant in NPHP3 with a splicing effect, not captured by computational 

approaches, was also overlooked19. Overall, these variants were missed by DiagAI but were 

identified as diagnostic by geneticists thanks to recent research documenting their 

pathogenicity, combined with expert knowledge of genes involved in kidney diseases. 

These cases illustrate the inherent challenges in variant interpretation, particularly for 

variants with emerging or complex pathogenic mechanisms that are not yet well captured by 

computational models. While DiagAI improves variant prioritization by leveraging multivariate 

ACMG evidence tags and machine learning trained on ClinVar ACMG classifications, it 

remains limited by the available knowledge and data used for training. By integrating diverse 
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evidence sources and phenotypic data encoded with HPO terms, DiagAI enhances variant 

ranking, but expert review remains essential for capturing novel or particularly challenging 

cases. 

 

DiagAI contributes to the growing landscape of computational solutions for variant 

prioritization, joining both open-source and commercial offerings such as AI-MARRVEL, 

InVitae MOON, Fabric GEM, and the Emedgne software from Illumina6,8,9,20. Direct 

comparisons between these tools are challenging due to differences in their evaluation 

cohorts. Nonetheless, we found that DiagAI outperformed AI-MARRVEL in gene ranking and 

demonstrated comparable performance in identifying diagnosable cases, with both tools 

automatically detecting 50–60% of such cases6. For a fair comparison, the Critical 

Assessment of Genome Interpretation (CAGI) challenge offers a standardized benchmarking 

framework; however, DiagAI has yet to be evaluated within this context. 

 

DiagAI’s accuracy in variant ranking, particularly when integrating clinical data, highlights its 

potential to streamline genomic diagnostics by reducing the number of variants requiring 

manual review. However, the path to full automation remains long, with less than 60% of 

diagnosed cases detected automatically. These findings suggest that AI-powered tools like 

DiagAI can significantly reduce the interpretive workload in clinical genomics while 

maintaining high diagnostic accuracy. This assessment should be evaluated beyond the 

specific case of nephrology and further tested in the context of whole genome sequencing 

analysis. 
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