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Abstract
Schistosomiasis currently affects over 250 million people and remains a public health
burden despite ongoing global control efforts. Conventional microscopy is a practical
tool for diagnosis and screening of Schistosoma haematobium, but identification of eggs
requires a skilled microscopist. Here we present a machine learning (ML)-based strategy
for automated detection of S. haematobium that combines two imaging contrasts,
brightfield (BF) and darkfield (DF), to improve diagnostic performance. We collected
BF and DF images of S. haematobium eggs in patient samples from two different field
studies in Côte d’Ivoire using a mobile phone-based microscope, the SchistoScope. We
then trained separate egg-detection ML models and compared the patient-level
performance of BF and DF models alone to Boolean combinations of BF and DF
models, using annotations from trained microscopists as the gold standard. We found
that models trained on DF images, and almost all BF and DF combinations, performed
significantly better than models trained on BF images only. When models were trained
on images from the first field study, patient-level classification performance for images
from the second study met the WHO Diagnostic Target Product Profile (TPP)
sensitivity and specificity for the monitoring and evaluation use case. When we used
images from both field studies for the training set, performance of the models was
improved. This work shows that multi-contrast imaging can increase information
available for classification tasks, while retaining the portability, power, and
time-to-results of the TPP’s desired diagnostic. The imaging contrasts used here require
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no additional sample preparation and do not increase the complexity of the imaging
system, and we used off-the-shelf ML models to simplify software engineering.
Multi-contrast machine learning offers a practical means to improve performance of
automated diagnostics for S. haematobium, one that could be applied to other
microscopy-based diagnostics.

Author summary
Schistosomiasis is a neglected tropical disease that impacts hundreds of millions of
people worldwide. Patients with Schistosoma haematobium shed parasite eggs in their
urine, which can be used as a diagnostic marker of disease. However, identification of
those eggs in patient samples normally requires a microscope and trained microscopist.
In this work, we show that machine learning models trained on two imaging contrasts,
brightfield and darkfield, can improve performance of automated schistosomiasis
diagnosis. Using a mobile phone-based microscope (the SchistoScope), we captured
brightfield and darkfield images of patient samples during two visits to Côte d’Ivoire
and then trained models to detect eggs in the brightfield and darkfield images. When
training on images from one visit and testing on images from the other visit, we find
that combining the brightfield and darkfield model outputs improved the diagnostic
sensitivity and specificity compared to brightfield alone, meeting the target metrics for
monitoring and evaluation of schistosomiasis control programs outlined by the World
Health Organization. This use of multi-contrast machine learning with a mobile
microscope has the potential to improve diagnostic testing for schistosomiasis and could
be extended to other neglected tropical diseases.

Introduction 1

Schistosomiasis is a neglected tropical disease (NTD) caused by parasitic flatworms that 2

affects more than 250 million people worldwide, with an estimated 800 million people at 3

risk of contracting the disease [1–5]. Schistosoma haematobium is one of the main 4

Schistosoma species responsible for the disease’s morbidity and mortality. The lack of 5

rapid, portable, and accurate diagnostic tools hinders infection control and elimination 6

efforts in endemic regions. 7

The standard diagnostic strategy for S. haematobium is detection of parasite eggs in 8

urine samples. This method typically involves urine filtration or centrifugation, followed 9

by examination of the sample by a trained expert using light microscopy. These 10

methods are time-consuming and require infrastructure and personnel that are often not 11

available in resource-limited endemic regions. The World Health Organization (WHO) 12

has identified the need for novel diagnostic tools that enable monitoring and evaluation 13

of Schistosomiasis control programs through their Diagnostic Target Product Profiles 14

(TPP) [6]. Ideally, these tools should be portable, use battery-powered equipment, and 15

require minimal training for field workers. Additionally, the amount of time for sample 16

collection, processing, and data interpretation should be less than a working day. 17

One strategy to facilitate diagnosis of S. haematobium and other helminths at the 18

point-of-care is to use portable platforms to image and automatically analyze patient 19

samples. Several groups have developed novel imaging systems that, in combination 20

with machine learning (ML) for image analysis, can be used to identify parasite eggs 21

from urine and stool samples acquired in field settings [7–14]. These devices typically 22

use standard objective lenses and require the use of a computer and mains power. 23

Additionally, imaging and sample processing times can be long (25-90 minutes) [10,12] 24

and typically require the samples to be transported to local laboratories for 25
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analysis [9, 11]. ML algorithms for patient-level diagnosis with high-resolution imaging 26

have shown a range of success from 83-96.3% sensitivity and 77-99% specificity, 27

approaching or exceeding the WHO target performance [8, 9, 11,15]. 28

While existing devices are useful and in some cases meet the WHO TPP sensitivity 29

and specificity criteria, some may be difficult to use for point-of-care detection of 30

schistosomiasis in remote field locations. Their dependence on mains power and bulky 31

hardware are such that they do not meet the requirements for infrastructure, portability 32

and instrumentation outlined in the TPP. Low-cost microscopy with low-resolution 33

imaging is a more workable but under-explored solution for field diagnosis of S. 34

haematobium. 35

In this work, we develop a strategy that uses multi-contrast machine learning based 36

on separate brightfield (BF) and darkfield (DF) images to improve the automated 37

diagnostic performance of the SchistoScope, a mobile phone-based diagnostic platform 38

that can be used to detect S. haematobium at the point-of-care [16]. We previously 39

demonstrated that the SchistoScope, a highly portable device (< 1kg) that runs 40

independent of mains power, can be used to simplify S. haematobium sample 41

preparation and image acquisition, enabling collection of BF and DF images of patient 42

samples in under 5 minutes. The SchistoScope performs well when compared to 43

conventional on-site light microscopy, as shown in field studies in Ghana and Côte 44

d’Ivoire [16–18], but lack of automated patient-level diagnosis with high sensitivity and 45

specificity has been a limitation. 46

Here we use images acquired using the SchistoScope with brightfield (BF) and 47

darkfield (DF) illumination to train ML object recognition models using an off-the-shelf 48

YOLOv8 architecture [19] for S. haematobium egg detection. Importantly, the ML 49

models we trained can be efficiently deployed on mobile devices. By combining BF and 50

DF imaging contrasts, we boost diagnostic sensitivity and specificity on a patient-level, 51

sufficiently to reach WHO performance metrics for monitoring and evaluation of 52

schistosomiasis control programmes. This strategy of collecting multi-contrast images 53

and using multi-contrast ML to take advantage of the feature information in each 54

contrast may be useful for other portable microscopy systems performing image-based 55

diagnoses. 56

The use of darkfield imaging for ML-based disease identification and image 57

classification has shown promise in other fields [20–31]. However, to our knowledge, this 58

is the first demonstration of its use as a means to improve diagnostic performance in the 59

context of limited data for diagnosis of neglected diseases. 60

Contributions 61

1. We demonstrate an automated diagnostic strategy that meets WHO requirements 62

for monitoring and evaluation use cases, including sensitivity and specificity, 63

portability, no mains power, and time-to-result. 64

2. We show that combining ML models trained on brightfield and darkfield images of 65

patient samples taken with a mobile phone-based microscope can improve 66

schistosomiasis diagnostic performance. 67

3. We collect and annotate a dataset of brightfield and darkfield images of S. 68

haematobium that can be used for continued development of machine learning 69

models. 70
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Materials and methods 71

Ethics statement 72

This work contains patient data from two separate studies conducted in Côte d’Ivoire. 73

The first study was conducted in March 2020 in the Azaguié region of Côte d’Ivoire [17]. 74

Ethical permission for this study was granted by the Centre Suisse de Recherches 75

Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire (#054-19) and the University 76

Health Network, Toronto, Canada (REB #14-8128). Permission was granted by the 77

local Health District officer. School-age children between 5 and 14 years were invited to 78

participate, and both signed parental consent and the children’s assent were required for 79

inclusion. 80

The second study was conducted in November 2021, in the Koubi village near the 81

Tiébissou district in Côte d’Ivoire [18]. Ethical permission for this study was granted by 82

the local Health District officer, from the Comité National d’Éthique des Sciences de la 83

Vie et de la Santé, Abidjan, Côte d’Ivoire (REB #186-21) and the University Health 84

Network, Toronto, Canada (REB #21-5582). Community members over 5 years old 85

were asked to participate. Adults provided written consent, and children were included 86

if they assented and had written consent from a parent or guardian. 87

Sample processing and image acquisition 88

Sample processing and image acquisition with the SchistoScope are illustrated in Fig 1A 89

and described in more detail in [16]. For each patient, urine samples were collected in 90

plastic cups and loaded into a 10mL syringe (Fig 1A.i.). The syringe was connected to a 91

custom injection-molded plastic capillary designed to trap S. haematobium eggs within 92

an imaging window. The capillary has a rectangular cross-section that tapers down 93

from a height of 200µm at the inlet to 20µm near the outlet hole, trapping and 94

concentrating eggs and other debris as the urine flows through the capillary and exits 95

through the outlet (Fig 1A.ii.). After filtration, the capillary is inserted into the 96

SchistoScope and image acquisition begins. For this, the capillaries are translated in one 97

axis, and images of six distinct fields of view (FOV) are acquired. Each FOV is imaged 98

using both BF and DF illumination. 99

We implemented BF imaging with an LED illuminator below the sample and DF 100

imaging with an LED illuminator above the sample, oriented at an angle such that 101

unscattered light is not collected by the camera lens. To capture BF and DF images of 102

a single FOV, we turn on the BF illuminator, capture an image, turn off the BF 103

illuminator, turn on the DF illuminator, capture an image, and then turn off the DF 104

illuminator. The entire imaging sequence, including autofocus, takes an average of 60 105

seconds (range 47-72 sec). 106

The SchistoScope images are 4032 x 3024 pixels, with pixel pitch ≈1 µm/pixel. The 107

optical resolution of the SchistoScope is estimated to be <5 µm [16]. Example images of 108

two distinct FOV for one capillary, captured in BF and DF, are shown in Fig 1B. Due 109

to the tapered design of the capillaries, most eggs are trapped in the region near the 110

outlet hole, corresponding to the first two imaged FOV in each capillary. Examples of S. 111

haematobium eggs and “distractor objects”, non-egg debris in urine samples, that were 112

trapped in capillaries and imaged are found in Fig 1C. 113

Dataset preparation 114

The images used for this work were acquired during two separate visits to the S. 115

haematobium-endemic regions in Côte d’Ivoire. We created two datasets using the data 116
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from these two visits, described below. These datasets are fully described in [32], and 117

will be made publicly available. 118

The first field visit was completed in March of 2020, in the Azaguié region in Côte 119

d’Ivoire, as described in [17]. Of the 345 individuals tested at this site, 91 patients were 120

positive for S. haematobium via light microscopy, most with light- to moderate-burden 121

infections. Only three samples contained more than 50 eggs per 10 mL of urine, meeting 122

the WHO criteria for a high-burden infection [33]. The average parasitemia (number of 123

eggs per positive patient) in this dataset was 38 eggs/patient, as shown in Fig1D. The 124

parasitemia range was 0-420 eggs/patient. Since most eggs are found in the two FOVs 125

closest to the capillary outlet hole for each patient sample, we included those images in 126

the first dataset, regardless of whether or not they contained eggs. We then included, 127

for training only, any additional FOVs that contained eggs (which only happened in 128

samples with very high parasitemia). This resulted in a dataset of 748 total images for 129

each contrast (BF and DF). Of those images, 186 BF images and 188 DF images 130

contained annotated S. haematobium eggs. We will refer to the images from this field 131

visit as “Dataset 1”. 132

Fig 1. Sample processing, image acquisition and dataset information. A: Diagram showing
urine sample processing using a capillary and image acquisition with SchistoScope (A.i.). Diagram
showing capillary dimensions and egg trapping (A.ii.). Partially created with BioRender.com B:
Example images in BF and DF of two fields of view of a capillary containing S. haematobium eggs and
other debris. C: Examples of S. haematobium eggs and distractor objects trapped in capillaries and
imaged with the SchistoScope. D: Information about Datasets 1 and 2, which were collected in March
2020 and November 2021, respectively, in different field sites in Côte d’Ivoire, with total number of
patients, positive and negative patient count, average parasitemia and parasitemia range shown here.
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The second field visit occurred in the Koubi village near the Tiébissou district in 133

Côte d’Ivoire in November of 2021, as described in [18]. Of the 376 individuals tested at 134

this site, 59 patients were positive for S. haematobium via light microscopy, most with 135

low-burden infections. The average parasitemia is 12 eggs/patient and the parasitemia 136

range is 0-62 eggs/patient, both lower than those of Dataset 1. We included the images 137

from the first two FOV for all patients, resulting in 752 images per illumination 138

contrast. Of those images, 99 BF images and 98 DF images contained annotated S. 139

haematobium eggs. We refer to the images from this field visit as “Dataset 2”. 140

Image annotation 141

Patient sample images were annotated for the presence of S. haematobium eggs by a 142

microscopist with experience in egg identification. These annotations were then verified 143

by another microscopist. In cases of disagreement, a third microscopist was consulted. 144

To carry out the annotations, each image was opened in Microsoft paint, and the center 145

of each visible egg was labelled with a blue dot. Objects that the annotator was unsure 146

of and needed consultation with the second annotator were marked with a red dot. 147

Unlabelled objects in the images are considered distractor objects, some of which are 148

shown in Fig1C. 149

ML model training 150

Due to the relatively small size of our dataset, we used transfer learning to fine-tune 151

pre-trained models to detect Schistosoma eggs (Fig 2A). We chose YOLOv8, developed 152

by Ultralytics and pre-trained on the COCO 2017 dataset, in part because it can be 153

exported to formats such as ONNX and TensorFlow Lite for use on mobile devices [19]. 154

To fit the YOLOv8 input image size of 640x640 pixels, we cropped our 4032x3042 pixel 155

images into 30 individual, partially overlapping, image tiles. We trained the YOLOv8 156

model using the “detect” task and the following training parameters: stochastic gradient 157

descent optimizer, learning rate of 0.01, and batch size of 16. 158

Having data from two different field studies allows us to use one as a holdout set to 159

evaluate the performance of our trained ML models when tested on unseen data. In this 160

work, we set aside Dataset 2 and used Dataset 1 to explore ML model architectures and 161

different ways to combine BF and DF images, as well as for ML hyperparameter tuning. 162

We eventually used all of Dataset 1 to train a final pair of ML models, one for BF and 163

one for DF images. We then used Dataset 2 as our holdout set, using the data to 164

evaluate the models trained on Dataset 1. 165

We used 5-fold cross-validation (a standard technique to assess model stability), 166

stratified by patient, during our exploratory model training phase using Dataset 1. We 167

divided the 748 dataset images into five different “splits”, each containing a partially 168

overlapping set of images for training, but a completely different set of images for 169

testing. For each of these splits, we trained ML models on the train set images and then 170

evaluated these models on the test set images, as illustrated in Fig 2A. To ensure that 171

images from the same patient were not split between the train and test sets, images that 172

originated from the same patient sample were assigned to the same “group” during 173

k-fold cross-validation. 174

To ensure an even distribution of images across the splits with different numbers of 175

eggs and distractor objects, we divided the patients into 8 classes: classes 1-3 were 176

positive patients with images that contained eggs in increasing amounts, classes 4-8 were 177

negative patients that contained distractor objects in increasing amounts. We then used 178

the ‘StratifiedGroupKFold’ function from the scikit-learn Python library [34], which 179

splits the data into folds and assigns to each fold roughly equal proportions of each class 180

and also stratifies by patient (i.e. all of a patient’s images are assigned to one fold). 181
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When training the 5-fold split models using Dataset 1, we trained for 200 epochs. 182

When training the final models using all of Dataset 1 to test on Dataset 2, we trained 183

for 300 epochs. In all training instances, we trained separate object-detection models for 184

the BF and DF images. 185

Patient classification 186

Our trained egg-detection models produced a series of detections in each test image that 187

the model identifies as schisto eggs, with an associated confidence score that goes from 188
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Fig 2. Dataset preparation, ML model training and evaluation of Dataset 1 k-fold splits.
A: Diagram of the ML model training pipeline. First, S. haematobium eggs are annotated in dataset
images. For Dataset 1, the patients are then split into 5 folds containing different subsets of training
and test data. Transfer learning is done by fine-tuning the ML models (YOLOv8 pre-trained on the
COCO 2017 dataset) using the training set for each split. B: Diagram of the model evaluation pipeline.
After training, the test images are run through the trained model, generating bounding boxes
surrounding detections with a confidence score assigned by the model. The number of detections above
a certain confidence score threshold are counted for each patient. Each patient is represented by the
first two images of a capillary. Subsequently, patients are classified as positive or negative depending on
the presence or absence of detections with a confidence score above a given threshold. Sensitivity and
specificity metrics are calculated on a patient population level. C: Full and zoomed-in receiver operator
characteristic (ROC) curves for the first split of the data of Dataset 1, showing results for the BF and
DF ML models and the area under each curve. The partial ROC curve is displayed as an inset of the
full curve, it shows specificity values from 95% to 100%. The vertical lines indicate the targeted
specificity for the transmission interruption and surveillance (TI&S) and monitoring and evaluation
(M&E) TPP use cases (99.5% and 96.5%, respectively). D: Violin plots showing the patient-level
sensitivity values for the 5 splits of Dataset 1 for the TI&S (D.i.) and M&E (D.ii.) use cases. The mean
sensitivity is displayed above each violin and the targeted sensitivity for each use case is shown as a
vertical line. D.i. shows the sensitivity at a threshold that resulted in 99.5% specificity. D.ii. shows the
sensitivity at a threshold that resulted in 96.5% specificity. BF is brightfield and DF is darkfield.

1-100%. These detections are indicated by bounding boxes (Fig 2B). Since patient-level, 189

not object-level, performance is what matters clinically, we converted the object-level 190

detections to patient-level diagnostic classification as follows: 191

First, after running each individual image (composed of 30 image tiles) through the 192

trained model, we combined the detections from the two images corresponding to each 193

patient (Fig 2B). We then evaluated whether each patient would have been classified as 194

positive or negative as we varied a threshold on the confidence score. A patient was 195

considered positive if there was at least one detected object with a confidence score 196

greater or equal to the threshold in any of the images for a patient. Otherwise, the 197

patient was negative. This method applies the patient diagnosis framework in [35], 198

where the noise floor is set to 0 due to the high accuracy of the detection algorithms 199

used. 200

The object-level precision-recall curves for all splits of the BF and DF models 201

trained and tested on Dataset 1 are shown in Supplementary Figure 1. 202

Evaluation metrics 203

We evaluated our ML models at the patient-level in the test dataset by calculating 204

sensitivity and specificity. We then compared the results to the target metrics for each 205

schistosomiasis diagnostic use case in the WHO Diagnostic Target Product Profiles 206

(TPP) for schistosomiasis control programmes [6]. 207

The following equations define sensitivity (Eq. 1) and specificity (Eq. 2): 208

Sensitivity =
True Positives

True Positives + False Negatives
(1)

Specificity =
True Negatives

True Negatives + False Positives
(2)

Consistent with convention, True Positive patients are those that were annotated as 209

having S. haematobium eggs and were classified as positive by the ML model, while 210

False Negatives are patients that were annotated as having eggs but were classified as 211

negative by the ML model. True Negative patients were both annotated and classified 212

as negative, and False Positives were annotated as negative by human annotators but 213

classified as positive by the ML model. 214

To show how patient-level sensitivity and specificity depend on the threshold 215

confidence score for model detections, we generated receiver operator characteristic 216
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(ROC) curves for each model (BF and DF), which plot sensitivity, or True Positive Rate 217

(TPR), vs 1-specificity, or False Positive Rate (FPR). 218

To assess the performance of our ML models in the context of Schistosomiasis 219

diagnostics, we evaluated whether we would meet the target metrics established in the 220

WHO TPP [6]. The TPPs are used to guide the development of new diagnostic tools for 221

schistosomiasis for two use cases: (i) Monitoring and Evaluation (M&E) and (ii) 222

Transmission Interruption and Surveillance (TI&S). The TPPs outline the target 223

characteristics of a suitable diagnostic test in categories such as portability, training 224

requirements, throughput, time to results, and clinical sensitivity and specificity. The 225

target sensitivity and specificity for M&E are 75% and 96.5%, respectively. The target 226

sensitivity and specificity for TI&S are 88% and 99.5%, respectively (also shown in 227

Table 1). 228

Table 1. Diagnostic Target Product Profile (TPP) requirements.
TI&S M&E

sensitivity 88% 75%
specificity 99.5% 96.5%

WHO TPP requirements for Monitoring and Evaluation (M&E) and Transmission Interruption and
Surveillance (TI&S) of schistosomiasis control programmes.

We focused our performance analysis on the relevant regions of the ROC curve 229

where specificity was above what is targeted by each WHO use case. Fig 2C shows the 230

full ROC curves for one of the splits (split 1) of the BF and DF ML models trained and 231

evaluated on subsets of Dataset 1, together with a zoomed-in portion of the ROC curve 232

showing the specificity values above 95%. The two vertical lines indicate the specificity 233

values targeted by both of the TPP use cases (96.5% for M&E and 99.5% for TI&S). 234

To directly compare performance with the TPP use cases, we took the sensitivity at 235

the confidence threshold that resulted in the patient-level specificity targeted by each 236

use case. That is, we set the operating point by requiring that the model meet the 237

specificity in the TPP, then assessed whether it also met the TPP’s sensitivity [35]. 238

Fig 2D shows the sensitivity values for each of the splits of Dataset 1 when evaluated at 239

the targeted specificity for the TI&S (top) and M&E (bottom) use cases. The targeted 240

sensitivity values for each use case are displayed as a horizontal line. 241

Multi-contrast combinations 242

We explored different approaches to combine BF and DF images and assessed whether 243

they would result in improved sensitivity and specificity. The pre-trained YOLOv8 244

models that we used for transfer learning use 3-channel images as an input. We thus 245

trained separate 3-channel models for BF and DF images and then combined the model 246

outputs with boolean AND or OR, at either object-level or patient-level, for a total of 247

four combination methods. The workflow for these combinations is illustrated in Fig 3A. 248

Merging BF and DF into a 3-channel image (e.g., BF-R, BF-G, DF-B) did not yield 249

good results. 250

For patient-level combinations, we first used the BF and DF model outputs to 251

classify the patients as positive or negative separately for each contrast. After this, we 252

used patient-level AND/OR operations to combine the BF and DF results and arrive at 253

a final diagnosis. For patient-level AND, we called a patient positive only when both BF 254

and DF classified them as positive. For patient-level OR, a positive classification for 255

either BF or DF resulted in a positive combined classification (Fig 3B). After these 256

combinations, we calculated the sensitivity and specificity for the test patient 257

populations and generated ROC curves for the AND and OR cases. 258
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For object-level combinations, we follow the same procedure as above by first 259

separately evaluating images with the BF and DF models, which generates a list of 260

bounding box detections for each contrast. We then apply AND/OR operations at the 261

object level to generate new object scores, as described below, followed by patient-level 262

classification (Fig3A.ii.). 263
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Fig 3. Contrast combination rubrics and patient-level sensitivity on 5-fold splits, Dataset
1. A: Combination pipelines. A.i.: Diagram of the patient-level combination pipeline. A.ii.: Diagram of
the object-level combination pipeline. B: Truth table for patient-level combinations, showing the four
possible combinations of patient classifications based on BF and DF models individually, followed by
the result after patient-level combinations. Positive patients shown in magenta and negative patients
shown in green. C: Examples of object-level combinations on three objects in the images, showing
original confidence scores assigned by BF and DF models, followed by resulting confidence scores after
each combination. Green boxes represent true positive detections and magenta boxes represent false
positive detections. D: Violin plots showing the sensitivity values after applying patient-level
combinations to the 5 splits of Dataset 1 for the TI&S (D.i.) and M&E (D.ii.) use cases. The mean
sensitivity is displayed above each violin and the targeted sensitivity for each use case is shown as a
vertical line. D.i. shows the sensitivity at a threshold that resulted in 99.5% specificity. D.ii. shows the
sensitivity at a threshold that resulted in 96.5% specificity. ‘BF’ is brightfield, ‘DF’ is darkfield, ‘PL
AND’ is patient-level AND, ‘PL OR’ is patient-level OR, ‘OL AND’ is object-level AND, ‘OL OR’ is
object-level OR. E: Violin plots showing the sensitivity values after applying object-level combinations
to the 5 splits of Dataset 1 for the TI&S (E.i.) and M&E (E.ii.) use cases. The mean sensitivity is
displayed above each violin and the targeted sensitivity for each use case is shown as a vertical line. E.i.
sensitivity at a threshold that resulted in 99.5% specificity. E.ii. sensitivity at a threshold that resulted
in 96.5% specificity.

To generate new object scores from the BF and DF detections and scores, we: 264

(i) pair up each individual detection on a BF image with each individual detection on 265

the DF version of that image. Each of these pairs consists of the xy coordinates 266

for the bounding box detection in BF and in DF, as well as their associated 267

confidence scores (scoreBF and scoreDF ). 268

(ii) use the BF and DF xy box coordinates to calculate the intersection over union 269

(IoU) for each detection pair. IoU goes from 0-1 and it measures the overlap 270

between the bounding boxes. If the boxes overlap completely, the IoU is 1. If they 271

are partially overlapping, the IoU is smaller. If the boxes are not overlapping, 272

meaning that a particular object was only detected in one of the contrasts, the 273

IoU is 0. 274

(iii) carry out object-level AND/OR operations to assign a new object score. 275

(a) For AND, the score is given by: 276

scoreAND = scoreBF ∗ scoreDF ∗ IoU

Because the IoU is zero for non-overlapping detections, the object-level AND 277

score eliminates detections that are not represented in both BF and DF. This 278

is a stringent filter, only detections where BF and DF agree on the presence 279

of an egg make it through. 280

(b) for OR, objects that are only found in BF or DF are not eliminated, but 281

their confidence scores are reduced. To do this, we first eliminate all object 282

pairs that are not overlapping (i.e. pairs with IoU of zero). We then go 283

through the original detection lists for BF and DF, find any detections that 284

are not represented in the combined list, and add them back to the list as 285

“lonely detection pairs”. For these pairs, we assign a confidence score of zero 286

to the missing contrast. For example, if an object is detected only in BF 287

with score=scoreBF , a lonely detection pair is added to the list with 288

scoreBF = scoreBF and scoreDF = 0. 289

After adding the lonely detections, we calculate the object-level OR score as: 290

scoreOR =
scoreBF + scoreDF

2
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When using the object-level OR combination, we are not removing objects 291

that are only detected in either BF or DF, and by this we hope to avoid 292

eliminating true eggs that were only detected once. However, since we expect 293

a true egg detection to be more likely to be found in both BF and DF, the 294

object-level OR reduces the overall confidence score of lonely detections. 295

Fig 3C shows examples of the resulting scores for object pairs when 296

object-level combinations are applied. 297

After calculating the object-level AND/OR scores, the patients are classified as 298

positive or negative on a patient-level, based on the presence of combined bounding 299

boxes at a given confidence score threshold. Subsequently, patient-level sensitivity and 300

specificity are calculated and compared to the TPP targets for each use case, as 301

described above. 302

Results 303

ML model performance on Dataset 1 splits 304

The BF and DF models were trained on subsets of Dataset 1. We used k-fold splits to 305

better assess their performance before training a set of final models for evaluation using 306

Dataset 2. Results for the BF and DF models are shown in Fig 2, and the results for 307

the BF and DF combinations of those models are shown in Fig 3, all of these results are 308

at the patient-level. 309

The average sensitivity at the TPP specificity for TI&S for the 5 splits was higher 310

for DF (84%) than for BF (80%). The targeted sensitivity for this TPP use case is 88%, 311

only one split for BF and two splits for DF reached this requirement. However, for the 312

M&E use case, all of the DF splits and most of the BF splits reached the targeted 313

sensitivity of 75%. For this use case, the average sensitivity was also higher for DF 314

(88%) than for BF (84%). 315

Using DF alone or combinations of BF and DF models resulted a 4-10% increase in 316

mean sensitivity at the targeted TPP specificity values. Notably, when applying both 317

object-level and patient-level combinations, all of the splits of the March 2020 dataset 318

met the TPP requirements for sensitivity and specificity for the M&E use case. Despite 319

not reaching the targeted TPP sensitivity for the TI&S use case on all splits of the data, 320

both object and patient-level combinations increased the average sensitivity, bringing it 321

closer to the WHO targets. 322

ML model performance on hold-out Dataset 2 323

After model training was complete and we confirmed that the performance on Dataset 1 324

was adequate, we trained models using all of Dataset 1 and tested them on Dataset 2 as 325

a holdout set. This is the scenario that is most realistic and consistent with future 326

diagnostic work in the field, and does not incorporate any information from the test 327

dataset into the training. The patient-level results are shown in Fig 4. A diagram 328

illustrating the data used for training and testing is shown in Fig 4A. 329

All models and combinations performed worse when trained on Dataset 1 and tested 330

on Dataset 2, compared to the average performance of k-fold split models trained and 331

tested on subsets of Dataset 1. This is expected, and gives us a better idea of how our 332

trained models would perform with unseen data in future field studies. 333

Both BF and DF models met the targeted sensitivity for the M&E use case, but they 334

did not meet the targeted sensitivity for the TI&S use case. The DF models performed 335

better than BF when we evaluated the models for both use cases. The combined dataset 336

models resulted in a sensitivity greater or equal to that achieved with the DF models. 337
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The results when the BF and DF models are combined on an object-level and 338

patient-level are shown in Fig 4C. The full ROC curves and AUC of the BF and DF 339

models and combinations is shown in Supplementary Figure 2. None of the contrast 340
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Fig 4. Patient-level results on Dataset 2 as a holdout. A: Diagram of data used for training
and testing. B: Results for brightfield (BF) and darkfield (DF) models trained on Dataset 1 and tested
on Dataset 2. B.i. zoomed-in ROC curve showing specificity values from 95% to 100%, with TPP
specificity requirements shown as vertical lines. B.ii. and B.iii. patient-level sensitivity for BF and DF
models for the TI&S (B.ii.) and M&E (B.iii.) use cases, with sensitivity values for each model displayed
above each bar and target sensitivity displayed as a horizontal line. C: Results for model combinations
on Dataset 2. C.i. zoomed-in ROC curve showing specificity values from 95% to 100%, with TPP
specificity requirements shown as vertical lines. C.ii. and C.iii. sensitivity results for BF and DF
models and combinations for the TI&S (C.ii.) and M&E (C.iii.) use cases. PL AND is patient-level
AND, PL OR is patient-level OR, OL AND is object-level AND, OL OR is object-level OR. D:
Boostrapping results on the holdout set for TI&S and M&E TPP use cases. The violin plots show the
distribution of patient-level sensitivity values at thresholds resulting in the targeted TPP specificity.
Bootstrapping was performed for 100 iterations, with sample size = 40% of the patient population. The
dashed lines inside violins show the median of the distribution, dotted lines show the quartiles. The
median of each distribution is displayed above each violin. We report multiplicity-adjusted p-values, “ns”
is p>0.05, * is p≤0.05, *** is p≤0.001, **** is p≤0.0001.

combinations achieved the targeted sensitivity for the TI&S use case, but all 341

combinations resulted in a sensitivity greater or equal to that achieved with the BF and 342

DF models separately. The greatest increase was achieved when using a patient-level 343

AND combination. 344

We used bootstrapping to investigate how our patient-level metrics would have 345

varied had the patient population been a subset of what is in Dataset 2. We iteratively 346

resampled the patient population with replacement, re-running our analysis 100 times 347

on random subsets of 40% of the patients. For each iteration, we calculated the 348

patient-level sensitivity at the threshold resulting in the TPP target specificity, as 349

described above, for the BF-only, DF-only, and combination models. We then used a 350

Kruskal-Wallis test (the non-parametric equivalent of an ANOVA test) with Dunn’s 351

correction for multiple comparisons, to determine whether there were statistically 352

significant differences between the BF and DF models and the combinations. We 353

specifically tested whether the DF model and all the different combinations were 354

significantly different than the BF model (Fig 4D). All statistical analyses were done 355

using GraphPad Prism (version 10.2.2). 356

The median sensitivity of the bootstrap populations is similar to the sensitivity 357

obtained when testing over the full holdout set. The bootstrapping results show two 358

main things: i. there are statistically significant differences (p ≤0.05) between the BF 359

and DF models, as well as between the BF model and most model combinations (with 360

the exception of object-level AND for TI&S). ii. for TI&S, most combination algorithms 361

are more stable than the BF and DF models alone, as seen by their tighter spreads over 362

bootstraps. 363

ML model performance on merged datasets (Dataset 3) 364

Distribution shifts commonly occur when using machine learning for medical tasks, 365

where it is well documented that even small changes from training conditions can lead 366

to changes in performance [35–38]. Given that we saw a decrease in performance when 367

models trained on Dataset 1 were tested on Dataset 2, we wondered if it was due to a 368

distribution shift between the datasets, since they were acquired during different field 369

visits. 370

As a way to test this, we created a “merged” dataset by combining the images from 371

both datasets into one, which we refer to as “Dataset 3”. If we are affected by 372

distribution shifts, we would expect the models trained and tested a subset of Dataset 3 373

to perform better than those trained on Dataset 1 and tested on Dataset 2. 374

We randomly split Dataset 3 into a train set and a test set, as illustrated in Fig 5A.i. 375

By using Dataset 3 we could see how our model would perform in the ostensibly best 376
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available case, where maximum training data is used and testing is done in-distribution. 377

The average parasitemia for the test set of Dataset 3 was 26 eggs/patient, and the 378

parasitemia range for the test set was 0-420 eggs/patient, as shown in Fig5B.i. and B.ii. 379

Overall, the performance of the ML models on Dataset 3 was better than the 380

performance of the models trained on Dataset 1 and tested on Dataset 2. When 381

evaluated at thresholds that met the TPP target specificity, all contrasts and 382
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Fig 5. Patient-level results on Dataset 3. A Dataset 3 information. A.i.: Diagram of the data
used for Dataset 3. A.ii.: Average parasitemia for positive patients on the test set of Dataset 3
compared to the average parasitemia of Datasets 1 and 2. B: Histograms showing the distribution of
patient-level parasitemia for Dataset 1 (B.i.) and Dataset 2 (B.ii.) compared to the distribution of the
test set for Dataset 3 C: Patient-level results on the test set of Dataset 3. C.i. zoomed-in ROC curve
with specificity values ranging from 95% to 100%, with TPP specificity requirements shown as vertical
lines. C.ii. and C.iii. show the patient-level sensitivity results for BF and DF models and combinations
for the TI&S and M&E use cases (at thresholds resulting in TPP specificity). The target sensitivity for
each use case is shown as a horizontal line. BF is brightfield, DF is darkfield, PL AND is patient-level
AND, PL OR is patient-level OR, OL AND is object-level AND, OL OR is object-level OR. D:
Boostrapping results on the test set of Dataset 3 for TI&S and M&E TPP use cases. The violin plots
show the distribution of patient-level sensitivity values at thresholds resulting in the targeted TPP
specificity. Bootstrapping was performed for 100 iterations, with sample size = 40% of the patient
population. The dashed lines inside violins show the median of the distribution, dotted lines show the
quartiles. The median of each distribution is displayed above each violin. We report
multiplicity-adjusted p-values, “ns” is p>0.05, * is p≤0.05, *** is p≤0.001, **** is p≤0.0001.

combinations met the TPP target sensitivity for the M&E use case. For the TI&S use 383

case, no contrast or combination met the target TPP sensitivity. The object-level OR 384

combination was the closest, with only 2% lower sensitivity than the target. 385

We performed bootstrapping to gain insight on the variability of the patient-level 386

metrics. For the TI&S use case, DF and all of the contrast combinations performed 387

significantly better than BF. The object-level combinations (AND and OR) had both 388

the highest median sensitivity and the tightest distributions. Notably, the third quartile 389

for both of these distributions was above the sensitivity targeted by the TPP (88% 390

sensitivity). 29/100 iterations for object-level AND and 30/100 iterations for 391

object-level OR had a sensitivity above the TPP target for TI&S. 392

Fig 5D.ii. shows the sensitivity distributions for the M&E use case. DF and all of 393

the combinations performed significantly better than BF. Notably, for all of the 394

contrasts and combinations and for all of the 100 iterations, the models had a sensitivity 395

above or equal to that targeted by the TPP (75% sensitivity) at a threshold that 396

resulted in the targeted specificity. 397

Discussion 398

Diagnostic technologies that are simple to use, low cost, and achieve WHO performance 399

metrics are needed to advance schistosomiasis control and elimination goals. The 400

development of mobile phone-based microscopes for image-based diagnosis of S. 401

haematobium, such as the SchistoScope, partially achieve those goals through their 402

portability and simplicity. However, the best strategy for automated egg detection and 403

patient diagnosis for mobile microscope with moderate resolution has been unclear, as 404

many existing ML models rely on images collected with high-resolution imaging systems. 405

Moderate resolution systems, including the SchistoScope, may need additional 406

information to achieve the combination of sensitivity and specificity needed for field 407

applications. This paper highlights the potential of DF as a mean to break the zero-sum 408

trade-off between accuracy and practicality, by enabling portable, lower resolution 409

systems, to support high accuracy detection. 410

We use multi-contrast imaging of patient urine samples containing S. haematobium 411

acquired in endemic regions of Côte d’Ivoire using the SchistoScope to train ML models 412

for automated diagnosis. We find that DF models alone and combinations of BF and 413

DF models lead to greater performance than BF alone, which is the typical contrast 414

used to identify eggs with light microscopy. The combinations of BF and DF models 415

meet the WHO target sensitivity and specificity for monitoring and evaluation of 416

schistosomiasis control programmes, with DF consistently showing better performance 417
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than BF. A relatively small dataset of less than 1000 images was sufficient to train the 418

models and demonstrate improved diagnostic performance, taking advantage of the 419

availability of pre-trained, off-the-shelf ML models that can be used for fine-tuning to a 420

particular application. 421

Our multi-contrast machine learning approach benefited from BF and DF images 422

providing complimentary information about the schistosoma eggs, with brightfield 423

contrast reporting light absorption by the sample and darkfield contrast showing 424

scattering by sample edges and other features. Darkfield, or pseudo-darkfield, can be 425

easily (and fairly inexpensively) implemented in a standard light microscope by adding 426

an oblique or annular illumination source, or by blocking illumination angles that are 427

captured by the imaging lens, an example of which is shown in [39]. Hence, DF imaging 428

can be implemented by other groups integrating ML with portable microscopy for 429

diagnosis of S. haematobium and other diseases with egg-based diagnostics, such as 430

Schistosoma mansoni and soil-transmitted helminths. In fact, DF imaging alone can be 431

helpful for semi-automatic diagnostic strategies where clinicians or field technicians 432

make diagnostic calls based on digitized images of patient samples. Our annotators and 433

clinical collaborators noted that they preferred annotating/evaluating darkfield images 434

because S. haematobium eggs are easier to identify in darkfield versus the traditional 435

brightfield contrast. 436

In cases where a microscopy system supports both BF and DF imaging, these can be 437

combined in relatively simple ways to get better ML results. We showed that simple, 438

boolean combinations of patient-level diagnosis with models trained on images of 439

different contrasts (such as patient-level AND/OR) can lead to improvements in 440

performance. Incorporating additional contrasts, such as differential phase contrast and 441

fluorescence, into portable and low-cost microscopes could provide additional sample 442

information that might further improve multi-contrast machine learning performance. 443

In particular, the autofluorescence of Schistosoma eggs and other parasites makes this 444

an attractive direction for future device development. Improvements in ML model 445

development could also advance the goal of high performance detection with lower 446

resolution images, including altering the model architecture to train on images of both 447

contrasts simultaneously, increasing hyperparameter optimization, and training on more 448

egg images. As the field of ML continues to evolve rapidly, novel models and 449

architectures could also lead to performance improvements, potentially reaching the 450

TI&S target metrics. 451

An important next step to validate the usefulness of multi-contrast machine learning 452

will be to do live field testing of the ML models loaded onto the SchistoScope or its 453

successor. This will require exporting our ML models to a mobile phone-compatible 454

format to evaluate performance and processing time. Any future field deployment will 455

also require selecting confidence score thresholds in advance and providing patient-level 456

diagnosis based on them. We observed ML model performance improvements when 457

training on the combined dataset (Dataset 3) compared to training on data from one 458

site (Dataset 1) and testing on data from the second site (Dataset 2); this type of 459

variability has also been observed during field testing for other diagnostic products [38]. 460

Given this, future field deployments should consider real-time updates of the ML models 461

to accommodate inter-clinic variability and uneven algorithm accuracy at new sites due 462

to distribution shifts in training and testing populations. It is also worth noting that the 463

WHO TPP for TI&S is in the context of disease elimination, which generally implies 464

lower parasitemia distributions, making it harder to hit the sensitivity targets [35]. We 465

expect our multi-contrast strategy to be even more relevant in this context. 466

17/22

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 31, 2025. ; https://doi.org/10.1101/2025.01.30.25321353doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.30.25321353
http://creativecommons.org/licenses/by/4.0/


Conclusion 467

Mobile phone-based microscopy platforms in conjunction with multi-contrast machine 468

learning and novel sample preparation techniques can be used for rapid, sensitive, and 469

portable diagnosis of S. haematobium that meets WHO diagnostic requirements. 470

Performance of ML models to identify Schistosoma eggs can be significantly improved 471

by adding darkfield imaging to standard brightfield microscopes, which requires minimal 472

changes in microscope optics and no additional sample preparation. Multi-contrast 473

machine learning with an additional contrast offers a practical means to improve 474

performance of low-cost, automated diagnostics for S. haematobium egg detection and 475

could be applied to other microscopy-based diagnostics. 476

Supporting information 477

S1 Fig. Precision-recall curves for all splits of Dataset 1.

Supplementary Figure 1. Precision-recall curves for BF and DF Dataset 1 models. Left:
precision-recall curves for the test set of all splits of Dataset 1 using the brightfield ML model. The
inset on the bottom left shows the average precision (AP) for each split. Right: precision-recall curves
for the test set of all splits of Dataset 1 using the darkfield ML model. The inset on the bottom left
shows the average precision (AP) for each split.

478

S2 Fig. ROC curve and AUC for Dataset 2.

Supplementary Figure 2. Receiver operator characteristic curves (ROC) and area under the curve
(AUC) for Dataset 2 models and combinations. The AUC for each model and combination is shown in
the inset on the bottom right. The required specificity values for the TI&S and M&E TPP use cases
are displayed as vertical lines.
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