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Abstract:  

 

Parallel designs with an end-of-treatment analysis are commonly used for randomised trials, 
but they remain challenging to conduct in rare diseases due to small sample size and 
heterogeneity. Model-based approaches can be more powerful to detect treatment effects. 
We investigated the performance of longitudinal modelling to evaluate disease-modifying 
treatments in rare diseases a simulation study, leveraging as showcase a model of the SARA 
score progression in Autosomal Recessive Cerebellar Ataxia. We compared the power of 
parallel, crossover and delayed start designs, investigating several trial settings: trial duration 
(2 or 5 years); disease progression rate (slower or faster); magnitude of residual error 
(�=2/�=0.5); number of patients (100 or 40); method of statistical analysis (longitudinal 
analysis with non-linear or linear models; standard statistical analysis). In our simulations, 
using non-linear mixed effect models resulted in higher power than a rich, sparse linear 
mixed effect model or standard statistical analysis. Parallel and delayed start designs 
performed better than crossover designs. Our analysis showed that since disease 
progression is slow and residual variability is high (for the standard clinician-reported 
outcome), longer durations are needed for power to be greater than 80%, up to 5 years for 
slower progression and 2 years for faster progression ataxias. 
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1. Introduction 
 

Randomized parallel designs are the gold standard used for clinical trials, and the statistical 
analysis is then usually a comparison of change from baseline or end of treatment 
measurements 1. Rare diseases however involve small target populations with 
heterogeneous presentation of the condition, progression and severity of symptoms, or 
response to treatment. Other designs may then be considered such as single arm trials, or 
designs using natural history data, such as patient registries, to inform the design or to use 
as an external control 2. Furthermore, analysing longitudinal data using linear or non-linear 
mixed effect models has been shown to improve the power of those trials compared to 
standard approaches 3,4. 

Autosomal recessive Cerebellar Ataxias (ARCA) are a group of ultra-rare, progressive 
neurodegenerative disorders. They mainly affect the cerebellum but also induce other multi-
systemic damage to other neurological systems, causing impairment to gait, balance, speech 
and fine motor movements 5. More than 100 genotypes have been identified 5 and symptoms 
usually emerge during childhood or early adulthood. ARCAs are prime candidates for 
targeted molecular therapies or gene therapies due to their genetic etiology. While there is 
currently no approved disease-modifying treatment for most ARCAs, multiple clinical trials 
are ongoing, which aim to quantify the treatment effect of such therapies. However, the 
settings of those clinical trials can be very different depending on the genotype or kind of 
drugs, and there are still statistical challenges to design randomised clinical trials for these 
diseases 6.  Among ARCA genotypes, disease severity at onset and disease progression 
rate can vary 7–9, which have an influence on the designs. Other randomized trial designs 
have been explored for neurodegenerative diseases. For example the FDA just approved a 
drug for Niemann-Pick disease type C 10, where a crossover design was used to demonstrate 
the effect of the compound. Delayed start designs are also being investigated to show the 
effect of disease-modifying drugs for instance in Parkinson’s and Alzheimer’s disease 11,12. 
Crossover and delayed start designs could be used to account for individual progression 
rates, but modelling approaches are needed to account for temporal change in the outcome 
or carryover effect. Due to the genetic diversity of this disease, there are currently no 
universally applicable biomarkers, and clinician-reported composite scores such as the Scale 
for Assessment for the Rating of Ataxia (SARA) 13 are commonly used as endpoints. 

In this work, we propose to explore the advantage of model-based analyses of trials 
compared to more standard statistical analyses through a simulation framework. We 
evaluate several clinical trial designs that could be used to quantify a disease-modifying 
treatment effect according to their power and type 1 error. We simulated data using a 
longitudinal non-linear mixed effect model (NLMEM) 14 that we built to describe – as a 
showcase example for our methodological approach - the SARA score over the time since 
onset of symptoms in patients included in the ARCA registry 15 and diagnosed with 
Autosomal Recessive Spastic Ataxia of Charlevoix Saguenay (ARSACS), introducing a 
hypothetical treatment effect slowing down the disease progression rate. We explored two 
disease progression rates, a “slow progression rate” and a “fast progression rate” to reflect 
the diversity of progression rates more generally in ARCAs and to assess its impact on 
clinical trial design. We also explored other clinical settings of interest, such as the duration 
of the trial, the number of patients and the magnitude of residual error.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 31, 2025. ; https://doi.org/10.1101/2025.01.30.25321311doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.30.25321311
http://creativecommons.org/licenses/by-nc/4.0/


 

 

2. Methods 
 

We performed a simulation study to evaluate and compare the performance of several 
clinical trial designs for ARCAs in order to quantify a disease-modifying treatment effect. We 
investigated several settings, such as the design, the estimation model, the number of 
patients, the magnitude of residual error and the duration of the trial. 

2.1 Simulation model 

Data was simulated using a previously published NLMEM 14 describing the evolution of the 
total SARA score for an exemplary specific subgroup of patients in the ARCA registry 15, 
namely patients with a genetically confirmed diagnosis of Autosomal Recessive Spastic 
Ataxia of Charlevoix Saguenay (ARSACS) 16. The ���  total SARA score ���  observed at time 
���  since symptoms onset in individual � was described using the following equations: 

 

��� � ����� , 
�� � �  ��� (1) 

����
��� � ������� � ��� 

 

where ����� , 
�� represents the structural model, a function of ���  , 
� , the vector of individual 
parameters for individual � (of dimension K), � the vector of fixed effects. The random effects 
��  were assumed to follow a joint multinormal distribution with variance-covariance matrix �. 
For the residual error model, � was the standard deviation of the residual error, and ��� �
��0,1�. The population parameters for this model were � � ��, �, ��. 

The structural model for the evolution of the SARA score, f was a four-parameter logistic 
model 14: 
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where 
�= ��� , �� , �� ,  ��, 

 

A Drug Effect (DE) parameter was introduced on  , reducing the disease progression rate 
after the inclusion in the clinical trial in the treatment group, in order to mimic a disease-
modifying treatment effect. Therefore, under treatment, we assumed  ��� �  �1! "# 
$%$�, with TRT (treatment) an indicator function (=1 if the patient is treated, 0 if the patient is 
in the control group). Hence, with a drug effect of 0, the equation is equal to (2), which is 
equivalent to natural progression with no drug, with a DE of 1, there is no progression, and 
with DE>1, the SARA score decreases. In this study we assumed that the treatment effect is 
DE=0.5 hence dividing by 2 the disease progression rate. The parameters used for the 
simulation are given in Table 1. 
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Parameter Value 

δ 6.16 

γ 28.75 

β 3.94 

α (yr-1) 0.11 

ω�  0.31 

ω� 0 

ω� 0.20 

ω� 0.09 

σ 2 

 

Table 1. Parameters of the logistic model on the ARSACS population on the ARCA registry 
used in the simulation study for the slow progression scenario in the control (untreated) 

group. For the fast progression scenario,   was set to 0.22 and for the low standard error � 
was set to 0.5 

2.2 Trial designs 

Three clinical trial designs were investigated: 1, parallel design where patients are 
randomized to the control (untreated) group or treatment (treated) group; 2, cross-over, 
where patients switch group mid-trial; 3, delayed start, where patients are randomized in 
control or treatment group, and the patients in the control group receive the treatment at mid-
trial, as shown in Figure 1. For each design, N patients were included with an allocation ratio 
of 1:1, and we generated one observation at inclusion in the trial and then every 6 months for 
the duration of the trial.  

 

 

2.3 Simulation scenarios 

We define a simulation scenario as a combination between the parameters of the model 
used for the simulation, the duration of the trial and the number of patients in the trial. For 
each scenario, we generated 500 datasets under each of the three trial designs investigated.  

In this work, we considered two reference scenarios. The slow progression reference 
scenario (A) used the parameters previously estimated on the ARSACS population (table 1). 
In a previous study 14, a trial duration of 5 years for the ARSACS population yielded adequate 
power, so we assumed the same duration.) The fast progression reference scenario (B) 
assumed a faster disease progression rate than the first, by multiplying the   parameter by 2 
(the other parameters remaining unchanged), and we assumed a shorter duration (2 years). 
The number of observations in each patient is hence 11 for the 5-year trial and 5 for the 2-
year trial. 

DE was simulated at 0 and 0.5 (for the type 1 error and power assessment, respectively). 
Figure 2 shows the graph of the logistic model using the population parameters for the slow 
and fast progression, for treated and untreated patients at three different times since disease 
onset at inclusion (5, 15 and 25 years).  
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In each of the reference scenarios, we varied other settings to study the impact on the type 1 
error and power of such trials. First, we investigated the influence of the duration of the trial, 
by using a shorter trial for the slow progression reference (2 years) and a longer trial for the 
fast progression reference (5 years). We also considered a lower magnitude of the residual 
error (�=0.5 with a 2 year and 5-year trial for the slow progression reference, and �=0.5 with 
a two-year trial for the fast progression reference). 

Time Since Onset (TSO) at inclusion was assumed to follow a uniform distribution between 0 
and 30 years 14. All scenarios were evaluated with N=100 patients (50 per arm). If, in a 
scenario, there is at least one design where one model has more than 99% power, all 
designs and models within that scenario were simulated again with 40 patients. In this 
additional simulation, the simulated patients were stratified on their time since onset at 
inclusion to ensure a balanced design (30%: 0-10 years, 30%: 10-20 years, 40%: 20-30 
years). The data of the first simulated data set is shown for all designs (slow progression, 5-
year duration, 100 patients, with �=2 and �=0.5) in Figure 3. 

2.4 Estimation models 

Each simulated trial was analysed using all observed data with 2 models, the logistic model 
used for the simulation and a simpler model assuming a linear evolution of the SARA score. 
For the logistic model, DE was estimated with no random effect and it was fixed to 0 for the 
crossover and delayed start designs when patients were untreated. Also, to ensure the 
identifiability of all parameters, � was fixed to its estimated value in the ARSACS population 
and its random effect was fixed to 0. For the linear model (with slope and intercept, both with 
random effects and a covariance), a fixed effect DE was introduced on the slope parameter. 
Time since inclusion was used as the independent variable, with the time since onset at 
inclusion as a covariate on the base and slope.  

In the slow progression reference scenario, we also assessed the performance of a sparser 
linear model, which we call sparse linear model. In this approach, we used the same linear 
model, but only the first, mid-trial and last observations were kept for each patient. It was 
made to mimic an end-of-study approach, while keeping the mid-trial point, which is needed 
for the crossover and delayed start designs. 

 

2.5 Evaluation 

For each scenario, we evaluated the empirical type 1 error of the Likelihood Ratio Test (LRT) 
comparing a model with and without treatment effect (type I error of 0.05), in a simulation 
where DE = 0. We also evaluated the power based on the LRT, corrected for the empirical 
type 1 error (i.e., with a statistical significance threshold chosen such that the type 1 error is 
5% at that threshold), by simulating a drug effect of 50% (DE=0.5). For each estimated 
proportion of significant LRT over the 500 replicates, its 95% confidence interval was 
constructed using an exact binomial test (using the Pearson-Clopper method).  

2.6 Implementation 

Simulations were performed using NONMEM 7.5.0 17, via the sse command in Pearl Speaks 
NONMEM (PsN) 5.3.1 18. Parameter estimation was performed using the SAEM 19 algorithm 
for the logistic and linear model, and using the FOCE 20 algorithm for the sparse linear model. 
Data analysis and visualisation were performed using R 4.1.2 21. NONMEM and PsN code for 
a scenario of the simulation study are available in a Zenodo repository (doi: 
https://doi.org/10.5281/zenodo.14755801). 
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3. Results 

 

3.1 Simulation study: Slow-progression case  

 

Figure 4 shows the type 1 error for the three designs (parallel, crossover and delayed start) 
and three models (logistic, linear and sparse linear) in the slow progression reference 
scenario (N= 100, duration 5 years and � =2). The type 1 error of the logistic model was 
controlled for the parallel and delayed start design, and slightly inflated for the crossover 
design. Type 1 error was controlled in every design for the linear model. For the sparse linear 
model, the type 1 error was controlled for the crossover and parallel designs but inflated for 
the delayed start design. Figure 5 shows the corrected power for the three designs. For the 
parallel design, the linear model had lower power than the logistic model (75.4%) and the 
linear end-of-treatment much lower power (49.2%), whereas the logistic model had the 
highest power (88%). If we were to apply a two-sample t-test with change from baseline, the 
type 1 error would be controlled and the power would be even lower than the sparse linear 
model, at 35.8%. The difference in power for the three designs was even more marked for 
the delayed start design. For the logistic model, the corrected power was highest for the 
parallel design (88.0%), closely followed by the delayed start design (83.4%), while the 
crossover design (44.4%) performed much worse. The two other models followed a similar 
trend across all three designs. In the supplementary material, Figures S1-1 and S1-2 show 
the violin plots of the error in the estimation of the treatment effect in the slow and fast 
progression case, with the nonlinear mixed effect model which were adequate both for DE= 0 
and DE = 0.5. 

 

We then investigated the influence of a smaller magnitude of residual error (�=0.5 and a 
duration 5 years) and the influence of a shorter trial duration (2 years and �=0.5) on the type 
1 error and corrected power. Type 1 error (Fig 5) was controlled in most scenarios for the 
logistic model and it was inflated in some scenarios for the linear model. In Figure 7, we 
show the corrected power for those scenarios. With a duration = 5 years and �=0.5, the 
power was close to 100% for the logistic model in all designs. All designs were therefore re-
evaluated with 40 patients to better compare the relative performance of each design. The 
corrected power is also close to 100% in almost all designs for the linear model. With a 
shorter duration of 2 years and a lower residual error, we observed powers similar to the 
slow progression reference scenario, with power going from 90% for the parallel and delayed 
designs to 57.2% for the cross-over design. In this scenario, the linear model had lower 
power than the logistic model, and the delayed start design performed as poorly as the 
cross-over design with power dropping by half compared to the parallel design. 
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3.2 Simulation study: fast-progression case 

 

In the fast progression reference scenario, the type 1 error was controlled for all designs for 
both the logistic and the linear models (Figure 8 bottom-left panel). The corrected powers 
(Figure 9 bottom-left panel), were similar to the slow progression reference case, with the 
highest power found for the parallel and delayed start designs, and a marked decrease for 
the crossover design. The corrected power for the linear model was much lower in all 
designs. 

Varying the magnitude of residual error (�=0.5) or considering a longer trial duration of trial 
did not impact type I error (Figure 8) which remained controlled in almost all scenarios for 
both the logistic and linear models. In Figure 9, we show the corrected power for those 
scenarios. For the logistic model, the power was close to 100% in all scenarios with 100 
patients, and remained high with 40 patients for the parallel and delayed start design, 
decreasing by 5 to 15% for the crossover design. For the linear model, the corrected power 
was close to 100% with 100 patients when �=0.5 for all 3 designs but was much lower with 
40 patients than the logistic model. 

 

4. Discussion 

 

In this work, we performed a simulation study to evaluate the type 1 error and power to 
detect a treatment effect through longitudinal modelling for different designs, progression 
rates, durations and magnitudes of residual error. The settings for the simulation study were 
derived from a model describing the evolution of SARA scores in patients with ARCA15. We 
compared the modelling approach with an end-of-treatment analysis evaluating change from 
baseline. 

In our settings, we used a sparse linear model to mimic an end-of treatment analysis, adding 
the mid trial point required for the crossover and delayed start designs to keep the same 
number of observations for all designs. The sparse linear model was outperformed by the 
logistic model. For the parallel design, using longitudinal modelling with non-linear mixed 
effect models enabled the power of the trial to go from 50% to 88% (and from 38% to 88% 
with a two-sample t-test with a change from baseline). The linear mixed effect model on the 
full data also performed worse than the logistic model, even when informing the base and 
slope parameters with the time since onset at inclusion in the study, although, in most 
scenarios, the power of the linear model was still relatively high when using a parallel design. 
This shows that part of the loss of power is attributable to model misspecification since data 
was simulated using a logistic model.  

In this study, we found that, in both the slow and fast progression case, the parallel design 
performs the best, followed by the delayed start design which had almost identical power in 
all scenarios. The crossover design had lower power than the other two. The poor 
performance of the crossover design was unexpected, as, in some settings, such as 
bioequivalence studies, it was shown to have better performance in terms of power than a 
parallel design 22, due to the fact that it allows to identify treatment effect using each patient 
as its own control. This loss of power was not due to a bias in the estimation of the treatment 
effect as shown in Supplementary Figures S1-1 and S1-2.  In our case, the 
underperformance of the crossover design could be explained by the fact that 
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neurodegenerative ataxias are slowly progressive diseases. Even though using non-linear 
models accounts for the temporal and carry-over effect, the identification of the treatment 
effect relies on the observation of a progression under treatment. In the particular context of 
ARCAs we found (Hendrickx et al.) 7 that for the ARSACS population which we used as a 
basis for the slow-progression scenario, the change in SARA score was very progressive 
and variable depending on disease stage (from 0.05 to 1 point/year). The SARA score also 
increases especially slowly in the earlier stages, and here with uniform inclusion in the first 
30 years after onset of symptom we expect SARA to progress by less than 0.25 points per 
year in half of the subjects included. This should also be contrasted with the high residual 
error (σ=2), implying that to identify a disease modifying treatment effect, it is important to 
observe the disease progression for a long period of time. In our simulation settings, the total 
duration was the same for all designs, so that disease progression was only followed for 2.5 
years under treatment for each patient in the cross-over design. Furthermore, here the 
variability in progression rate is termed quite low (<30%), whereas the strength of a 
crossover trial is to differentiate between the variability in disease progression ( ) and the 
treatment effect.  

In our settings, the delayed start design performed almost as well as the parallel design. An 
advantage is that all patients eventually get treated, just like in single arm trial, while 
preserving the ability to identify untreated progression within the trial. A delayed start design 
was evaluated by Wang et al. 12 for its ability to detect a drug-induced disease modification in 
neurodegenerative disorders, as with a lasting effect on disease progression, patients who 
receive the treatment only in the second period won’t catch up to the patients who received 
the treatment earlier, resulting in parallel curves between the two treatment groups. We 
believe that, in our settings, the delayed start design outperforms the crossover design 
because in one group, patients are observed under treatment for the full duration of the trial, 
unlike the crossover design.  

In this work, we based our simulation settings on natural disease progression in the ARSACS 
population of the ARCA registry assuming a disease modifying treatment effect on disease 
progression. Even though there are currently no disease-modifying treatments for most 
ARCAs, several clinical trials are ongoing for molecular therapies or gene therapies. For 
example, FDA just approved the use of levacetylleucine for Niemann-Pick disease type C 10 
(NPC).  It here followed  a clinical trial protocol 23 24 that will  evaluate the efficacy of the drug 
also – in addition to NPC -on two other ultra-rare neurodegenerative diseases, including 
Ataxia Telangiectasia, an ARCA with fast progression 25. They evaluated the efficacy of the 
compound for Niemann-Pick disease type C with 60 patients, with a crossover design 
including two 12-weeks periods using the SARA score as the primary endpoint. The authors 
were able to show evidence of efficacy, however, they also emphasized that the proposed 
design could only demonstrate the symptomatic effect of the treatment and that they would 
need a larger sample size and a longer trial to show an effect on disease progression. In 
their protocol, they included a single-arm open label extension where they would monitor the 
progression for two years under treatment to investigate the effect on the disease 
progression. This difference of assumption on treatment effect (symptomatic versus disease-
modifying) can explain why they could show a treatment effect with a crossover trial while, in 
our simulations, the crossover trial could not reach such levels of power, even with a duration 
of two years. The trial aiming to evaluate the efficacy of the compound on Ataxia 
Telangiectasia is a single arm trial 26, where patients are monitored 6 weeks with treatment 
and also for a 6-week post-treatment washout period. There are currently 39 patients 
enrolled (patients of 6 years of age and older). The primary outcome measured is the Clinical 
Impression of Change in Severity (CI-CS) (7-point Likert scale, from -3=significantly worse to 
+3= significantly improved) and the SARA score is measured as a secondary outcome. 
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Ataxia Telangiectasia could be compared to our fast progression reference. Again, the trial 
duration is much shorter but the assumption on the magnitude of treatment effect is different. 
Bruegermann et al. 27 monitor the evolution of the SARA score on 6 patients with Ataxia 
Telangiectasia with the same compound. They found that, after one month of treatment, the 
SARA score is significantly lower (by 4 points on average), and that the SARA score goes 
back up after patients stop the treatment, suggesting the effect could be symptomatic. 
However, this trial design confirms that it would be feasible (if these effect sizes can indeed 
be independently confirmed) to enroll 40 patients in the fast-progression case. In addition to 
molecular therapies, clinical trials investigating the efficacy of gene therapy are also being 
conducted in ARCAs. In fact, the three ongoing gene therapy clinical trials in Friedrich’s 
Ataxia 28 29 30, will follow patients for 5 years, with a disease progression in this genetic 
diagnostic similar to that of ARSACS 14, but with much lower sample sizes, as those are 
phase 1 trials.  

The parameters we used in the slow progression scenario correspond to the estimates found 
when modelling the change in SARA score in the ARSACS patients of the ARCA registry 7, 
where we found a high variability of the SARA score ( �=2) in comparison to the yearly rate 
of disease progression. The implication of the poor signal/noise ratio as we saw in our 
simulations is the longer trial duration needed to discriminate natural progression from slower 
progression under treatment. Reducing the variability in the SARA score would open the 
possibility for shorter trials, as shown by the simulations performed with �=0.5. Grobe-Einsler 
et al. 31, evaluated the property of repeated measures of the score. They selected 5 subitems 
of the score which can be videotaped by the patient themselves without requiring an on-site 
examiner (excluding the sitting and two fine motor movement subitems), and evaluated the 
score on 12 patients with ataxia twice a day for 14 days. They notably highlighted that there 
was no statistically significant training effect over the two-week period and that there was a 
four-fold reduction of variance of residual error by averaging all SARA assessments. This 
could confirm that the high residual variability found in our model is inherent to the SARA 
score and that repeating measures could improve the assessment of an individual’s SARA 
score, even though this could be difficult to conduct in practice. In our simulation framework, 
we tested scenarios with a lower magnitude of residual error. We could assume that such a 
scenario would be feasible by either reporting an average SARA score over several 
measurements or increasing the visit frequency. Additionally, in our framework, for simulation 
and estimation the SARA score (which ranges from 0 to 40 points) was treated as 
continuous. We could also expect a small drop in power in all scenarios if the simulated 
score was discretized before the estimation. Alternatively, another modelling approach could 
be applied, with an Item Response Theory (IRT) model for example 14,32, which would keep 
the discrete nature of the data and which would leverage information from each sub item of 
the SARA score instead of the total score. 

In the simulation framework, we chose the SARA score as the primary endpoint to assess 
treatment efficacy. SARA score is the currently most widely used outcome to assess disease 
severity in ataxia patients. We chose the SARA score because it is included in most clinical 
trials, at least as a secondary endpoint or used in the inclusion criterion. It is a composite 
score comprised of 8 subitems evaluating gait, stance, sitting, speech, and 4 other items for 
fine motor movements. It was shown in Weyer al.33 to be a reliable and valid measure is 
disease severity in patients with ataxia, but it was weakly correlated to disease duration (time 
since onset of symptoms). Furthermore, the FDA is also investigating a modified version of 
the SARA score, called the modified functional Scale for Assessment and Rating of Ataxia (f-
SARA). In fact, Potashman et al. 34 discuss that the score was modified to only include the 
gait, stance, speech and sitting items, because, in the context of a clinical trial that would last 
one year, the other items were considered not sensitive enough to capture change in disease 
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progression. Therefore, even though, in patient registries, the SARA score would be more 
meaningful to capture long term disease progression- and also upper limb functioning , the f-
SARA score could be more relevant in the context of a clinical trial with a shorter duration, 
where the score might be more sensitive to change- although it would lose informational 
value, as shown by our recent IRT models of the SARA 14,32. Finally, for ARCAs, composite 
clinical scores are being investigated because there are currently no validated biomarkers 
that can be applied to all genotypes. However, other outcomes are being investigated, such 
as quantitative motor assessment, called digital biomarkers 35. The goal is to quantify 
variability and stability of patient movement using sensors. They are being developed and 
being validated as a quantitative and continuous metrics that could be used as an outcome in 
clinical trials 36. Fluid biomarkers are also being investigated, such as the Neurofilament Light 
chain (Nfl), a biomarker of neurodegeneration. In fact, Donath et al. 37 showed that  Nfl levels 
were significantly higher in Ataxia Telangiectasia patients than healthy individuals. It was 
also shown in Li et al. 38 that, for patients with Spinocerebellar ataxia type 3, serum levels of 
Nfl were significantly correlated with disease severity (with both the ICARS and SARA 
scores). This biomarker is also included as a secondary outcome in a clinical trial 39 that 
evaluates the effect of a compound on patients with Ataxia Telangiectasia. Given the fact 
that, in our simulation framework, we assume that the SARA score is continuous, our 
modelling approach would be compatible with such continuous biomarkers. 

 

In our work, the simulation framework for clinical trial designs was built upon a previously 
built non-linear mixed effect model  7, and several assumptions were made. The four-
parameter logistic model was built using data from the ARCA registry 15, a multicentric 
registry of patients with Autosomal Recessive Cerebellar Ataxia. Then, since there is 
currently no disease-modifying drug approved for most ARCAs, we hypothesised that the 
treatment would reduce the   parameter, which implies that the treatment would have an 
effect on both the disease progression rate and the inflection point of the logistic curve. We 
could have implemented treatment effect differently, for example as a change in �, which 
controls the inflexion point, making patients progressing later, or in � , assuming that the 
treatment would decrease the maximum score reachable by a patient, or a combination of 
both. Also, as discussed by Bermova-Ertl et al. 10, it is possible that a disease modifying 
treatment could also have a symptomatic effect, meaning that, for the patients, the SARA 
score could also decrease temporarily. Then, we also made an assumption on the inclusion 
criterion of the trials. The range of 0 to 30 years since onset of the disease was chosen 
because, in the slow progression case, it would translate to a range of 0-20 points of SARA 
score and, according to Benatar et al 40, patients with a neurodegenerative disease would 
benefit from a clinical trial for a disease modifying drug when they are at most at a mild stage 
of the disease. Even though recruiting patients during the later stages of the range (20-30 
years) would yield higher power 7,14, an inclusion criterion based on an heterogeneous time 
since onset at inclusion was chosen because it would be the most realistic possibility given 
the rare nature of the disease, which was confirmed by many of the ongoing clinical trials 
presented above, some of which included patients starting at 6 years of age. However, since 
this range was chosen for the slow progression case, it might not be completely comparable 
for the fast progression case (on average, patients would reach a SARA score of 20 points 
15 years after the onset of symptoms). An important assumption in model-based analyses is 
that the model is well specified, meaning, in our case, that the logistic model is the simulation 
model describing the evolution of the SARA score. In our simulation framework, the logistic 
model was therefore advantaged compared the linear and sparse linear models, even though 
the parameters of the logistic model were re-estimated. While a four-parameter logistic 
model is a flexible and generic model, other, more robust, approaches could have been used 
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to handle model misspecification, such as model averaging 3,41,42. Finally, to identify a 
treatment effect, we used the likelihood ratio test, which relies on an asymptotic assumption. 
In non-linear mixed effect models, it translates to having sufficient patients and observations 
per patient. In our simulations, we considered that this condition was met with 40 and 100 
patients, with 6-11 observations per patients. However, if we wanted to assess smaller trial 
populations (<20), we would need to use other statistical tests that do not rely on that 
asymptotic assumption. 

 

5. Conclusion 

In this work, we proposed a simulation framework to compare clinical trial designs and 
settings in the context of rare neurological diseases, using as showcase basis for the 
simulations the disease group of ARCAs, characterised by small sample sizes (less than 
100), patient heterogeneity (in terms of disease severity at inclusion), use of real-world data, 
lack of curative/efficient treatments. We studied the influence of using longitudinal models 
versus more standard statistical analyses, the influence of disease progression rate, trial 
duration and magnitude of residual error on the type 1 error and power on a clinical trial that 
would quantify a disease-modifying treatment effect. In our settings the parallel performed 
best. The delayed start design had similar performance with the advantage that all patients 
are treated in this design. In our framework, the crossover design had lower power, mainly 
due to the slow disease progression coupled with high residual error, requiring to observe 
disease progression for a longer time (at least in a disease-modifying treatment setting, as 
tested here). Reducing the sample size to match disease rarity would require smaller 
residual variability in the primary outcome, here the SARA score, to better identify disease 
progression, which would need to be achieved by less noisy endpoints or more frequent 
assessments.  
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Figure Legends:  

 

Figure 1. Schematic representation of the parallel, crossover and delayed start designs for a 
trial, with a change mid-trial in the cross-over and delayed start designs. 

 

Figure 2. Evolution of Sara score versus time since onset with the logistic model using the 
population parameters. Each panel represents a time since onset at inclusion (5, 15 and 25 
years), full or dashed lines represent two different progression rates (  = 0.11 or 0.22 
respectively), the black and green colours represent if the patient is untreated or treated 
(assuming a drug effect of 0.5), and the grey box represents the trial period. 

 

Figure 3. Simulated data set with a parallel (left), crossover (middle) or delayed start (right) 
design, with a duration of 5 years, N=100 patients. The top two rows represent �=2, and the 
bottom two rows �=0.5, as a function of time since onset of symptoms (top row) or time since 
inclusion (bottom row). Each panel represents a randomization group, lines join the 
observations of a patient. Treatment status is differentiated by colour (black:  patients that 
are not under treatment; green: patients under treatment). In the graph versus time since 
inclusion, the bold line represents the median observation at each time point in each panel. 
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Figure 4. Type 1 error for the three designs and three analysis models on the slow 
progression scenario without a drug effect (DE=0%), N = 100 and assuming a trial duration 
of 5 years. The colours of the bars correspond to the model used for estimation 

 

Figure 5. Corrected power for the three designs and three analysis models on the slow 
progression scenario assuming a drug effect DE=50%, N = 100 and a trial duration of 5 
years. The colours of the bars correspond to the model used for estimation 

 

Figure 6. Type 1 error for the slow progression reference and the scenarios with duration = 5 
years/ �=0.5 and duration = 2 years/�=0.5. The colours of the bars correspond to the model 
used for estimation. The upper left panel with a grey background highlights the reference 
scenario (slow progression). In the upper right panel, darker and lighter shades represent 
N=100 and N=40, respectively. 

 

Figure 7. Corrected power for the slow progression reference and the scenarios with 
duration = 5 years/ �=0.5 and duration = 2 years/�=0.5. The colours of the bars correspond 
to the model used for estimation. The upper left panel with a grey background highlights the 
reference scenario (slow progression). In the upper right panel, darker and lighter shades 
represent N=100 and N=40 respectively 

 

Figure 8. Type 1 error for the fast progression reference and the scenarios with duration = 5 
years/ �=2 and duration = 2 years/�=0.5. The colours of the bars correspond to the model 
used for estimation. The upper left panel with a grey background highlights the reference 
scenario (fast progression). In the upper left and bottom right panels, darker and lighter 
shades represent N=100 and N=40 respectively. 

Figure 9. Corrected power for the fast progression reference and the scenarios with duration 
= 5 years/ �=2 and duration = 2 years/�=0.5. The colours of the bars correspond to the 
model used for estimation. The upper left panel with a grey background highlights the 
reference scenario (fast progression). In the upper left and bottom right panels, darker and 
lighter shades represent N=100 and N=40 respectively. 
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