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Abstract 

In the general human population, aging is associated with a rise in systemic 

inflammation, primarily involving innate immune pathways related to interferon (IFN), toll-like 

receptor, and cytokine signaling. In systemic lupus erythematosus (SLE), a prototypical 

systemic autoimmune disease, aging is distinctly associated with improvements in disease 

activity, suggesting a unique relationship between aging and inflammation in this disease. Using 

a multi-omic approach incorporating transcriptional profiling, single cell RNA sequencing, 

proteomics and methylation analysis, we studied age-related changes in the immune profiles of 

287 SLE patients between 20 and 83 years old, and compared the results against 928 healthy 

controls aged between 21 and 89 years old. In contrast to the increase in inflammatory gene 

expression that occurs with aging in most healthy adults, SLE patients exhibited the opposite. 

Most notable was a decrease in type I IFN signaling that was evident across multiple cell types, 

with CD56-dim natural killer (NK) cells, CD4+ effector memory T cells, and naïve B cells 

exhibiting the most significant differences. We found that aging in SLE patients was also 

associated with decreased IFN-a2 and IFN-l1 levels, and differential methylation of the 

genome. Notably, of the genes both downregulated and hypermethylated with older age, IFN-

related genes were disproportionately represented, suggesting that age-related decreases in 

IFN signaling were driven in part by epigenetic silencing. Both SLE patients and healthy controls 

demonstrated age-related declines in naïve T cells and lymphoid progenitor cells, but only SLE 

patients demonstrated age-related increases in CD56-dim NK cells. Taken together, our work 

provides new insight into the phenomenon of inflammaging and the unique clinical improvement 

in disease activity that occurs in SLE patients as they age.  
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Introduction 

Aging in the healthy human population is accompanied by an increase in systemic 

inflammation, predominantly involving innate immune pathways related to interferon (IFN), toll-

like receptor, and cytokine signaling1–4. This state of age-related immune dysregulation, 

commonly referred to as inflammaging, is implicated in the pathophysiology of several major 

chronic diseases such as cardiovascular disease, diabetes, cancer, and osteoarthritis, each of 

which typically increases in both prevalence and severity as one ages5. While the mechanisms 

underlying age-related inflammation are incompletely understood, a growing body of literature 

implicates mitochondrial dysfunction, oxidative stress, and the accumulation of damage-

associated molecular patterns (DAMPs), which together drive inflammatory gene expression 

and cytokine release6. 

Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease 

characterized by loss of tolerance to nuclear antigens, autoantibody production, and pathogenic 

inflammation involving multiple organ systems. Affected individuals may experience debilitating 

symptoms, impaired quality of life, and premature mortality7. Interestingly, in contrast to most 

chronic inflammatory diseases, systemic inflammation from SLE appears to improve in older 

age. For instance, late-onset SLE is characterized by lower disease severity compared to 

patients with disease onset under 50 years of age8,9, and increasing age is associated with both 

lower disease activity9–11 and lower risk of developing lupus nephritis12. Though age-related 

improvements in SLE are commonly observed in clinical practice, the mechanisms for this 

unique inverse relationship between age and systemic inflammation in SLE are poorly 

understood. 

Here, we seek to examine the relationship between age and pathogenic inflammation in 

SLE by conducting multiomic analysis—whole blood transcriptional profiling, single-cell RNA 

sequencing (scRNA-seq) and epigenetic analysis—on individuals with SLE across the adult age 

spectrum. We find a distinct reversal of age-related innate immune activation, most notably 
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involving IFN signaling, in patients with SLE, and discover that this relationship is partly 

mediated by epigenetic changes in type-I IFN genes. 

 

Results 

Study cohorts 

We performed a prospective observational study of 287 SLE patients enrolled in the 

California Lupus Epidemiology Study (CLUES)13. SLE participants ranged in age from 20–83 

years, were predominantly female, and represented diverse racial and ethnic backgrounds (Fig. 

1, Supp. Fig. 1, Supp. Tables 1A, 1B). We evaluated the impact of aging on gene expression, 

biological pathway activation, immune cell populations, protein expression and DNA methylation 

using a combination of whole blood bulk RNA-seq (n=271), peripheral blood mononuclear cell 

(PBMC) scRNA-seq (n=148), proximity extension assay proteomics (n=268), and bisulfite 

sequencing (n=267) (Fig. 1, Supp. Fig. 2A-C). We next compared transcriptomic findings in 

SLE patients against those from healthy controls ranging in age from 21–89 years, leveraging 

data from the Rotterdam population surveillance study14 (n=880, whole blood microarray, Supp. 

Data 1) and the CLUES cohort (n=48, scRNA-seq, Supp. Data 2). 

 

SLE disease activity decreases with age 

We first asked whether age was associated with changes in SLE disease activity within 

the CLUES cohort by calculating the Systemic Lupus Erythematosus Disease Activity Index 

(SLEDAI) score15 for study participants as a function of age. We found a significant negative 

relationship between age and SLEDAI score after controlling for sex and race/ethnicity (P = 

1.5e-3). This demonstrated that, as expected, SLE disease activity improved with higher age in 

our cohort (Supp. Fig. 3).  
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Figure 1. Study Overview. This study evaluated 287 patients with systemic lupus erythematosus (SLE) 
and 928 healthy controls. Age related differences in gene expression, biological pathway activation and 
immune cell populations were assessed in blood using bulk RNA sequencing (n=271 SLE, n=880 healthy 
controls) and single-cell RNA sequencing (scRNA-seq) (n=148 SLE, n=48 healthy controls). Epigenetic 
changes were assessed with bisulfite sequencing (n=267 SLE). 
 

Aging in SLE patients is associated with downregulation of interferon and other innate-

immune response genes. 

We next analyzed whole blood RNA-seq data from SLE patients (n=271) to evaluate 

age-related changes in gene expression. We identified 319 genes significantly associated with 

age (adjusted P (Padj) < 0.05), controlling for sex and race/ethnicity, and treating age as a 

continuous variable (Fig. 2A, Supp. Data 3). Using gene set enrichment analysis (GSEA), we 

explored the biological function of these genes and found that older age was associated with a 

striking downregulation of innate immune pathways, most notably IFN-a/b and IFN-g signaling 
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(Fig. 2B, Supp. Data 3). Repeating this analysis in exclusively female SLE patients (n=240) 

yielded 300 genes significantly associated with age and the same significantly downregulated 

pathways on GSEA (Supp. Fig. 4, Supp. Data 4). 

Additionally, to investigate whether differences in treatment with immunosuppressive 

agents might have influenced our results, we performed a sensitivity analysis adjusting for 

treatment with systemic glucocorticoids among the SLE patients for whom we had medication 

information (n=267). Our results remained largely unchanged, with GSEA still demonstrating 

significant downregulation of (IFN)-a/b, IFN-g and other innate immune-related pathways (Supp. 

Fig. 5, Supp. Data 5). We also performed sensitivity analyses adjusting for hydroxychloroquine 

treatment (Supp. Fig. 6, Supp. Data 6) or body mass index (Supp Fig. 7, Supp. Data 7), and 

found that in both analyses results were largely unchanged. 

Next, we sought to perform a similar analysis in healthy control patients by leveraging a large 

public blood transcriptomic dataset from the Rotterdam Study14 (n=880). Healthy control 

participants from this study ranged from 46-89 years old, 46% of whom were women. Analyzing 

all individuals, we identified 3972 genes significantly associated with age, controlling for sex 

(Padj < 0.05, Fig. 2C, Supp. Data 8). Consistent with prior studies of aging and blood gene 

expression1–4, GSEA demonstrated broad upregulation of innate immune signaling pathways 

with older age, including many of the same pathways that were downregulated with age in SLE 

participants (Fig. 2D). In addition, we observed significant downregulation of B-cell receptor 

activation pathways with age, consistent with prior observations demonstrating impaired 

adaptive immune responses in older adults3,16. 

The opposing directionality of age-related changes in canonical interferon-stimulated 

gene (ISG) expression between SLE participants and healthy controls was well exemplified by 

ISG15, the expression of which significantly decreased with age in SLE patients (Padj = 1.5e-7, 

Fig. 2E) but increased with age in the healthy controls (Padj = 7.0e-4, Fig. 2F). We noted that 

some ISGs were statistically significantly downregulated with higher age in SLE patients (e.g., 
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IFIT1) without significant age-related changes in controls, while others are both significantly 

downregulated with higher age in SLE and significantly upregulated with age in controls (e.g., 

IFI27) (Supp. Fig. 8). We calculated an IFN-a/b score based on the average expression of 

genes in the IFN-a/b signaling pathway, and found that it significantly decreased with older age 

in SLE patients (Supp. Fig. 9A) but demonstrated the opposite relationship in controls (Supp. 

Fig. 9B). We observed a similar dynamic for an IFN-g score (Supp. Figs. 9C, D). Adjusting for 

age of SLE diagnosis did not significantly alter the inverse relationship between age of SLE 

patient and either of the calculated IFN scores (Supp. Fig. 10A, B). Collectively, these findings 

point to decreasing ISG expression as an important mediator for clinical improvements in 

disease activity observed among individuals with SLE as they grow older.  
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Figure 2. Aging associates with reduced interferon gene expression in SLE patients but not healthy 
controls. A Volcano plot highlighting genes with significant age-related changes in expression in SLE 
patients (n=271), treating age as a continuous variable. P values were calculated using the limma package 
and adjusted with the Benjamini-Hochberg method. B Gene Set Enrichment Analysis (GSEA) 
demonstrating immune-related biological signaling pathways in SLE patients. Filled circles represent 
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pathways with a Benjamini-Hochberg adjusted P value < 0.05. A positive normalized enrichment score 
value represents upregulation of the pathway with older age and a negative value represents 
downregulation with older age. C Volcano plot highlighting genes with significant age-related changes in 
expression in healthy controls (n=880), treating age as a continuous variable. P values were calculated 
using the limma package and adjusted with the Benjamini-Hochberg method. D GSEA demonstrating 
immune-related biological signaling pathways in healthy controls. E, F Linear regression assessing 
relationship between expression of the canonical interferon stimulated gene ISG15 and age in (E) SLE 
patients and (F) healthy controls. Expression was measured by log2 counts per million. Slope refers to the 
change in normalized gene expression per year of age. P values were calculated using limmaand adjusted 
with the Benjamini-Hochberg method. 
 

Aging in SLE patients is associated with interferon downregulation at the protein level  

We next investigated whether these observations could be generalized to the protein level 

by measuring the plasma concentrations of 48 inflammatory cytokines (Supp. Data 9) in SLE 

patients using the Olink proteomics proximity extension assay. We found that levels of 12 proteins 

were significantly associated with age (Fig. 3A, Supp. Data 9). Notably, we found that IFN-a2 

(Fig. 3B) and IFN-l1 were significantly downregulated with higher age, demonstrating that age-

related decreases in interferon signaling occur both at the transcriptional and protein levels in 

SLE.   We also recognized that several of the upregulated proteins (e.g., TREM1, FGF21) have 

previously been associated with older age and inflammaging17,18. 
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Figure 3. Proteomic analysis demonstrates that aging associates with lower interferon levels in SLE 
patients. A. Volcano plot highlighting inflammatory proteins significantly associated with age in SLE 
patients (n=268), treating age as a continuous variable. 48 inflammatory proteins measured by Olink 
proximity extension assay. All concentrations were log10-transformed after the addition of a small constant 
(10-6) to avoid taking the log of 0. The ribbon represents the confidence interval along the regression line. 
B. Linear regression assessing the relationship between expression of IFN-a2 and age in SLE patients. 
Slope refers to the change in protein concentration per year of age. In A and B, P values were calculated 
using linear regression and adjusted with the Benjamini-Hochberg method. 
 

Age-dependent changes in immune cell populations differs in SLE patients compared to 

healthy controls 

Next, we sought to evaluate age-related transcriptional changes at the single cell level in 

PBMCs from SLE patients (n=148) and healthy controls from the CLUES cohort (n=48) (Supp. 

Table 1B). Leveraging scRNA-seq data19 from 1.2 million PBMCs across all patients, we 

identified a diversity of immune cell populations (Fig. 4A, Supp. Fig. 11). The proportions of 

several cell types varied with age, with differences observed based on SLE status (Fig. 4B). For 

instance, proportions of CD56-dim NK (NKdim) cells, a NK cell subpopulation with greater 

cytotoxic activity20, demonstrated a significant positive association with age in the SLE group, a 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 28, 2025. ; https://doi.org/10.1101/2025.01.27.25321143doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.27.25321143


trend that was not observed in healthy controls. Conversely, only controls demonstrated age-

dependent increases in the proportions of CD4+ effector memory T cells (CD4+ TEM) and CD4+ 

regulatory T cells (CD4+ Treg). In both SLE and healthy control patients, the proportions of naïve 

CD8+ T cells (CD8+ Tnaïve) and progenitor cells (Progen) declined with age (Fig. 4B). 

 

Age-dependent immune cell gene expression differs between SLE patients and healthy 

controls 

To determine which immune cell populations were driving age-related changes in innate 

immune signaling in SLE patients, we performed pseudobulk differential gene expression 

analysis within each cell type, treating age as a continuous variable and adjusting for sex and 

race/ethnicity. In SLE patients, we found that several cell types exhibited age-related changes in 

gene expression (Supp. Fig. 12). Amongst lymphocytes, these included the NKdim cells, naïve B 

cells (Bnaïve), CD8+ Tnaïve, CD4+ TEM, CD4+ Tnaïve and CD4+ Treg. NKdim, CD4+ TEM and Bnaïve cells 

exhibited the greatest age-associated changes in gene expression (Figs. 4C, D), reflecting 

significant downregulation of many of the key pathways found to be associated with age in the 

bulk RNA-seq analysis (Fig. 2C), including IFN-a/b, IFN-g, IL-1, and cytokine signaling. This 

suggested that transcriptional changes in NKdim and CD4+ TEM cells with respect to age may be 

drivers of this trend. While GSEA of scRNA-seq data from a comparatively small cohort of 

healthy control patients did not yield many significantly enriched pathways (Fig. 4C, D), genes 

related to IFN-a/b and IFN-g signaling were upregulated with age in most T-cell and monocyte 

populations (Fig. 4D). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 28, 2025. ; https://doi.org/10.1101/2025.01.27.25321143doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.27.25321143


 
Figure 4. Aging associates with different immune cell frequencies and reduced expression of innate 
immunity genes in SLE patients versus controls. A Uniform Manifold Approximation and Projection plot 
of immune cell types identified by scRNA-seq (n=148 SLE patients, n=48 healthy controls). B Bar plots 
depicting change in the percentages of immune-related blood cell types with age, including those that are 
significantly increased (orange for SLE, red for controls) or decreased (purple for SLE, blue for controls). 
Statistical significance (indicated by filled bars) determined based on an adjusted P value < 0.05, calculated 
using linear modeling with Benjamini-Hochberg correction. C Gene Set Enrichment Analysis (GSEA) 
demonstrating changes in immune-related signaling pathways from the Reactome database, in SLE 
patients and in healthy controls for NKdim and CD4+ TEM cells. A positive normalized enrichment score (NES) 
represents upregulation of the pathway with older age, and a negative value represents downregulation 
with older age. Filled circles represent significant pathways with a Benjamini-Hochberg adjusted P value < 
0.05. D Dot plots depicting the NES of four immune-related signaling pathways from panel C for each cell 
type, for SLE patients (left) or healthy controls (right). For each group, upregulation (orange for SLE and 
red for controls) or downregulation (purple for SLE and blue for controls) of pathway is determined based 
on the NES. Black outlines on dots indicate significant (based on Benjamini-Hochberg adjusted P value < 
0.05) regulation. cDC, conventional dendritic cell; cM, classical monocyte; ncM, non-classical monocyte. 
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Aging leads to hypermethylation of interferon-related genes in SLE patients 

Hypothesizing that epigenetic modification might underlie the age-dependent 

downregulation of innate immune gene expression observed in SLE, we evaluated the DNA 

methylation status of CpG sites from 267 patients in the CLUES cohort. We found 48,675 CpGs 

hypermethylated with age and 61,980 hypomethylated with age out of a total 646,554 CpGs 

(Fig. 5A). Of the 2,035 CpGs mapped to genes with age-related decreases in expression by 

bulk RNA-seq analysis, 230 were hypermethylated (P=5.3e-10 by hypergeometric test, Fig. 

5B). Intriguingly, within this set of 230 CpGs, the majority (n=133) mapped to genes that had 

biological functions related to IFN signaling (Fig. 5C). These included many of the same genes 

found to be most downregulated with age in SLE patients, and upregulated with age in healthy 

controls (Fig. 2E, F, Fig. 5D) as well as other canonical ISGs with roles in SLE pathogenesis 

(e.g., RSAD221,22). As a complementary approach, we also assessed aging-associated genes 

for which methylation correlated with decreased expression, (Supp. Fig. 13, Supp. Data 10), 

and noted that most of the significantly correlated genes (91%) were related to IFN signaling. 

Together, these findings suggested that in SLE, age-related hypermethylation of IFN-related 

genes could contribute to their suppressed expression.  
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Figure 5. Aging results in hypermethylation of interferon-related genes in SLE. A Volcano plot 
demonstrating differentially methylated CpGs based on age at an adjusted P value < 0.05. B 
Hypermethylated CpGs mapping to genes significantly downregulated with age. P value calculated 
based on hypergeometric test. C Scatter plot showing the relationship between age-associated 
changes in gene expression by bulk RNA-seq and changes in CpG methylation levels in SLE patients, 
focusing on the 230 overlapping CpGs from panel B. CpGs mapping to interferon-related genes 
(n=133) are highlighted in purple, the remaining genes are plotted in gray. D Age-related changes in 
methylation levels of CpGs mapping to representative interferon-related genes in SLE patients, 
including ISG15 (cg04788999), OAS3 (cg08147692), and RSAD2 (cg10771443). The lines indicate 
the general relationship between age and methylation for the gene, and the ribbons indicate the 
confidence interval for this estimate. P values were calculated using linear modeling and were adjusted 
with the Bonferroni-Hochberg method. 
 

Innate immune signaling remains persistently higher in SLE patients versus controls 

across the age spectrum 

Our results so far demonstrated opposing directionality in age-related changes in innate 

immune gene expression between SLE patients and controls. Whether these trajectory 

differences ultimately resulted in complete normalization of inflammatory signaling in SLE patients 

in older age remained unclear. We thus asked how innate immune profiles compared between 
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SLE patients and controls within three different age groups (under 50, over 50, and over 65 years 

old), using our scRNA-seq data. We restricted this analysis to females, to avoid confounding by 

known sex-based differences in aging-related gene expression. 

We identified 5,435 genes significantly associated with SLE status in female patients 

under 50 years of age (n=110), controlling for race/ethnicity (Padj < 0.05, Supp. Fig. 14A). GSEA 

demonstrated significant upregulation of type I and type II IFN signaling in SLE patients compared 

to controls (Supp. Fig. 14B). Repeating these analyses in patients over 50 years of age (n=71) 

demonstrated similar upregulation of innate immune pathways in SLE (Supp. Fig. 14C, D), as 

did the same analysis in patients over 65 years of age (n=17) (Supp. Fig. 14E, F). Collectively, 

these findings demonstrated that while there is a reduction in IFN signaling with older age in SLE 

patients, innate immune signaling nevertheless remains significantly upregulated in SLE patients 

compared to healthy controls across the age spectrum. 

 

Discussion 

In this study, we report that SLE patients demonstrate a unique relationship between 

increasing age and inflammatory gene expression compared to the general population. As 

opposed to an increase in the expression of innate immune genes with older age in healthy 

individuals, SLE patients exhibited the opposite, most notably for genes related to IFN signaling. 

Using scRNA-seq and methylation analysis, we demonstrate that this occurs across multiple cell 

types, and is mediated, at least in part, by epigenetic hypermethylation of IFN-related genes. 

Across mammals, gradual increases in low level inflammation are an inevitable feature of 

older age, contributing to a number of chronic diseases that span a diverse range of organ 

systems2,23,24. Among the general population, a growing body of literature has demonstrated that 

increased activation of pattern recognition receptors with aging drives downstream increases in 

inflammatory gene and protein expression, including type I and II interferons2,3,25. This is 

juxtaposed against immunosenescence, characterized by diminished production of naïve T cells, 
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impaired T cell signaling, and reduced responses of diverse immune cells to antigenic 

stimulation26. Our analyses of healthy control transcriptomic and scRNAseq data largely reflected 

these established findings. 

In SLE, however, the relationship between age and systemic inflammation markedly 

differed compared to healthy controls. We initially considered the possibility that this could 

represent a complete reversal of inflammaging in SLE. However, a direct comparison of scRNA-

seq data from female SLE patients and controls over 65 years of age demonstrated higher 

inflammatory gene expression in those with lupus. This finding suggests that while innate 

inflammatory pathways are downregulated with increasing age in SLE, expression of 

inflammatory genes remains elevated relative to healthy controls throughout the lifespan, even in 

older age. 

Elevated IFN-a levels were first described in SLE patients more than 40 years ago27, 

and more recent studies have demonstrated that augmented type I IFN gene expression 

characterizes the blood transcriptome of most SLE patients28,29. Furthermore, higher IFN levels 

are associated with worse disease activity30, and directly contribute to the molecular 

pathogenesis of SLE31,32. While mechanisms underlying this remain incompletely understood, 

reduced ISG promoter methylation leading to augmented gene expression appears to be at 

least partially involved33,34. 

Intriguingly, we find that in SLE, older age is associated with hypermethylation of 

multiple canonical ISGs such as ISG15, OAS3 and RSAD2. Amongst genes both 

downregulated and hypermethylated with age in SLE patients, IFN-related genes are 

overrepresented. This suggests that age-related epigenetic modifications may drive suppression 

of type I IFN signaling and may at least partially explain the negative association between 

reduced SLE activity and advanced age observed in clinical practice9,10,35. 

Aging is characterized by changes in immune cell populations36. In particular, adaptive 

immune responses decline with age, leading to a variety of complications ranging from 
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diminished vaccine responses to less effective defense against microbial pathogens such as 

SARS-CoV-23,16. Reflecting this, we found that both SLE patients and controls demonstrated 

age-related declines in naïve T cells and lymphoid progenitor cells. Only SLE patients, however, 

demonstrated age-related increases in NKdim cells, which have greater cytotoxic potential and 

are the dominant NK cell subset in the peripheral blood20. NK cytopenia is a well-described 

feature of SLE31,37 that may be caused in part by elevated levels of IFN-a, which contributes to 

activation-induced apoptosis of NK cells38. It is thus possible that age-related decreases in IFN 

signaling contribute to the commensurate increases in NKdim cells that we observed. 

Of the immune cell populations studied, gene expression in NKdim, CD4+ TEM and Bnaïve 

cells was most significantly influenced by age in SLE patients. Notably, each of these cell types 

has been implicated in SLE pathogenesis. CD4+ TEM, for instance, are expanded in SLE39, and 

disruption of the relationship between CD4+ Treg and CD4+ TEM adversely impacts T cell 

activation and contributes to disease progression40. Given the importance of autoantibodies in 

SLE, B cells have a prominent role in disease pathogenesis and are the target of several 

important therapeutic agents41. Whether additional epigenetic modifications or alternative 

regulatory processes are responsible for age-related downregulation of interferon signaling at 

the gene and protein levels remains to be studied. 

This study has several strengths, including affording new insights into the relationship 

between aging and inflammatory gene expression in SLE, a large sample size, detailed clinical 

phenotyping, and a multi-omic analytic approach incorporating bulk RNA-seq, scRNA-seq, 

proteomics and methylation assessment. Our study also has limitations, including a cross-

sectional design versus a longitudinal design following individuals from youth into older age. 

Overall disease activity in the cohort was low, and future studies will be needed to determine if 

findings also extend to SLE patients with a greater range in SLEDAI scores. In our primary bulk 

transcriptomic analysis, we relied on publicly available microarray data to provide comparative 

transcriptomic assessment of healthy controls across the age spectrum, as we did not have 
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healthy control patients with bulk RNA-seq data from the CLUES cohort. Fortunately, age-

related changes in inflammatory gene expression have been extensively characterized, and the 

Rotterdam Study control group primarily served to recapitulate established results using a 

consistent analytic approach. Moreover, with scRNA-seq, we were able to directly compare 

inflammatory gene expression between SLE patients and controls using a single, consistent 

method. Finally, we also acknowledge the risk of survivorship bias as patients with severe lupus 

are at risk for premature mortality and thus may not have been well represented among the 

oldest patients in the CLUES cohort. 

In summary, our findings indicate that patients with SLE exhibit age-related decreases in 

the expression of type I IFN and other innate immune genes in the peripheral blood, contrary to 

the trends observed in the general population.  
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Methods 

 

Patient enrollment 

We studied participants in the California Lupus Epidemiology Study (CLUES), an 

ongoing prospective longitudinal cohort of adults with SLE, as well as healthy controls. The 

UCSF Institutional Review Board approved this study (protocol number 14-14429) and informed 

consent was received prior to enrollment. SLE diagnoses were confirmed by study physicians 

based on (a) ³4 of the 11 American College of Rheumatology (ACR) revised criteria for the 

classification of SLE42,43, (b) meeting 3 of the 11 ACR criteria with a documented 

rheumatologist’s diagnosis of SLE, or (c) a confirmed diagnosis of lupus nephritis. We evaluated 

CLUES participants from whom either PAXgene whole blood RNA tubes were collected or 

PBMC scRNA-seq data was available19. 

All SLE patients were evaluated at a research clinic visit by a rheumatologist with 

expertise in SLE. In addition to blood collection, participants completed of a structured interview 

in which they were asked about sociodemographic characteristics, including sex, age, and race, 

smoking status and comorbidities including cardiovascular disease, diabetes mellitus, and 

cancer. Treatment with glucocorticoids or other immune modulating agents was also 

documented. SLE disease activity was measured using the Systemic Lupus Disease Activity 

Index (SLEDAI), also known as the SELENA-SLEDAI tool44. 

 

SLEDAI score versus age analysis 

From all 271 samples in the CLUES bulk RNA-seq dataset, we fit a linear regression model for 

the SLEDAI score with the lm function using the following R design formula: 

sledai_score ~ age + sex + raceeth 

where sledai_score is the SLEDAI score of a given sample, age is the patient’s age, sex is a 

categorical variable with two levels (male or female), and raceeth is a categorical variable with 
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four levels describing the race/ethnicity of the patient (White, Hispanic, Black, or Asian). For our 

regression plot, we extracted the slope and P value for age. We then created a confidence 

interval using the ggpredict function (terms = “age”) from the ggeffects package v1.3.245. 

 

RNA extraction and sequencing 

Following enrollment in CLUES, whole blood was collected in PAXgene tubes, 

processed according to manufacturer’s instructions and stored at -80°C. RNA was extracted 

using the Qiagen RNeasy kit and normalized to 20ng total input per sample. For RNA-seq 

library preparation, human cytosolic and mitochondrial ribosomal RNA and globin RNA was first 

depleted using FastSelect (Qiagen). RNA was then fragmented and underwent library 

preparation using the NEBNext Ultra II RNA-seq Kit (New England Biolabs) according to 

manufacturer’s instructions with protocol optimization for a LabCyte Echo acoustic liquid 

handler46. Finished libraries underwent 146 nucleotide paired-end Illumina sequencing on an 

Illumina Novaseq 6000 instrument. 

 

Bulk RNA-seq analysis of SLE patients from the CLUES cohort 

All data analyses were done in R v4.3.1. For the SLE patient analyses, we evaluated 

differential gene expression using linear modeling with age as a continuous variable, and 

controlling for sex and race/ethnicity. For bulk RNA-seq analyses, we retained samples with at 

least 10,000 protein-coding genes. For the SLE patient bulk RNA-seq analyses, we retained 

protein-coding genes that had a minimum of 10 counts in at least 20% of the samples. We 

normalized the gene counts using the voom function (normalize.method = “quantile”) from the 

limma package v3.58.047,48 and fitted a linear model for the gene expression with the lmFit 

function by using the following R design formula: 

gene_expression ~ age + sex + raceeth 
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where gene_expression is the normalized expression of a given gene, age is the patient’s age, 

sex is the patient’s sex (one of two categories, male or female, defined as sex assigned at 

birth), and raceeth is the patient’s race/ethnicity (one of four categories: White, Hispanic, Black, 

or Asian). We then calculated the empirical Bayes statistics with eBayes function (default 

settings), and calculated the P values for differential expression with Benjamini-Hochberg 

multiple comparison correction. 

We extracted the differential gene expression results using the topTable function (coef = 

“age”) from the limma package. We considered genes to be significantly differentially expressed 

if their adjusted P values were less than 0.05 (False Discovery Rate < 0.05). For our linear 

regression gene plots, we normalized the counts using the cpm function (log = TRUE) from the 

edgeR package v4.0.049. The logFC (log Fold Change) was used as the slope value.  

For GSEA, we analyzed Reactome pathways. We loaded pathways using the msigdbr 

function (species = "Homo sapiens", category = "C2", subcategory = "CP:REACTOME") from 

the msigdbr package v7.5.150. We ranked all genes, regardless of their adjusted P-values, by 

the following metrics: 

-log10(adj.P.Value) * sign(logFC) 

where adj.P.Value is the adjusted P value of the gene after Benjamini-Hochberg multiple 

comparison correction, logFC is the estimate of the log2-fold-change, and sign is the sign 

function. The ranked genes were used as input for the fgseaMultilevel function (minSize = 15, 

maxSize = 500, nproc = 1) from the fgsea package v1.28.051 to run pre-ranked gene set 

enrichment analysis. For our pathway plot, we selected 11 immune pathways of interest from 

the list of Reactome pathways. The directionality of the enrichment score is based on the up- or 

down-regulation of gene expression rather than the absolute directionality of the signaling 

cascade.  
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Sensitivity analysis of female SLE patients 

For the female-stratified analysis, we analyzed the 240 bulk RNA-seq samples from 

CLUES participants who were female (sex assigned at birth). We normalized the gene counts 

using the voom function (normalize.method = “quantile”) from the limma package and fitted a 

linear model for the gene expression with the lmFit function using the follow design formula: 

gene_expression ~ age + raceeth 

where gene_expression is the normalized expression of a given gene, age is the age of a 

sample’s subject, and raceeth is a categorical variable with four levels (White, Hispanic, Black, 

or Asian). Differential expression and GSEA were carried out as described for our primary 

analysis. 

 

Sensitivity analysis adjusting for corticosteroid treatment 

For the steroid-adjusted analysis, we analyzed 267 bulk RNA-seq samples from CLUES 

participants with steroid dosage information in the corresponding metadata. We focused on 

patients who received moderate to high dose steroids, defined in our analysis as receipt of ≥ 7.5 

mg of prednisone daily. 

We normalized the gene counts using the voom function (normalize.method = “quantile”) 

from the limma package and fitted a linear model for the gene expression with the lmFit function 

using the following R design formula: 

gene_expression ~ age + sex + raceeth + steroid 

where gene_expression is the normalized expression of a given gene, age is the age of a 

sample’s subject, sex is a categorical variable with two levels and raceeth is a categorical 

variable with four levels as described above, and steroid is a factor with two levels (no steroid or 

yes steroid). Differential expression and gene set enrichment analyses were carried out as 

described for our primary analysis. 
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Sensitivity analysis adjusting for hydroxychloroquine treatment 

For the steroid-adjusted analysis, we analyzed 201 bulk RNA-seq samples from CLUES 

participants with Hydroxychloroquine dosage information in the corresponding metadata. We 

normalized the gene counts using the voom function (normalize.method = “quantile”) from the 

limma package and fitted a linear model for the gene expression with the lmFit function using 

the following R design formula: 

gene_expression ~ age + sex + raceeth + PlaquenilNow 

where gene_expression is the normalized expression of a given gene, age is the age of a 

sample’s individual, sex is a categorical variable with two levels and raceeth is a categorical 

variable with four levels as described above, and PlaquenilNow is a factor with two levels (no 

Hydroxychloroquine or yes Hydroxychloroquine). Differential expression and gene set 

enrichment analyses were carried out as described for our primary analysis. 

 

Sensitivity analysis adjusting for BMI 

For the BMI-adjusted analysis, we analyzed all bulk RNA-seq samples from CLUES 

participants. We normalized the gene counts using the voom function (normalize.method = 

“quantile”) from the limma package and fitted a linear model for the gene expression with the 

lmFit function using the following R design formula: 

gene_expression ~ age + sex + raceeth + BMI 

where gene_expression is the normalized expression of a given gene, age is the age of an 

individual, sex is a categorical variable with two levels and raceeth is a categorical variable with 

four levels as described above, and BMI is the BMI reading for the individual at the timepoint 

their sample was collected. Differential expression and gene set enrichment analyses were 

carried out as described for our primary analysis. 
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Analysis of healthy control blood transcriptomic data from the Rotterdam Study 

We analyzed normalized whole blood RNA microarray data from the Rotterdam Study, 

which is publicly available under Gene Expression Omnibus (GEO) accession GSE33828. As 

with SLE patients, we evaluated differential gene expression using linear modeling with age as 

a continuous variable, and controlled for sex (race/ethnicity information was not publicly 

available).  

We analyzed all samples with > 10,000 protein coding genes that also had age and sex 

data available (n=880). To map probe IDs to gene symbols, we used the getGeo function (GEO 

= "GSE33828") from the GEOquery package v2.70.052. We used limma47 to analyze the 

Rotterdam Study microarray data which had already been normalized. We fitted a linear model 

for the gene expression with the lmFit function using the following R design formula: 

gene_expression ~ age + sex 

where gene_expression is the normalized expression of a given gene, age is the individual’s 

age, and sex is the individual’s sex. eBayes and topTable were used as described above. 

GSEA results were generated and analyzed similarly as described above. 

For the slope scatter plot, the logFC values of the same leading-edge genes from the 

SLE analysis were used. The interferon score for each individual was calculated by computing 

the average normalized gene expression of the relevant genes.  

 

Interferon stimulated gene and interferon score analyses 

Interferon subset analyses (slope scatter plot and IFN score) were conducted as follows. 

First, the leading-edge genes, or those which drive differential enrichment, were extracted from 

the IFN-a/b and IFN-g pathways based on pathway results from the SLE data. The logFC values 

for these genes were used for the slope scatter plot. 

For the interferon score analysis, the genes were split based on pathway. The interferon 

score was defined as the average normalized gene expression of these genes for each 
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individual. The slope and P value for the effect of Age were extracted based on the following 

formula (variables described previously): 

score ~ age + sex + raceeth  

For the age-of-diagnosis analysis (AGEDX), we identified SLE samples with available 

diagnosis age information (n = 222). We treated AGEDX as a factor in our analysis (0 for 

AGEDX <= 50, 1 for AGEDX > 50). The slope and P value for the effect of age were extracted 

based on the following formula (variables described previously): 

score ~ age + sex + raceeth + AGEDX_factor 

where AGEDX_factor is a categorical variable as described above, age is the individual’s age, 

sex is the individual’s sex, and raceeth is a categorical variable with four levels as described 

above. 

 

Proteomic analysis of SLE patients from the CLUES cohort 

We measured the concentrations of 48 inflammatory proteins from 1 µL of plasma using 

the Olink proximity extension assay ‘Immune Surveillance’ panel (Olink Proteomics AB, 

Uppsala, Sweden). Proteins were measured from all SLE patients with available plasma (n = 

268) following manufacturer’s instructions.  Briefly, samples were incubated with 

oligonucleotide-labeled antibodies complementary to each protein for 18 h at 4°C. In the assay, 

partner probes are brought together in close proximity if a target protein is present, allowing the 

formation of a double-stranded oligonucleotide that can be quantified using a microfluidic real-

time PCR instrument (Biomark HD, Fluidigm). 

For each protein, we analyzed the relationship between its concentration (pg/mL) and 

age. For protein concentrations, any occurrences of NaN values were imputed as 0 to ensure 

the completeness of the dataset for statistical modeling. Additionally, any concentrations that did 

not meet QC standards (values such as “No Data” and “> ULOQ”) were removed from the 

analysis. Protein concentrations were log base 10 transformed with a small constant (1e-6). We 
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fit a linear regression model for each protein concentration with the lm function using the 

following R design formula: 

protein ~ age + sex + raceeth 

where protein is the concentration of that protein for a given sample, age is the age of a 

sample’s individual, sex is a categorical variable with two levels and raceeth is a categorical 

variable with four levels as described above. For our regression plot and volcano plots, we 

extracted the slope and P value for age. All P values were corrected using Benjamini-Hochberg 

multiple comparison correction. 

 

PBMC scRNA-seq analysis 

We leveraged PBMC scRNA-seq data generated from 162 SLE cases and 48 healthy 

controls in the CLUES cohort19. The data was obtained from a publicly available dataset 

consisting of scRNA-seq of 1.2 million PBMCs from adult lupus and healthy control samples 

(https://cellxgene.cziscience.com/collections/436154da-bcf1-4130-9c8b-120ff9a888f2). There 

were 162 SLE cases from the CLUES cohort in this dataset, and 48 healthy controls from the 

UCSF Rheumatology Clinic. 

The cell type annotation was performed as recently described19, and included two 

annotation levels: the first consisted of 11 “broad” cell types based on preliminary Louvain 

clustering, and the second of 14 lymphoid-specific cell subpopulations. The 11 broad cell types 

included CD14+ classical and CD16+ nonclassical monocytes (cM and ncM); conventional and 

plasmacytoid dendritic cells (cDC and pDC); CD4+ and CD8+ T cells (CD4 and CD8); natural 

killer cells (NK); B cells (B); plasmablasts (PB); proliferating T and NK cells (Prolif); and 

progenitor cells (Progen). The 14 lymphoid subpopulations included naïve, effector memory, 

and regulatory CD4+ T cells (CD4+ Tnaïve, CD4+ TEM, CD4+ Treg), naïve, GZMH+ cytotoxic, 

GZMK+ cytotoxic, and mucosal-associated invariant CD8+ T cells (CD8+ Tnaïve, CD8+ TGZMH, 

CD8+ TGZMK, TMAIT); CD56-bright and CD56-dim natural killer cells (NKbright, NKdim); naïve, 
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memory, plasma, and atypical B cells (Bnaïve, Bmem, Bplasma, Batypical); and CD34+ progenitors 

(Progen). PBMC data was analyzed using Scanpy v1.9.3 and R v4.3.1, and visualized on a 

Uniform Manifold Approximation and Projection plot. For all analyses, we used linear modeling 

with age as a continuous variable and controlled for sex and race/ethnicity. 

 

Analysis of age-related changes in immune cell proportions from PBMC scRNA-seq data 

From both SLE (n=148) and control patients (n=48) in the CLUES cohort, we created a 

multiple regression model for each of the 14 annotated cell types in the scRNA-seq data to 

analyze the relationship between age and cell proportion. To generate our multiple regression 

model, we used Python with the pandas package v1.2.453 and the statsmodels package 

v0.12.254. We used the ols function with the following design formula (in R notation): 

cell_proportion ~ age + sex + raceeth 

where cell_proportion is the proportion of a given cell type in the sample, age is the age of a 

sample’s individual, sex is a factor with two levels as described above, and raceeth is a 

categorical variable with two levels (European or Asian). To fit our model, we used the fit 

function (default settings) from the scikit-learn package v0.24.155. We extracted the slope and 

associated P value from each model, and then adjusted the P value with Benjamini-Hochberg 

multiple comparison correction using the multipletests function from the statsmodels package.  
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Differential gene expression analyses from PBMC scRNA-seq data 

We used a pseudobulk approach for scRNA-seq differential gene expression analyses to 

avoid confounding from disproportionate cell type contributions from individual patients. This 

involved aggregating gene expression data for each cell type per patient. For each cell type, we 

retained samples with > 50 cells and > 5,000 protein-coding genes. For all groups and across 

the cell types, we retained protein-coding genes that had a minimum of 5 counts in at least 15% 

of the samples. Because too few pDC and Prolif cells were recovered, these cell types were not 

included in the differential expression analyses.  

We normalized the gene counts using the voom function (normalize.method = “quantile”) 

from the limma package and fitted a linear model for the gene expression with the lmFit function 

using the follow R design formula: 

gene_expression ~ age + sex + raceeth 

where gene_expression is the normalized expression of a given gene in the specific cell type, 

age is the age of a sample’s individual, sex is a categorical variable with two levels and raceeth 

is a categorical variable with two levels as described above. eBayes and topTable were used as 

described previously. GSEA results were generated and analyzed as described above in the 

bulk RNA-seq methods. 

For the dot plots, we focused on four immune pathways found to differ significantly 

between groups in the bulk RNA-seq analysis. We used the logFC value from the topTable 

output as the slope. All P values were corrected using Benjamini-Hochberg multiple comparison 

correction.  

For the SLE versus control sensitivity analysis in females at different age cutoffs, we 

aggregated gene expression data across all cell types, retaining samples with greater than 50 

cells. We performed a similar quality control approach as for our bulk RNA-seq analysis, 

removing samples with fewer than 10,000 protein-coding genes and keeping genes with at least 
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10 counts in at least 20 percent of the samples. We split our samples into three groups based 

on the individual’s age at time of sample collection: <50, >50, and >65 years old. For each age 

group, we normalized the gene counts as described previously. We fit a linear model for gene 

expression with the lmFit function using the following R design formula: 

gene_expression ~ Group + raceeth 

where gene_expression is the normalized expression of a given gene in the sample, raceeth is 

a factor with two levels, and Group is a factor with two levels, indicating whether the individual 

had SLE or was a control. eBayes and topTable were used as described previously. GSEA 

results were generated and analyzed as described previously. 

 

DNA methylation analysis 

Methylation of genomic DNA was pre-processed using a previously detailed workflow13. 

Genomic DNA methylation from whole blood samples was processed using the Illumina 

Methylation EPIC BeadChip kit and R minfi package. Signal intensities were background 

subtracted and quantile normalized. After quality control steps, 723,424 CpG sites from 341 

samples remained for analysis.  Additionally, in this pre-processing stage, we filtered out probes 

that map to non-coding SNPs (61,037). Following this, we screened for sites mapping to non-

autosomal chromosomes (15,833 CpG sites). Furthermore, patient filtering was conducted, 

initially excluding 13 patients with duplicated samples and those with incomplete information (2 

patients). Finally, we filtered out patients who did not match the bulk RNA seq data (61 

patients), resulting in a total of 646,554 CpG sites from 267 samples. 

We employed the M values for the differential methylation analysis, specifically focusing 

on identifying individual probes associated with age. Utilizing limma v3.48.3, we implemented 

the Linear Model for Series of Arrays (lmfit), incorporating batch, race, and plate as covariates. 

To address multiple testing, we applied an FDR procedure using the Benjamini–Hochberg (BH) 

method, with significance defined at P < 0.05. 
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For classification, hypermethylated genes were defined as having a LogFC > 0, while 

hypomethylated genes had a LogFC < 0. Proximity of a CpG probe to a gene was determined 

using the Annotation for Illumina's EPIC methylation arrays. 

To explore overlaps between methylation at individual probes and differentially 

expressed genes in RNA-seq data, we employed a hypergeometric test in R's phyper. 

Specifically, we compared hypermethylated CpGs (CpGs upregulated in relation to age) with 

negatively regulated RNA expression (transcriptome downregulated with age), and vice versa. 

Furthermore, we assessed Pearson correlations between RNA log fold change and methylation 

log fold change using sm_statCorr (smplot2 v 0.1.0), as well as correlations between 

methylation level and age for selected genes. 

To analyze the relationship between methylation and gene expression, we performed 

Pearson correlation analysis between hypermethylated CpGs (n = 230) and corresponding 

genes with negatively regulated RNA expression with age (n = 91). The M value for each gene 

was computed by taking the average of the CpG data for that gene. P values for Pearson 

correlation were adjusted using Benjamini-Hochberg multiple correction.  

Gene ontology enrichment analysis was conducted using the missMethyl package 

(v1.26.1), specifically employing the gometh function. We tested hypermethylated and 

hypomethylated regions independently, utilizing standard parameters. Pathways associated with 

the term "interferon" were selected. 

Differentially Methylated Regions (DMRs) were investigated using the DMRcate package 

using lambda equal 100 and a scaling factor of 2. Results were corrected for multiple 

comparisons using BH. 

 

Data and Code Availability 

Genecounts derived from bulk RNA-seq data in the CLUES cohort are available from 

Gene Expression Omnibus (GEO) under accession number GSE277909. Genecounts from the 
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Rotterdam Study control group are available under GEO accession GSE33828. scRNA-seq 

genecounts and fastq files are available under GEO accession GSE174188. Annotated scRNA-

seq data are available at: https://cellxgene.cziscience.com/collections/436154da-bcf1-4130-

9c8b-120ff9a888f2. Source data are provided in the source data file accompanying this 

manuscript. All code is available via Github at: https://github.com/infectiousdisease-langelier-

lab/CLUES_aging.  
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Supplementary Tables 

 

 
Table 1a. Characteristics of  

Patients with SLE in Bulk RNA-seq Analyses  
Characteristics (n=271) 

 
 

   
Sociodemographic Factors:   

Age, mean ± SD 44.5 ± 14.0  
Female 240 (88.6%)  
Race/Ethnicity   

Asian  98 (36.2%)  
White 82 (30.3%)  
Hispanic 64 (23.6%)  
Black 27 (10%)  

SLE Specific Characteristics:   
SLE disease duration, years, mean ± SD 15.0 ± 9.8  
Disease activity by SLEDAI, mean ± SD 2.9 ± 2.9  
Disease damage by SLICC, mean ± SD 1.7 ± 1.9  
Lupus Severity Index, mean ± SD 7.1 ± 1.6  
History of Lupus Nephritis  115 (42.4)  
Prednisone ≥ 7.5 mg/day  56 (20.7%)  
Current hydroxychloroquine use 158 (58.3%)  

Comorbidities and Health Status:   
Cardiovascular Disease 11 (4.1%)  
Diabetes Mellitus, type 2 18 (6.6%)  
History of malignancy 13 (4.8%)  
Obesity 96 (35.4%)  
Body Mass Index (kg/m2), mean ± SD 26.2 ± 6.1  
Current nicotine use 12 (4.4%)  

*Values are percent unless otherwise indicated. P-values calculated using 
chi-squared tests for categorical measures and t-tests for continuous 
measures. 

 

SLEDAI - Systemic Lupus Erythematosus Disease Activity Index   
SLICC - Systemic Lupus International Collaborating Clinics Damage Index  
CVD - history of  stroke, coronary artery disease, and/or myocardial infarction  
Obese defined as body mass index ≥ 30 kg/m2  
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Table 1b. Characteristics of 
Patients with SLE in scRNA-seq Analyses   

Characteristics (n=148)  
    

Sociodemographic Factors:   
Age, mean ± SD 45.2 ± 13.8  
Female 134 (90.5%)  
Race/Ethnicity   

Asian  73 (49.3%)  
White 60 (40.5%)  
Hispanic 15 (10.1%)  
Black 0.0%  

SLE Specific Characteristics:   
SLE disease duration, years, mean ± SD 16.5 ± 9.3  
Disease activity by SLEDAI, mean ± SD 2.8 ± 2.7  
Disease damage by SLICC, mean ± SD 1.5 ± 1.9  
Lupus Severity Index, mean ± SD 6.8 ± 1.6  
History of Lupus Nephritis  56 (37.8%)  
Prednisone ≥ 7.5 mg/day  29 (19.6%)  
Current hydroxychloroquine use 84 (56.8%)  

Comorbidities and Health Status:   
Cardiovascular Disease 5 (3.4%)  
Diabetes Mellitus, type 2 7 (4.7%)  
History of malignancy 9 (6.1%)  
Obesity 44 (29.7%)  
Body Mass Index (kg/m2), mean ± SD 25.1 ± 4.8  
Current nicotine use 5 (3.4%)  

*Values are percent unless otherwise indicated. P-values calculated using chi-
squared tests for categorical measures and t-tests for continuous measures. 

 
SLEDAI - Systemic Lupus Erythematosus Disease Activity Index   
SLICC - Systemic Lupus International Collaborating Clinics Damage Index  
CVD - history of  stroke, coronary artery disease, and/or myocardial infarction  
Obese defined as body mass index ≥ 30 kg/m2  
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Table 1c. Characteristics of 
Healthy Controls in scRNA-seq Analyses   

Characteristics (n=48)  
    

Sociodemographic Factors:   
Age, mean ± SD 44.2 ± 16.8  
Female 47 (97.9%)  
Race/Ethnicity   

Asian  23 (47.9%)  
White 25 (52.1%)  
Hispanic 5 (10.4%)  
Black 0 (0.0%)  

Comorbidities and Health Status:   
Cardiovascular Disease1 2 (4.2%)  
Diabetes Mellitus, type 22 2 (4.8%)  
History of malignancy3 0 (0.0%)  
Obesity4 3 (7.0%)  
Body Mass Index (kg/m2), mean ± SD4 23.3 ± 3.7  

*Values are percent unless otherwise indicated. P-values calculated using chi-
squared tests for categorical measures and t-tests for continuous measures. 

 
CVD = history of stroke, coronary artery disease, +/- myocardial infarction.  
Obesity defined as body mass index ≥ 30 kg/m2. 1n=47, 2n=42,3n=42, 4n=43.  
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Supplementary Figures 

  

Supp. Fig. 1. Age distribution of patients in the study cohorts. Histograms of ages of Patients with 
SLE in the CLUES cohort with bulk RNA-seq data (n=271), patients with SLE in the CLUES cohort 
with PBMC scRNA-seq data (n=148), healthy controls from the Rotterdam Study with whole blood 
RNA microarray data (n=880), and healthy controls from the CLUES cohort with PBMC scRNA-seq 
data (n=48).  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 28, 2025. ; https://doi.org/10.1101/2025.01.27.25321143doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.27.25321143


 
 
Supp. Fig. 2. Overlap of analytic approaches for SLE patients in the CLUES cohort.  
A Overlap between bulk and scRNA-seq data from the 287 SLE patients studied in the CLUES cohort. 
B Of the 271 patients with bulk RNA-seq data, a subset also underwent proteomics analysis.  
C Of the 271 patients with bulk RNA-seq data, a subset also underwent methylation analysis.  
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Supp. Fig. 3. Relationship between Systemic Lupus Erythematosus Disease Activity Index 
(SLEDAI) score and age. n=271. Each data point refers to a patient’s SLEDAI score. The P-value 
was calculated with linear regression (solid purple line) based on the age coefficient. The ribbon 
indicates the 95% confidence interval of the linear regression fit.  
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Supp. Fig. 4. Sensitivity analysis in female SLE patients. GSEA results demonstrating immune 
signaling pathways associated with age in exclusively female SLE patients, adjusted for race/ethnicity 
(n=240). A positive normalized enrichment score value represents upregulation of the pathway with older 
age, and a negative value represents downregulation with older age. Filled circles represent pathways with 
a Benjamini-Hochberg adjusted P value < 0.05.  
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Supp. Fig. 5. Sensitivity analysis adjusting for corticosteroid use. GSEA results demonstrating 
the immune signaling pathways in SLE patients associated with age, adjusted for sex, race/ethnicity 
and corticosteroid use (n=267). Corticosteroid use defined as > 7.5mg prednisone/day. A positive 
normalized enrichment score value represents upregulation of the pathway with older age, and a negative 
value represents downregulation with older age. Filled circles represent pathways with a Benjamini-
Hochberg adjusted P value < 0.05.  
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Supp. Fig. 6. Sensitivity analysis adjusting for hydroxychloroquine use. GSEA results 
demonstrating the immune signaling pathways in SLE patients associated with age, adjusted for sex, 
race/ethnicity and hydroxychloroquine use (n=201). A positive normalized enrichment score value 
represents upregulation of the pathway with older age, and a negative value represents downregulation 
with older age. Filled circles represent pathways with a Benjamini-Hochberg adjusted P value < 0.05.  
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Supp. Fig. 7. Sensitivity analysis adjusting for body mass index. GSEA results demonstrating 
the immune signaling pathways in SLE patients associated with age, adjusted for sex, race/ethnicity 
and body mass index (n=271). A positive normalized enrichment score value represents upregulation of 
the pathway with older age, and a negative value represents downregulation with older age. Filled circles 
represent pathways with a Benjamini-Hochberg adjusted P value < 0.05.  
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Supp. Fig. 8. Interferon stimulated genes (ISGs) with age-related changes in expression. Scatter 
plot demonstrating slope of ISG expression versus age in SLE patients (X-axis) versus controls (Y-axis). 
ISGs with statistically significant age-related changes in expression in SLE patients only are shown in 
purple, controls only in light red, and both groups in dark red. The vertical dashed line indicates the position 
on the x-axis when the slope of gene expression vs. age in SLE patients is 0. The horizontal dashed line 
indicates the position on the y-axis when the slope of gene expression vs. age in SLE patients is 0.  
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Supp. Fig. 9. Relationship between interferon (IFN) scores and age for SLE patients and 
controls. A Scatter plot demonstrating average expression of leading-edge genes in the IFN-a/b 
signaling pathway (IFN-a/b score, Y-axis) versus age of SLE patients (X-axis). Slope and P value 
refer to the effect of age only. B Scatter plot demonstrating IFN-a/b score (Y-axis) versus age of 
controls (X-axis). C Scatter plot demonstrating average expression of leading-edge genes in the 
IFN-g signaling pathway (IFN-g score, Y-axis) versus age of SLE patients (X-axis). D Scatter plot 
demonstrating IFN-g score (Y-axis) versus age of controls (X-axis). 
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Supp. Fig. 10. Relationship between interferon (IFN) scores and age for SLE patients 
controlling for age of SLE diagnosis. A Scatter plot demonstrating average expression of 
leading-edge genes in the IFN-a/b signaling pathway (IFN-a/b score, Y-axis) versus age of SLE 
patients (X-axis). Slope and P value refer to the effect of age only. B Scatter plot demonstrating 
IFN-a/b score (Y-axis) versus age of SLE patients (X-axis).  
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Supp. Fig. 11. UMAP of immune cell populations based on SLE status. Uniform Manifold 
Approximation and Projection (UMAP) plot of scRNA-seq data from SLE patients in the CLUES cohort 
highlighting immune cell populations colored by SLE status. Purple dots correspond to single cells from 
SLE patients, (n=148 patients). Red dots correspond to single cells from control patients (n=48).  
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Supp. Fig. 12. Differences in age-related changes in gene expression based on immune cell 
subpopulation. Grouped bar chart of the number of differentially expressed genes with age (Padj < 0.05) 
by immune cell subpopulations for the pseudobulk analysis of PBMC scRNA-seq data. Purple refers to SLE 
patients (n=148) while red refers to control patients (n=48). 
  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 28, 2025. ; https://doi.org/10.1101/2025.01.27.25321143doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.27.25321143


 

 
Supp. Fig. 13. Correlation between methylation and normalized gene expression  
(downregulated genes, significantly hypermethylated CpGs). Volcano plot depicting the distribution 
of Pearson correlation coefficients between normalized gene expression values for genes significantly 
downregulated with age and M values for those genes based on the average of mapping hypermethylated 
CpGs. Purple dots represent coefficients with a Benjamini-Hochberg adjusted P value < 0.05. Larger dots 
with a thick, black outline represent coefficients for M and gene expression values for interferon-related 
genes. A negative Pearson correlation coefficient points to an inverse relationship between M value and 
gene expression; in particular, as the M value increases, gene expression decreases.  
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Supp. Fig. 14. Differences in pseudobulk gene expression between female SLE patients and 
healthy female individuals, stratified by age group. A Volcano plot highlighting differentially 
expressed genes based on SLE status in female patients younger than 50 years old (n=110). Slope refers 
to the log2 fold change for each gene. B Gene Set Enrichment Analysis (GSEA) demonstrating immune-
related biological signaling pathways differing based on SLE status in female patients younger than 50 
years old. C Volcano plot highlighting differentially expressed genes based on SLE status in patients older 
than 50 years old (n=71). D GSEA demonstrating immune-related biological signaling pathways differing 
based on SLE status in patients older than 50 years old. E Volcano plot highlighting differentially expressed 
genes based on SLE status in patients older than 65 years old (n=17). F GSEA demonstrating immune-
related biological signaling pathways differing based on SLE status in patients older than 65 years of age. 
Adjusted P values were calculated using the Benjamini-Hochberg method for all analyses.  
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Supplementary Data Files 

 

Supp. Data 1. Demographic data from Rotterdam Study healthy control cohort with bulk RNA-

seq data. 

 

Supp. Data 2. Demographic data from the CLUES healthy control cohort with scRNA-seq data. 

 

Supp. Data 3. A Genes differentially expressed with age in SLE patients (n=271), adjusted for 

sex and race/ethnicity. B Gene set enrichment analysis (GSEA) of differentially expressed 

genes. Legend: logFC = log(2) fold change; padj = Benjamini-Hochberg adjusted P value; NES = 

normalized enrichment score; size = size of Reactome pathway; LeadingEdge = leading edge 

genes. 

 

Supp. Data 4. A Genes differentially expressed with age in female SLE patients (n=240), 

adjusted for sex and race/ethnicity. B Gene set enrichment analysis (GSEA) of differentially 

expressed genes. Legend: logFC = log(2) fold change; padj = Benjamini-Hochberg adjusted P 

value; NES = normalized enrichment score; size = size of Reactome pathway; LeadingEdge = 

leading edge genes. 

 

Supp. Data 5. A Genes differentially expressed with age in SLE patients, adjusted for receipt of 

corticosteroids, sex and race/ethnicity (n=267). B Gene set enrichment analysis (GSEA) of 

differentially expressed genes. Legend: logFC = log(2) fold change; padj = Benjamini-Hochberg 

adjusted P value; NES = normalized enrichment score; size = size of Reactome pathway; 

LeadingEdge = leading edge genes. 
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Supp. Data 6. A Genes differentially expressed with age in SLE patients, adjusted for receipt of 

hydroxychloroquine, sex and race/ethnicity (n=267). B Gene set enrichment analysis (GSEA) of 

differentially expressed genes. Legend: logFC = log(2) fold change; padj = Benjamini-Hochberg 

adjusted P value; NES = normalized enrichment score; size = size of Reactome pathway; 

LeadingEdge = leading edge genes. 

 

Supp. Data 7. A Genes differentially expressed with age in SLE patients, adjusted for body 

mass index, sex and race/ethnicity (n=267). B Gene set enrichment analysis (GSEA) of 

differentially expressed genes. Legend: logFC = log(2) fold change; padj = Benjamini-Hochberg 

adjusted P value; NES = normalized enrichment score; size = size of Reactome pathway; 

LeadingEdge = leading edge genes. 

 

Supp. Data 8. A Genes differentially expressed with age in healthy control patients, adjusted for 

sex and race/ethnicity (n=880). B Gene set enrichment analysis (GSEA) of differentially 

expressed genes. Legend: logFC = log(2) fold change; padj = Benjamini-Hochberg adjusted P 

value; NES = normalized enrichment score; size = size of Reactome pathway; LeadingEdge = 

leading edge genes. 

 

Supp. Data 9. Linear regression results for protein concentrations and age in SLE patients from 

the CLUES cohort, adjusting for sex and race/ethnicity. Legend: Protein = protein; Slope = 

coefficient of age; Adjusted-P-Value = Benjamini-Hochberg adjusted P value, P = naïve p value, 

n = number of samples in analysis.   

 

Supp. Data 10. Pearson correlation values between expression for genes (n = 91) 

downregulated with age and average M values calculated from hypermethylated mapping 

CpGs. Legend: Correlation = Pearson correlation; P_value = P value for Pearson correlation; 
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Adj_P_value = Benjamini-Hochberg adjusted P value; Interferome = is the gene part of the 

interferome. 
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