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 47 

Abstract 48 

INTRODUCTION: More intermuscular fat (IMF) has been associated with lower cognitive 49 

performance and faster age-associated decline in cognitive function however, the mechanisms 50 

driving this relationship have not been fully elucidated. We utilized proteomic analyses to 51 

identify the molecular mediators of the association between IMF and cognition to gain further 52 

insight into the mechanisms underlying this association. 53 

 54 

METHODS. In this cross-sectional study, the plasma proteomic profile of IMF was assessed in 55 

the Baltimore Longitudinal Study on Aging (BLSA; n=941, age=66.7±15.2) and validated in the 56 

Coronary Artery Risk Development in Young Adults Study (CARDIA; n=2451, age=50.2±3.6). 57 

The 7628 plasma proteins were assessed using an aptamer-based assay and tested for association 58 

with IMF from the thigh (BLSA) and abdomen (CARDIA). Processing speed assessed by Digit 59 

Symbol Substitution Test (DSST). Associations between the main exposures, outcome and 60 

mediators were evaluated using linear regression, and mediating effects were assessed by causal 61 

mediation analysis adjusting for age, sex, muscle area or muscle volume, self-reported race, and 62 

years of education.  63 

 64 

RESULTS. Higher IMF was associated with lower DSST performance both in the BLSA and 65 

CARDIA studies. There were 722 plasma proteins associated with IMF in both the discovery and 66 

replication cohorts (FDR-adjusted p≤0.05). Of the 722 IMF -associated proteins, 26 (24 unique 67 

proteins) mediated the relationship between IMF and processing speed with mediation effects 68 

ranging from 2.8 to 20.9% (p≤0.05). Overrepresentation analysis of the IMF-associated proteins 69 
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showed enrichment of proteins in synaptic function and organization, and growth factor binding 70 

(FDR-adjusted p≤0.05).   71 

 72 

DISCUSSION. There is a robust proteomic signature explaining, at least in part, the link of IMF 73 

with DSST. This signature reflected neurological function and growth factor regulation, which 74 

are both implicated in lower processing speed. Reducing IMF through behavioral or 75 

pharmacological intervention may improve cognition through reduction in growth factor activity 76 

and improvements in synaptic activity.  77 

 78 

 79 

  80 
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Background 81 

Aging is associated with decline in cognitive function across different domains [1]. 82 

Slowing rates of decline in cognitive function is an important public health goal, as cognitive 83 

decline is associated with unfavorable aging outcomes such as disability and dementia that could 84 

influence one’s quality of life [2].  There is growing evidence linking skeletal muscle health with 85 

cognitive decline, thus understanding the biology linking muscle with cognitive function may 86 

identify novel targets to slow the rates of cognitive decline with aging [3, 4]. 87 

   Intermuscular fat (IMF) increases with older age, and it has been associated with worse 88 

cognition in older adults, particularly with poorer processing speed [3-9].  It has been 89 

hypothesized that neurodegenerative effects of IMF may be triggered by inflammatory and 90 

cardio-metabolic disorders. When adipocytes reach their fat storage capacity, greater adipose 91 

tissue accumulates ectopically, that is in organs that usually have little adiposity, such as the 92 

skeletal muscle. As adipose tissue accumulates in skeletal muscle, both adipocytes and myocytes 93 

may release pro-inflammatory cytokines and these in turn can increase risk of systemic 94 

metabolic abnormalities such as insulin resistance and type 2 diabetes [10, 11]. It has also been 95 

shown that myokines and adipokines (cytokines releases from myocytes and adipocytes, 96 

respectively) have a direct signaling effects on the central nervous system, influencing amyloid 97 

clearance and mitochondrial function in the brain [12-17]. However, evidence is primarily from 98 

animal models or human studies at the extremes of muscle health (e.g. athletes or patient 99 

populations); the molecules linking IMF with poorer cognitive function have not been directly 100 

measured in community- dwelling older adults without overt disease. 101 

To address this gap in knowledge, we aimed to characterize the plasma proteomic profile 102 

of IMF and explore whether IMF-associated proteins mediate the relationship between IMF and 103 
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cognitive function, focusing on processing speed. By taking an agnostic approach to explore the 104 

molecular pathways that are represented by the IMF-associated proteins, the results of this study 105 

provide mechanistic insights into the link between IMF and cognitive function. 106 

 107 

Methods 108 

Study Design and Cohort Description 109 

The discovery cohort, the Baltimore Longitudinal Study of Aging (BLSA), is a rolling 110 

enrollment population-based study of participants residing predominantly in the Baltimore-111 

Washington DC area [18]. Briefly, eligibility criteria include the absence of major chronic 112 

diseases (except for controlled hypertension), and cognitive or functional disabilities. 113 

Participants are continually followed at varying time intervals based on their age, namely every 4 114 

years for participants younger than 60 years, every 2 years between 60-79 years, and every year 115 

for participants older than 80 years. Demographic characteristics including age, sex, self-reported 116 

race, and years of education were obtained during a structured interview by BLSA staff.  The 117 

study protocol (Protocol number 03-AG-0325) was approved by the National Institutes of Health 118 

Intramural Research Program Institutional Review Board and informed consent was obtained 119 

from participants at each visit. 120 

The validation cohort, Coronary Artery Risk Development in Young Adults (CARDIA) 121 

study began in 1985 with the recruitment of 5,115 participants aged 18 to 30 years at field 122 

centers located in Birmingham, AL, Chicago, IL, Minneapolis, MN, and Oakland, CA [19]. 123 

Recruitment was balanced for equal inclusion of black and white as well as female and male 124 

participants, age (18–24, 25–30 years), and education (≤12 years, >12 years). The current study 125 

includes data from 3,172 participants who agreed and received abdominal CTs at the year 25 126 
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(Y25) examination, of these, a total of 2,390 had DSST, proteomics and other key factors such as 127 

age, sex, race, and education.  All participants provided written informed consent, and 128 

institutional review boards from each field center and the coordinating center approved the study 129 

annually. 130 

 131 

Assessment of intermuscular fat 132 

IMF was quantified using CT scan of the thigh (BLSA) or abdomen (CARDIA). In the BLSA, 133 

Imaging was performed by the Radiology Department of MedStar Harbor Hospital (Baltimore, 134 

MD) using a Somatom Sensation 10CT scanner (Siemens, Malvern, PA).  A two-stage deep 135 

learning pipeline was implemented to estimate IMF from 2D thigh CT slices [20, 21]. From this 136 

algorithm, the total muscle area, and IMF was calculated as the average of the right and left 137 

thigh.  In the CARDIA study, scans were performed using 64-channel multidetector GE CT 138 

scanners (GE Healthcare Milwaukee, WI) at the Birmingham, AL, and Oakland, CA, centers and 139 

Siemens CT scanners (Siemens, Erlangen, Germany) at the Chicago, IL, and Minneapolis, MN, 140 

centers. The protocol has been previously published [22, 23]. 141 

 142 

Cognitive function assessment 143 

In both cohorts, the Digit Symbol Substitution Test (DSST) was used to evaluate processing 144 

speed [24]. During the test, participants are initially shown nine pairs of digits and symbols. In 145 

the next sequence participants are provided a series of digits and asked to draw the matching 146 

symbols for each digit. The score is the number of correct digit-symbol pairs identified during a 147 

period of 90 seconds. The DSST values were analyzed as a z-score.  148 

 149 
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Proteomic Assessment  150 

Proteomic assessment in fasting plasma samples were conducted using the 7k SomaScan assay  151 

v4.1 (SomaLogic, Inc.; Boulder, CO, USA) in both BLSA and CARDIA, following a protocol 152 

that was detailed elsewhere [25, 26]. The final normalized dataset (hybridization control, median 153 

signal, plate-scale, inter-plate normalization) was used for the analysis. The final protein count 154 

consisted of 7,268 target annotated human SOMAmers that were assessed and passed quality 155 

control in both the BLSA and CARDIA study. Some proteins were targeted by multiple 156 

SOMAmers, thus 6583 unique human proteins are represented in the panel. From this point 157 

forward, each SOMAmer will be referred to proteins in the manuscript. Each protein relative 158 

abundance (RFU) was log2 transformed and scaled before analysis.  159 

 160 

 161 

Statistical Analysis 162 

 All analyses were conducted using R version 4.2.2. The associations between IMF and 163 

plasma proteins or DSST were assessed using linear regression models. For proteomic analysis 164 

of IMF, the winsorized protein value was the dependent variable, and IMF the independent 165 

variable in the regression model. The models were adjusted for age, sex, muscle area (or muscle 166 

volume for CARDIA), self-reported race, and years of education. For the proteomic analysis, the 167 

p-value was adjusted using false discovery rate (FDR), and an FDR adjusted p≤0.05 was 168 

considered statistically significant. Proteins that were significantly associated with IMF in the 169 

BLSA were tested for validation in CARDIA study. Significant validation was considered at 170 

FDR adjusted p≤0.05. To test whether the IMF-associated proteins mediate the association 171 

between IMF and DSST, a causal mediation analysis was conducted using R regmedint package 172 
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(version 1.0.1)[27]. For each model, IMF was the main exposure variable, DSST the dependent 173 

variable, and individual protein was the mediator. Mediation was considered significant when a 174 

significant indirect association for IMF on DSST was observed (p≤0.05). 175 

 Over-representation analysis (ORA) was conducted to determine whether any pathways 176 

were enriched among the IMF-associated proteins. Using the proteins measured by the 177 

SomaScan platform as background, we used the 716 IMF-associated proteins to explore 178 

enrichment of GO biological processes (BP), cellular component (CC), and molecular function 179 

(MF) libraries. Enrichment was considered significant at FDR adjusted p≤0.05. The over-180 

representation analysis was performed using R ClusterProfiler package (version 4.6.2).  181 

  182 

Results 183 

Association between intermuscular fat and DSST. The average age of the discovery cohort was 184 

older than the validation cohort (Table 1; 66.7±15.2 vs 50.2±3.6). The age difference is reflected 185 

in processing speed, with higher DSST scores in the CARDIA study compared to BLSA. Despite 186 

these differences, IMF was found to be statistically significant in both studies. In the BLSA, 187 

there was significant negative relationship between IMF and DSST (ß[95%CI]=-0.11 [-0.15,-188 

0.05]) indicating that higher IMF was associated with slower DSST. Similarly, in the CARDIA 189 

study a negative relationship was also observed (ß[95%CI]=-0.09[-0.12,-0.05]).  190 

 191 

Proteomics of intermuscular fat – In the discovery cohort, of 7268 SOMAmers (6375 proteins) 192 

assessed, 782 SOMAmers (710 proteins) were significantly associated with IMF (Supplemental 193 

Table 1; Figure 1A). There were 321 SOMAmers (297 proteins) found in higher abundance with 194 

greater IMF, and 461 SOMAmers (413 proteins) in lower abundance with higher IMF. These 782 195 
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SOMAmers were tested for association with IMF in the CARDIA study, and 722 (654 proteins; 196 

92.3%) were found to be significantly associated. For all proteins, the direction of association 197 

was consistent, with high correlation (r=0.95, Figure 1B) between the beta estimates from the 198 

regression models from the two studies for the 782 SOMAmers that were tested for replication.   199 

An ORA analysis based on GO terms for the 654 proteins represented by the 722 IMF-200 

associated SOMAmers, identified multiple pathways (Figure 1C). The GO-biological process 201 

(BP) terms encompass two broad categories of pathways that represent synaptic biology ( 202 

“regulation of synapse assembly”, “regulation of synapse structure and activity”, “axon 203 

development”) and inflammation (“taxis” and “chemotaxis”). The GO-cellular component (CC) 204 

terms complement the results from synaptic function from the BP that include CC terms such as 205 

“intrinsic component of synaptic membrane, GABA-ergic synapse” and “axonal growth cone”, 206 

as well as indicator of extracellular matrix. Finally, the GO-molecular function (MF) identified 207 

included “glycosaminoglycan binding” and “growth factor binding”, and terms representing 208 

general signal transduction activities. 209 

 210 

Proteomic mediators of IMF and DSST. Of the 722 IMF-associated SOMAmers, 26 SOMAmers 211 

representing 24 proteins significantly mediated the relationship between IMF and DSST in both 212 

BLSA and CARDIA studies (Table S2; Figure 2). The proportion mediation ranges were 7.2-213 

20.9% in BLSA and 2.8-8.9% in CARDIA. For all but one protein, the directions of indirect 214 

effects was negative in both the BLSA and CARDIA studies. Among the 24 mediating proteins, 215 

14 were found in lower abundance with higher IMF, and associated with higher DSST. 216 

Conversely, 10 proteins were found in higher abundance with greater IMF and associated with 217 
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lower DSST. The ORA analysis of the 24 proteins that mediate the relationship represent 218 

pathways showed no significantly enriched pathways.  219 

 220 

Discussion 221 

In this study, we explored the plasma proteomic profiles of IMF showed that there is a 222 

distinct proteomic signature of 654 proteins in two independent cohorts of older adults living in 223 

the community. The protein signature was highly consistent despite IMF being measured in 224 

skeletal muscle at different locations.  A subset of 24 IMF-associated proteins explain, at least in 225 

part, the association between higher IMF and slower processing speed. Taking an agnostic 226 

approach, enrichment analyses of the proteins identified indicate that pathways such as synaptic 227 

function and growth factor activity may be the link between IMF and processing speed. 228 

The study results confirm the growing evidence supporting the associations between 229 

higher IMF and lower cognitive function, particularly with slower processing speed. Since the 230 

initial reporting inverse associations of measures of IMF using peripheral quantitative computer 231 

tomography (pQCT) with measured of psychomotor function, visual learning, and overall 232 

cognitive function [28], similar associations have been reported in different populations 233 

particularly with processing speed [3, 4, 9] and with other indicators of brain health such as 234 

neuroimaging markers [29, 30]. Our study explored used proteomic to explore the mechanisms 235 

that may link higher IMF with slower processing speed.   236 

One intriguing insight from our analysis was that the proteome associated with IMF was 237 

enriched with proteins involved in synaptic organization and function. The four proteins 238 

(SLITRK3, NOTCH1, C1QL3, EPHA4) that significantly mediated the association were found 239 

in lower abundance with higher IMF and lower processing speed. These proteins are expressed 240 
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widely across the central nervous system, with some also found in muscle tissue [31-34]. They 241 

play crucial roles in brain function by influencing various processes: SLITRK3 regulates neurite 242 

outgrowth [32]; C1QL3 participate in neuronal organization as trans-synaptic cell adhesion 243 

complexes [33]; NOTCH is involved in neuronal stem cell maintenance and activation [31, 34]; 244 

and EPH4 is crucial for synaptic function and integrity through regulation of bidirectional 245 

communication between neurons and astrocytes [35]. SLITRK3 knockout mice have impaired 246 

postsynaptic neurotransmission resulting in multiple abnormal hypermobile movements[36]. 247 

C1QL3 knockout animals display fewer excitatory neurons compared to wildtype and exhibited 248 

stunted fear conditioning as well as a modest deficit in motor learning [37].  In humans, several 249 

lines of evidence support the link between these proteins with cognitive function. First, lower 250 

abundance of soluble NOTCH1 protein was reported in patients with AD, further protein 251 

abundances were positively correlated with MMSE [38]. Mendelian randomization study 252 

supported the causal association between SLITRK3 with general cognitive function [39]. Taken 253 

together, our data suggest lower levels of proteins involved in synaptic function and integrity 254 

simultaneously manifest as lower integrity in the skeletal muscle (higher IMF) and central 255 

nervous system (slower processing speed).  Our results of causal modeling analyses indicate a 256 

potential direction of these associations, whereby higher IMF may affect processing speed by 257 

lowering the circulating levels of neuroprotective proteins.   258 

 Among the proteins that were found in higher abundance in relation to higher IMF and 259 

lower DSST (e.g. with potential neurodegenerative effects), the myokine High-Temperature 260 

Requirement A1 (HTRA1) is notable, for its proteolytic effects on extracellular matrix 261 

remodeling skeletal muscle, brain, and adipose tissue[40, 41]. HTRA1 has also inhibitory effects 262 

on the transforming growth factor-β superfamily. In a translational proteomic study of several 263 
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thousand proteins[42]that HTRA1 was positively correlated with brain amyloid.  Several 264 

HTRA1 mutations have been associated with cerebral small vessel disease in humans [43], but 265 

these studies did not test associations with cognitive function. We and others have shown that 266 

higher cerebral small vessel disease is strongly associated with lower processing speed; thus it is 267 

possible that higher IMF leads to higher levels of the myokine HTRA1, this in turn drives 268 

cerebral small vessel disease, manifesting as slower processing speed.  269 

The finding that proteins related to IGF are related with IMF and cognition has been 270 

previously shown. Of note, IGF binding protein 2 (IGFBP-2) was positively associated with 271 

skeletal muscle mass and strength in prior proteomic studies in South Africa[44], and 272 

Germany[45] .  Conversely, its role in relation with cognition is less clear. In a recent study of 273 

older adults[46], IGFBP2 was associated with smaller hippocampal volume among amyloid 274 

negative adults, but not amyloid positive, indicating the influence on IGFBP2 on hippocampal 275 

volume varies depending on severity of brain pathology; conversely, others found a  positive 276 

association with tau[48] . The association of IGFBP2 with cognitive status also varies across 277 

studies, presumably because the role of IGFBP-2 varies depending on developmental stages[47, 278 

48]. Differences in age, and/or in brain pathology may explain why in our study IGFPB-2 had an 279 

inverse association with DSST in CARDIA (younger) but not in BLSA (older). 280 

Prior studies have linked IMF with factors that influence cardiometabolic health, in 281 

particular serum cytokine levels and adipokines [11]. Both muscle and the fat that infiltrates 282 

muscle have secretory capabilities including pro- and anti- inflammatory cytokines that have 283 

been associated with cognitive health [49]. Moreover, cytokines released by skeletal muscles and 284 

adipocytes with neuronal signaling properties can cross the blood brain barrier [50]. 285 

Consequently, some studies explored these proteins as possible mechanism linking IMF with 286 
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cognitive function. In the Geelong osteoporosis study (GOS), TNFα explained the association 287 

between muscle density measured in the radius and psychomotor function, but the mediation was 288 

not established for the muscle density measured in the tibia [28]. Further, other inflammatory 289 

markers, IL-6, IL-10, and IL-13 did not explain the association in the GOS study. In other 290 

studies, while no formal mediation analysis was conducted, the association between IMF and 291 

cognitive function were robust to adjustment for cardiometabolic conditions, including 292 

hypertension, diabetes, obesity, measures of inflammation  (leptin, adiponectin, IL-6) [4].  In the 293 

current report, IL-6 was moderately associated with IMF in the BLSA, and CRP was negatively 294 

associated with IMF in both BLSA and CARDIA studies but were not significant mediators. 295 

Intriguingly, enrichment analysis did not show inflammation as a major mediating pathway 296 

linking IMF with processing speed.  297 

While our findings provide strong biological evidence linking IMF with processing 298 

speed, there are several important limitations. First, this is a cross-sectional study, thus we cannot 299 

make causal inferences on the associations we observe. For example, it is possible that higher 300 

IMF may drive lower levels of proteins, which in turn compromise synaptic integrity in the 301 

brain, ultimately manifesting as slower processing speed.  Alternatively, there is another factor 302 

that alters homeostasis of proteins engaged in synapsis remodeling among older adults with 303 

higher IMF. Further, there may be a bi-directional relationship – those with lower cognitive 304 

function and processing speed may have lowered synaptic activity leading to decreased muscle 305 

quality.  While our study uses direct measurements of IMF using CT scans, the levels of IMF are 306 

correlated with other measures of adiposity thus we cannot exclude the possibility that the 307 

correlations we observed are not driven by fat infiltrations in the muscle per se, but through 308 

overall adiposity. The analysis was not adjusted for measures of adiposity due to the correlation 309 
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between the two traits, and overall adiposity may be part of the casual pathways linking 310 

intermuscular fat with processing speed. Our study has several strengths. First, our results were 311 

consistent across two studies that have different demographics from the standpoint of age, self-312 

reported race, and geographical distributions. In both studies, IMF was measured using CT-scan 313 

providing us with an objective measure. Finally, while the proteomic assessment did not measure 314 

all circulating proteins, the analysis targeted large number of proteins using the same assessment 315 

method. Future studies should explore validating these findings in longitudinal studies to 316 

determine the temporal relationship between proteins abundances, IMF, and processing speed.  317 

 By leveraging data on circulating proteins, we provide strong evidence suggesting that 318 

IMF affects processing speed through inflammation, regulating of growth factor activity, and 319 

synaptic organization, function and activity. These data support the interplay between the 320 

muscular quality and the brain and suggest that the muscle is an important target for prevention 321 

of cognitive decline associated with aging.  322 

 323 
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 483 

Figure Lengends: 484 

Figure 1. Plasma proteomic profile of intermuscular fat. Associations between intermuscular fat 485 

(IMF) and plasma proteins were tested in participants of the BLSA (n=941) and validated in the 486 

CARDIA study (n=2445). (A) In the discovery BLSA study, of the 7268 SOMAmers assessed, 487 

782 were associated with IMF. (B) Of the 782 SOMAmers, 722 were validated in the CARDIA 488 

study. The associations between the beta estimates from the regression between IMF and 489 

SOMAmers in the BLSA and CARDIA study was high (r=0.96). (C) Enrichment analysis of GO 490 

biological process (BP), cellular component (CC), and molecular functions (MF) of the 722 491 
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SOMAmers (representing 654 unique proteins) show enrichment in neurological pathways and 492 

growth factor binding.  493 

 494 

Figure 2. Association between intermuscular fat and processing speed mediation by plasma 495 

proteins. The association between degree of intermuscular fat (IMF) and processing speed 496 

assessed using DSST was significantly mediated by 24 proteins in both the BLSA and CARDIA 497 

studies.  Except for IGFBP2, all proteins show negative indirect effects. Red: There were 14 498 

proteins that had negative associations with IMF (lower levels for higher IMF) and positive 499 

association with DSST, indicating a potential neuroprotective role. * IGFBP2 was the only 500 

protein with a negative association with DSST in CARDIA. Blue: there were 10 proteins with 501 

positive associations with IMF (higher levels for higher IMF) and negative associations with 502 

DSST, indicating a potential neurodegenerative role. Created with BioRender.com 503 
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