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Abstract 

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system that results in 

varying degrees of functional impairment. Conventional tools, such as the Expanded Disability Status 

Scale (EDSS), lack sensitivity to subtle changes in disease progression. Radiomics offers a quantitative 

imaging approach to address this limitation. This study used machine learning (ML) and radiomics 

features derived from T2-weighted Fluid-Attenuated Inversion Recovery (FLAIR) magnetic resonance 

images (MRI) to predict disability progression in people with MS (PwMS). 

A retrospective analysis was performed on real-world data from 247 PwMS across two centers. 

Disability progression was defined using EDSS changes over two years. FLAIR MRIs were 

preprocessed using bias-field correction, intensity normalisation, and super-resolution reconstruction 

for low-resolution images. White matter lesions (WML) were segmented using the Lesion 

Segmentation Toolbox (LST), and MRI tissue segmentation was performed using sequence Adaptive 

Multimodal SEGmentation. Radiomics features from WML and normal-appearing white matter 

(NAWM) were extracted using PyRadiomics, harmonised with Longitudinal ComBat, and reduced via 

Spearman correlation and recursive feature elimination. Elastic Net, Balanced Random Forest 

(BRFC), and Light Gradient-Boosting Machine (LGBM) models were evaluated on validation data and 

subsequently tested on unseen data. 

The LGBM model with harmonised radiomics and clinical features outperformed the clinical only 

model by achieving a test performance of PR AUC of 0.20 and a ROC AUC of 0.64. Key predictive 

features, among others, included GLCM maximum probability (WML), GLDM dependence non 

uniformity (NAWM). Short-term changes (longitudinal imaging approach) showed limited predictive 

power by achieving a PR AUC of 0.11 and a ROC AUC of 0.69. 

These findings support the use of ML models trained on radiomics features integrated with clinical 

data for predicting disability progression in PwMS. Future studies should validate these findings in 

larger, balanced datasets and explore advanced approaches, such as deep learning and foundation 

models, to enhance predictive performance. 

Keywords: Multiple Sclerosis, Radiomics, Magnetic Resonance Imaging, Radiomics Features, FLAIR MRI, White 

Matter Lesions, Normal Appearing White Matter, Disability Progression, Machine Learning 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

Introduction 

Multiple Sclerosis (MS) is a chronic neuroinflammatory autoimmune disease of the central nervous 

system (CNS) characterised by demyelination and axonal damage, resulting in varying degrees of loss 

of functional capabilities (Calabresi, 2004). As of 2024, around 2.9 million people with MS (PwMS) 

exist worldwide (Number of People with MS | Atlas of MS, n.d.). Common symptoms include loss of 

sensation and motor, autonomic, and neurocognitive dysfunction, although the nature of the 

symptoms depends on the site of the lesions in the CNS as well as other underlying factors such as 

age, gender, comorbidities, and different biological mechanisms responsible for inflammation and 

neurodegeneration (Sospedra & Martin, 2005).  

Most PwMS experience disease onset at a relatively young age (Walton et al., 2020). Since no cure 

for MS exists (Ferrè et al., 2023), early diagnosis coupled with the initiation of disease-modifying 

therapy in a timely fashion, can alter the clinical course of MS (Edinger & Habibi, 2024) and thus 

impede neurological damage and improve the quality of life of PwMS (Noyes & Weinstock-Guttman, 

2013). However, due to the heterogeneity in MS progression and the incomplete understanding of its 

pathophysiology, predicting long-term disability remains challenging and can make it difficult for 

healthcare professionals to diagnose MS earlier and predict prognosis adequately (Thompson et al., 

2018; Tilling et al., 2016). The ability to predict long-term disability progression in MS has critical 

clinical implications. Reliable predictions can help healthcare professionals adapt the frequency and 

intensity of follow-ups, guide the course of disease-modifying therapies, and enable better 

stratification of patients for clinical trials. By identifying patients at higher risk of progression, 

clinicians could focus resources more effectively, improve patient outcomes, and reduce the burden 

on healthcare systems. Furthermore, accurate prognostic tools would help researchers design clinical 

trials with more homogenous cohorts, improving the statistical power to detect treatment effects 

and accelerating the development of new therapies (Dennison et al., 2018; Inojosa et al., 2021). 

Figure 1 illustrates magnetic resonance imaging (MRI) scans of clinically progressive and non 

progressive PwMS. 
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Figure 1: Representative T2-weighted Fluid-attenuated Inversion Recovery (FLAIR) magnetic resonance 

imaging (MRI) scans of clinically non-progressive (left) and progressive (right) people with multiple sclerosis 

(PwMS). 

The main objective of this study was to predict long-term disability progression in PwMS over a 

two-year period. Disability progression, derived from changes in the expanded disability status scale 

(EDSS) (Kurtzke, 1983), corresponds to the worsening of physical capabilities. In clinical practice, 

EDSS and MRI scans are commonly used to diagnose and assess MS disease course (Wattjes et al., 

2021). However, both have their respective limitations. EDSS is prone to inter-rater variability and 

lacks sensitivity to short-term changes while MRI features, such as the number and volume of white 

matter lesions (WML) or their gadolinium enhancement, can explain only a fraction of the clinical 

outcomes in MS (Uitdehaag, 2018). Moreover, these measures fail to track the diffuse pathological 

changes in the gray matter (GM) and normal-appearing white matter (NAWM) (Davda et al., 2019; 

Treaba et al., 2019; Wattjes et al., 2021). Therefore, there is an unmet clinical need for more 

sensitive and specific biomarkers to predict disability progression in PwMS. 

An image quantification approach such as radiomics can contribute to potentially overcoming this gap 

(Pontillo et al., 2021). Radiomics is an automated imaging data quantification approach aimed at 

extracting high dimensional quantitative features from regions of interest (ROIs) within medical 

images, such as features related to shape, intensity, texture, etc., to characterise the underlying 

biology and establish a correlation with clinical and biological endpoints (Gillies et al., 2016; Lambin 

et al., 2012; Lambin, Leijenaar, Deist, Peerlings, De Jong, et al., 2017; Rogers et al., 2020).  

Radiomics has shown promising results in different disease domains such as oncology (Lambin, 

Zindler, et al., 2017; van Timmeren et al., 2017), Alzheimer’s disease (Feng et al., 2018; Li et al., 

2019), and epilepsy (Liu et al., 2018). Similarly, in MS, radiomics features can potentially become 
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clinically relevant non-invasive disease biomarkers for MS disease progression (Lavrova et al., 2021). 

Some of these features include cortical lesion volume (Calabrese et al., 2010), spinal and brain 

volume atrophy (Kearney et al., 2015; Storelli et al., 2018), microstructural damage of NAWM (Moll 

et al., 2011), and the structural changes in the GM (Pontillo et al., 2019). 

Given the limitations in EDSS and MRI, training advanced machine learning (ML) techniques with 

radiomics features holds promise for developing predictive models. By analysing high-dimensional 

imaging data, ML models can potentially capture and quantify imaging biomarkers associated with MS 

progression, offering a more robust, objective, and sensitive prediction of long-term disability. 

In this study, we used ML to predict long term disability progression in PwMS using real-world data 

(RWD). Catering to the unmet clinical need to identify a non-invasive quantitative biomarker which is 

sensitive to disability progression in MS, we hypothesise the following: 

● Radiomics based ML models can outperform models relying solely on clinical variables to 

predict disability progression in PwMS. 

● Radiomics features from MRI can predict long-term (2 years) disability progression in PwMS. 

● Short-term changes in radiomics features can predict long-term disability progression in 

PwMS. 
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Materials and Methods 

Inclusion Criteria 

To ensure the longitudinal tracking of disability progression, inclusion criteria were designed to 

capture both clinical and imaging data at consistent intervals. This approach was necessary to align 

MRI scans with corresponding EDSS measurements over time, providing a comprehensive 

assessment of disease progression. Subjects with a confirmed diagnosis of MS, at least a two-year 

longitudinal EDSS score trajectory, and at least one baseline and one follow-up MRI scan were 

included in the study. To achieve this, anchor dates were defined as fixed reference points based on 

visits (e.g., MRI acquisition dates) and fixed time points (e.g., 6 months and 2 years after the initial 

visit). Temporal windows were specified around the anchor dates to select follow-up MRI. The three 

temporal windows were defined as: 

● T0 (initial visit): The anchor date for T0 is the MRI acquisition date. The closest EDSS 

measurement within a 6-month window before or a 3-month window after the T0 anchor 

date was selected as the baseline score EDSS_T0. 

● T1 (short-term follow-up): The anchor date for T1 was set exactly 6 months after the T0 

anchor date. The T1 window spanned 3 months before and 3 months after the T1 anchor 

date. Thus, the MRI session at T1 was selected to calculate short-term changes. 

● T2 (long-term follow-up): The anchor date for T2 was set 2 years after the T0 anchor 

date. The T2 window spanned from 3 months before to 1 year after the T2 anchor date. 

The closest EDSS measurement to the T2 anchor date was selected as EDSS_T2. No MRI 

was included in this window, as T2 was based solely on EDSS to assess long-term disability 

progression. 

This structure allowed for consistent alignment of MRI data and EDSS scores at initial visit (T0) and 

short-term follow-up (T1), while long-term progression (T2) was assessed using EDSS alone. 

Multiple MRI sessions and their corresponding EDSS scores were included for some subjects, ranging 

from 2 to 8 MRIs per subject. Each MRI session contributed to the analysis and was treated as a 
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separate observation. Furthermore, MRI sessions from the same subject were grouped during 

partitioning into training, validation and test sets to avoid potential data leakage. An overview of the 

temporal windows is illustrated in Figure 2. 

 

Figure 2: Temporal Alignment of EDSS and MRI Data for Inclusion Criteria. This figure illustrates the temporal 

windows used to align MRI and EDSS data for assessing disability progression. T0 represents the baseline MRI session, with 

the closest EDSS measurement selected within a window of 3 months after or 6 months before the MRI. T1 corresponds 

to the short-term follow-up 6 months after T0, with a 3-month window before and after T1 anchor date for EDSS and MRI 

selection. T2 represents the long-term follow-up 2 years after T0, with the EDSS measurement selected within a window 

of 3 months before to 1 year after T2 anchor date. 

Endpoint Definition 

The primary endpoint of this study was long-term disability progression, and its definition was 

adapted from previous work (Kalincik et al., 2017). Long-term disability progression was determined 

by comparing EDSS scores between T0 and T2. A subject was considered to have worsened if the 

change in EDSS met the following criteria: 

● EDSS_T2 - EDSS_T0 ≥ 1.5 for patients with EDSS_T0 = 0, 

● EDSS_T2 - EDSS_T0 ≥ 1.0 for patients with EDSS_T0 ≤ 5.5, or 

● EDSS_T2 - EDSS_T0 ≥ 0.5 for patients with EDSS_T0 > 5.5. 

Modelling Pipeline 

The pipeline consists of three main stages: image processing, feature processing, and modeling. The 

image processing stage preprocessed MRI data through reorientation, denoising, bias field correction, 

super-resolution reconstruction, and segmentation of WML and NAWM. The feature processing 

stage focused on extracting radiomics features, harmonising them to reduce inter-scanner variability, 
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and removing redundant features. Finally, the modeling stage explored four predictive 

approaches—clinical, baseline imaging, longitudinal imaging, and combined—by employing feature 

selection, machine learning models, and validation techniques to evaluate predictive performance. As 

described later in the section “Data Partitioning”, the datasets were shuffled and split into training, 

validation, and testing datasets. Feature harmonisation, reduction, selection, model hyperparameters 

optimisation and model selection was performed exclusively on the training and validation datasets 

to avoid data leakage. 

Image Processing 

MRI Data 

Our study used pseudonymised longitudinal MRI data collected retrospectively from two medical 

centres: the Rehabilitation and MS Center of Noorderhart in Pelt, Belgium (DS1) and Zuyderland 

Medical Center in Sittard, the Netherlands (DS2). The study has been approved by the ethical 

commission of the University of Hasselt (CME2019/046) and the Medical Ethics Review Committee 

of Zuyderland and Zuyd University of Applied Sciences (METCZ20200167). No consent to 

participate was required, given the pseudonymised and retrospective nature of the study. Both DS1 

and DS2 have been used for the first time in this study and are private datasets consisting of 

T2-weighted Fluid-attenuated Inversion Recovery (FLAIR) MRI scans and clinical data, including age, 

gender, and EDSS scores, collected during routine clinical follow-ups. After applying the inclusion 

criteria, a total of 149 subjects from DS1 and 98 subjects from DS2 were included in the analysis. 

The details of the dataset are mentioned in Table 1. 

The acquisition protocol for T2-weighted FLAIR varied within and across the two datasets. Images in 

DS1 were acquired using the same scanner (Philips Achieva 1.5T) with three different protocols 

depending on the date. Between 2010 and 2015, the MRI session included two orthogonal multi-slice 

T2-W FLAIR acquired with axial and sagittal slice orientations, and with a slice spacing of 6mm 

(Protocol A). Between 2015 and 2017, three orthogonal images were acquired with a slice spacing of 

3mm (Protocol B). In 2017, acquisition sessions included a fast high-resolution 3D T2-W FLAIR with 

voxel size of 0.98 x 0.98 x 0.6 mm^3 (Protocol C), and most of them also included a structural 

T1-W MRI (Protocol CsT1). Images in DS2 were acquired in nine different scanners with varying 
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protocols, including low-resolution multi-slice and high-resolution 3D acquisitions, with spacing 

between slices ranging from 0.8mm to 7mm. Sessions in DS2 were categorised similarly to sessions 

in DS1, based on the number and resolution of acquired T2-W FLAIR images. Sessions with a 3D 

high-resolution image were classified as Protocol C, while those with two orthogonal multi-slice 

low-resolution images were classified as Protocol A. No sessions contained three orthogonal images, 

and 29 sessions with only one low-resolution image were classified Protocol D. Detailed information 

about T2-W FLAIR MRI acquisition protocols for both datasets is provided in Appendix A. 

Table 1: Datasets summary details 

Table 1 summarises the cohort characteristics of DS1 and DS2. The p-values for continuous variables (Age in years at 

baseline and EDSS at baseline) were calculated using two-sample t-tests, while p-values for categorical variables 

(Female-to-Male ratio and Worsening %) were calculated using chi-square tests.  A p-value < 0.05 is marked with an 

asterisk (*) and indicates a statistically significant difference. 

MRI Pre-processing 

The pre-processing of MRI data aimed at harmonising and enhancing the image quality before 

radiomics feature extraction. First, all MRI images were denoised using adaptive non-local means 

(Manjón et al., 2010) and N4 bias-field correction (Tustison et al., 2010) was applied to mitigate 

low-frequency intensity inhomogeneities in MRI images caused by magnetic field distortions. This 

correction aims at improving the accuracy of segmentation and feature extraction, as it reduces the 

impact of scanner heterogeneity (Tustison et al., 2010). 

For protocols with low-resolution images (A, B, and D), we applied "perceptual super-resolution in 

multiple sclerosis” (PRETTIER) (Giraldo et al., 2024), a super-resolution approach designed to 

 

Dataset DS1 DS2 p-value 
Participants (n) 149 98 - 
Sessions 630 184 - 
Age in years at 
baseline 

42.9 ± 11.7 37.4 ± 10.2 0.015* 

Female to Male 
ratio 

3.2:1 3.3:1 0.983 

EDSS at baseline 2.45 ±  1.56 2.87 ±  1.74 0.242 
Acquisition date 
range 

2010 - 2017 2008 - 2019 - 

Worsening (%) 5.5% 13% 0.087 
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enhance the through-plane resolution of multi-slice structural MRIs containing MS lesions. Since 

protocols A and B have multiple low-resolution FLAIR images per session, we applied PRETTIER to 

each image and aligned and combined the outputs following an iterative approach. This technique 

improves spatial resolution, which is important for downstream radiomics analysis and segmentation 

tasks. Reconstruction was not performed on protocol C since it had high-resolution FLAIR.  

Next, we applied the Sequence Adaptive Multimodal SEGmentation (SAMSEG) method for 

whole-brain segmentation on all FLAIR protocols across DS1 and DS2 (Cerri et al., 2021). SAMSEG 

is a previously validated segmentation tool designed to segment 41 anatomical brain structures (See 

Appendix B) from MRI and is fully adaptive to different MRI contrasts and scanners, making it 

particularly suitable for multi-center datasets like ours. SAMSEG was used to segment, among 

others, the normal-appearing white matter (NAWM), gray matter (GM), thalamus and cerebrospinal 

fluid (CSF). 

Lesions were segmented using the lesion prediction algorithm (Schmidt, 2017) as implemented in 

LST toolbox version 1.2.3 (www.statistical-modelling.de/lst.html) for SPM8 

(http://www.fil.ion.ucl.ac.uk/spm). This algorithm uses a pre-trained logistic regression model to 

generate lesion probability estimates at each voxel. These lesion probability estimates were 

thresholded at 0.1 to create white matter lesions (WML) masks. The flow chart of the entire 

pipeline is shown in Figure 3. 
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Figure 3. Overview of the Methodology for MRI-Based Disability Progression Prediction in Multiple 

Sclerosis. The pipeline consists of three main stages: Image Processing, Feature Processing, and Modeling. Image 

processing involves image pre-processing steps such as reorientation and denoising, bias field correction, intensity 

normalisation, and lesion/tissue segmentation using LST and SAMSEG. Super-resolution reconstruction was applied to 

low-resolution images. Feature processing includes the extraction of radiomics features from regions of interest (ROI) and 

harmonisation using longitudinal ComBat to address inter-scanner variability. Features were then divided into harmonised 

and non-harmonised datasets. The feature sets extracted from DS1 and DS2 were then shuffled and divided into training, 

validation, and test sets. Modeling stage includes the division of dataset according to four prognostic approaches Clinical, 

Baseline imaging, Longitudinal imaging and Combined. This was followed by further subdividing each approach into feature 

subsets and subsequent removal of feature reduction, feature selection and training of machine learning model, and finally 

evaluating the best model on the test set. 

Feature Processing 

Besides having masks as the outcome of segmentation, anatomical and lesion volumes were also 

obtained using SAMSEG, and LST. These volumes were subsequently normalised by intracranial 

volume to ensure comparability across subjects. Per-image adaptive histogram matching (Pizer et al., 

1987) was then performed to normalise the intensity distributions of all the skull-stripped FLAIR 

images, ensuring consistency in intensity values across images.  

For this study, high dimensional radiomics features were extracted from two regions of interest 

(ROI): the NAWM and the WML. The WML mask was subtracted from the segmented WM mask to 
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generate the NAWM mask. These binary masks, along with the intensity-normalised FLAIR images, 

were used to compute the corresponding radiomics features for further analysis. 

Feature Extraction 

Radiomics features from the ROIs were extracted using PyRadiomics 2.20 (van Griethuysen et al., 

2017) with python 3.7.1. The extracted radiomics features comprised six classes, including shape 

(Lorensen & Cline, 1987), first-order statistics (FO), gray-level co-occurrence Matrix (GLCM) 

(Haralick et al., 1973), gray-level run length matrix (GLRLM) (Galloway, 1975), gray-level size zone 

matrix (GLSZM) (Thibault et al., 2013) and gray-level dependence matrix (GLDM) (Sun & Wee, 

1983). Gray-level features were calculated by discretising the images with 50 bins, which is in line 

with the recommendations by the Image Biomarker Standardization Initiative (IBSI) (Zwanenburg et 

al., 2018) and in the documentation of PyRadiomics (van Griethuysen et al., 2017). The details of the 

number of features extracted per class is available in Appendix K. 

Feature Harmonisation 

Given the diversity of MRI acquisition protocols and the longitudinal heterogeneity of DS1 and DS2, 

harmonisation of the radiomics features between different protocols was performed using 

longitudinal ComBat (Beer et al., 2020). This technique was applied to improve comparability of the 

features across the datasets by minimising inter- and intra-site variability, as well as temporal 

variations in MRI which can stem from the acquisition protocol. The principal component analysis 

(PCA) visualisation of the features from DS1 and DS2 before and after harmonisation is illustrated in 

Appendix H. Harmonisation coefficients were calculated in the training dataset only, and later applied 

to the testing and validation datasets. 

To ensure a comprehensive evaluation, all subsequent steps were conducted separately to both 

harmonised and non harmonised datasets. 

Dataset Partitioning 

The DS1 and DS2 were shuffled and were then split into training (60%), validation (20%) and test 

(20%) sets. The splitting was performed using stratified shuffled split using scikit-learn (Pedregosa et 
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al., 2011). This ensured two things: 1) the distribution of subjects with worsening disability 

progression was stratified across the sets as evenly as possible, and (2) sessions of the same subject 

were kept within the same dataset, preventing data leakage.  

Prognostic Approaches 

For this study, four distinct prognostic approaches were defined. First, we included a “clinical” 

approach, focusing solely on routinely available clinical variables such as gender, clinical age (in years) 

and EDSS at T0. The reason for analysing this approach separately was to evaluate the predictive 

value of clinical features alone, independent of radiomics features, and served as a baseline for 

comparison with radiomics based approaches. 

Since our study also aimed to capture the predictive capability of both baseline features and 

short-term feature changes in MRI data for disability progression, we further defined three distinct 

radiomics-based prognostic approaches. For extracting radiomics features, we used all sessions for 

each subject with the disability progression label corresponding to that session, labelling this as the 

“baseline imaging” approach. The second approach, “longitudinal imaging”, focused on short-term 

changes in all radiomics features relative to the baseline features. This is calculated by dividing the 

difference between T1 and T0 and dividing it by T0 (Heidt et al., 2024). In this case, the disability 

progression label corresponded to the one assigned at T0. Lastly, to assess whether combining 

baseline imaging and longitudinal imaging could improve predictive power, we integrated features 

used in longitudinal imaging and baseline imaging approaches, referring to this as the “combined” 

approach, with the disability progression label taken at T0. 

Modeling 

Feature Subsets 

To evaluate further whether radiomics features alone or with clinical data are able to predict to 

disability progression, we divided the features in baseline imaging, longitudinal imaging and combined 

prognostic approaches into the following subsets: 
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● Radiomics volume features: Regional and lesion volumes derived from SAMSEG, and LST 

(normalised by intracranial volume). 

● Radiomics features without volumes: Features extracted exclusively using PyRadiomics 

(e.g., shape, FO, GLCM, GLRLM, GLSZM, and GLDM). 

● Radiomics features: A combination of both the selected radiomics volume features and 

radiomics features without volumes. 

● Radiomics and clinical features: A combination of the selected radiomics features with 

clinical data, including gender (female), clinical age (in years) and EDSS at T0. This was done 

to test whether radiomics features combined with clinical features enhance predictive power 

of the model. 

Feature Selection 

Feature reduction and selection was not applied for clinical only dataset, however, for the 

radiomics-based prognostic approaches, feature reduction was performed separately on the training 

set for both the harmonised and non harmonised data analysis pipelines. This includes the four 

feature subsets and the aim was to eliminate redundant and non-informative features. Initially, all 

features were normalised using StandardScalar from scikit-learn (Pedregosa et al., 2011), and then 

pairwise Spearman correlation was computed for the entire feature set. Features that exhibited a 

Spearman correlation coefficient greater than 0.9 were considered highly correlated. From each pair 

of intercorrelated features, the one with the higher average Spearman correlation across all other 

features was flagged for removal. To ensure stability in the selection process, a bootstrapping 

approach was used: in each iteration, stratified subsamples were generated based on the outcome, 

and the intercorrelated features were recalculated. Features that appeared as candidates for removal 

in 50% or more of the bootstrap iterations were discarded from the final dataset, resulting in a 

robust set of non-intercorrelated features for further analysis. 

Recursive Feature Elimination with 20-fold cross-validation (RFECV) was applied on the 

non-intercorrelated features across each approach and feature subset. Given the imbalance in the 

training dataset, with only 6.9% subjects showing worsening disability, we used a Balanced Random 

Forest Classifier (BRFC) as an estimator within RFECV to account for this imbalance. Stratified 

Shuffle Split cross-validation was applied to maintain class proportion across folds, and precision 
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score was chosen as the evaluation metric to prioritise features that improve the precision of 

disability progression prediction. 

Selection of Classification Model 

We used three ML models, Elastic Net (logistic regression), BRFC, and Light Gradient-Boosting 

Machine (LGBM), to evaluate each prognostic approach and the feature subsets it entails. In an 

attempt to make the models robust, we employed Optuna to optimise the hyperparameters of each 

model. Optuna is a framework for efficient hyperparameter tuning using Bayesian optimisation (Akiba 

et al., 2019). Moreover a 20-fold cross-validation alongside stratified shuffle split was implemented 

during model hyperparameter tuning as well. This approach ensured stability by iteratively training 

and testing models across different subsets of the training data, helping to enhance the 

generalisability of the predictions. The model that had the best area under the precision-recall curve 

(PR AUC) on the validation set, per feature subset, was subsequently tested on the test set to 

evaluate the generalisability of the feature subset per approach. The PR AUC curve was used to 

select the best-performing models on the validation set, as it emphasises the trade-off between 

precision (positive predictive value) and recall (sensitivity), making it especially suited for imbalanced 

datasets, like ours, where worsening cases are sparse. In addition to the PR AUC curve, the area 

under the receiver operating characteristic curve (ROC AUC) was also used to give an insight into 

the discriminative capabilities of the models. For PR AUC, a value significantly above the prevalence 

of the positive class indicates meaningful performance. Whereas for ROC AUC, a value of 0.5 

indicates random performance and higher values reflect better discrimination (Çorbacıoğlu & Aksel, 

2023). 

To get an actual picture of the sensitivity and specificity of the models, we used Youden's index (J) to 

calculate the optimal threshold for binary classification (Youden, 1950). Furthermore, to validate 

whether the results generated by our models are not a result of random chance, we also conducted 

permutation analysis by shuffling the outcome variable, i.e. the disability progression, and re-ran 

model training. The permutation was performed 50 times, and the models were then subsequently 

evaluated. 
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To interpret the predictions of the ML models, SHapely Additive exPlanations (SHAP) (Lundberg et 

al., 2019) were employed. SHAP values were computed for the features of selected models, followed 

by the generation of summary plots to visualise feature importance and their impact on predictions. 

The plots ranked the features by their mean absolute SHAP values and their respective effect on the 

likelihood of disability progression.  

Moreover, the Radiomics Quality Score (RQS) framework was followed to ensure methodological 

rigour and adherence to radiomics standards (Lambin, Leijenaar, Deist, Peerlings, de Jong, et al., 

2017). The CLEAR (Checklist for Evaluating the Reporting of AI in Radiology) checklist was also 

used to evaluate the transparency and reproducibility of the ML pipeline, ensuring clarity and 

alignment with best practices for AI reporting (Kocak et al., 2023). 
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Results 

Cohort Characteristics 

By combining and shuffling DS1 and DS2, a total of 247 PwMS were included in this study. The 247 

participants were divided, using stratified shuffled split, into training (n=148), validation (n=49), and 

test (n=50) sets. Subjects in the training set had an average age of 41.32 years (±12.13), while those 

in the validation and test sets had averages of 44.79 years (±10.92) and 38.52 years (±10.25), 

respectively. The female-to-male ratio remained almost consistent across sets at approximately 3.3:1. 

Worsening disability progression was observed in 6.9% of the training set, 9.8% of the validation set, 

and 6.0% of the test set. The summary of cohort characteristics for shuffled datasets has been 

outlined in Table 2.  
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Table 2: Characteristics of the training, validation and test datasets 

Table 2 summarises the cohort characteristics for the training, validation, and test datasets. The p-values indicate 

comparisons between datasets (Training vs Validation, Validation vs Test, and Training vs Test). p-values for Age in years at 

baseline and EDSS at baseline were calculated using two-sample t-tests, while p-values for Female-to-Male ratio and 

Worsening percentage were derived using chi-square tests. A p-value < 0.05 is marked with an asterisk (*) and indicates a 

statistically significant difference. 

 

 

Dataset Training Set Validation Set Test Set p-value 
Participants 148 49 50 - 
Sessions 470 166 178 - 
Age in years 
at baseline 

41.32 ± 12.13 44.79 ± 10.92 38.52 ± 10.25 Training vs Validation - 
0.04* 
Validation vs Test - 0.01* 
Training vs Test - 0.37 

Female to 
Male ratio 

3.2:1 3.3:1 3.3:1 Training vs Validation - 0.98 
Validation vs Test - 0.99 
Training vs Test - 0.99 

EDSS at 
baseline 

2.55 ±  1.56 2.92 ±  1.45 2.17 ± 1.50 Training vs Validation - 0.11 
Validation vs Test - 0.04* 
Training vs Test - 0.08 

Percentage 
Split (of total) 

60 % 20% 20% - 

Acquisition 
date range 

2008 - 2019 2010 - 2019 2010 - 2019 - 

Worsening 
(%) 

6.9% 9.8% 6.0% Training vs Validation - 0.67 
Validation vs Test - 0.58 
Training vs Test - 0.84 
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The longitudinal imaging approach resulted in a dataset reduction of unique participants and sessions 

because it was constructed by calculating feature differences between T0 and T1 sessions. The 

characteristics of delta datasets are summarised in Table 3. 

Table 3: Characteristics of longitudinal imaging approach training, validation and test 

datasets 

Feature Selection 

Tissue segmentation using SAMSEG produced 41 anatomical features (volumes only) from different 

brain regions. Out of 41, two features: “unknown volumes” and “fifth ventricle volume” were 

dropped due to its negligible size in the MRI. The remaining 39 features, along with 2 lesion-specific 

features from LST, the number of lesions and lesion volume, constituted the radiomics volume 

feature subset. Instances where LST failed to provide the lesion volume feature, the SAMSEG derived 

WML volume was used as a substitute. Additionally, high-dimensional radiomics features extracted 

using PyRadiomics, yielded a total of 200 features for the radiomics features without volumes subset. 

Subsequently, per prognostic approach, intercorrelated features were dropped, the details of which 

are summarised in Appendix C.  All the unique retained non-intercorrelated features underwent 

RFECV to get the optimum number of features for downstream ML analysis. The feature subsets 

selected by RFECV for the best performing models per approach are shown in Table 3. 

 

 

Dataset Training Set Validation Set Test Set 
Participants 97 36 33 
Sessions 161 63 70 
Worsening (%) 5.5% 6.3% 7.1% 
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Table 3. Selected features from the best-performing models for disability progression 

prediction. 

Approach Harmonisation Feature Subset Number of 
Features 

Selected Features 

Clinical Not applicable Clinical only 3 EDSS_T0, clinical age in years, gender (female) 

Baseline 
imaging 

Harmonised 
(LongCombat) 

Radiomics and 
clinical features 

10 

GLRLM run variance (WML), GLCM 
maximum probability (WML), firstorder 
kurtosis (NAWM), left lateral ventricle 
volume, GLDM dependence non uniformity 
(NAWM), right amygdala volume, GLSZM 
large area low gray level emphasis (WML), 
EDSS_T0, clinical age in years, gender (female) 

Non harmonised 
Radiomics and 
clinical features 

13 

GLRLM run variance (WML), left thalamus 
volume, left lateral ventricle volume, 
firstorder minimum (WML), right amygdala 
volume, right accumbens area volume, right 
thalamus volume, left pallidum volume, 
GLSZM size zone non uniformity (WML), 
shape minor axis length (NAWM), EDSS_T0, 
clinical age in years, gender (female) 

Longitudial 
imaging  

Harmonised 
(LongCombat) 

Radiomics 
volume features 

1 
delta right cerebellum cortex volume 

Non harmonised 
Radiomics 
features 

3 
delta GLCM difference entropy (WML), delta 
GLDM gray level non uniformity (WML), delta 
left choroid plexus volume 

Combined 

Harmonised 
(LongCombat) 

Radiomics 
features 

6 

left thalamus volume, delta left cerebellum 
cortex volume, delta right hippocampus 
volume, delta right thalamus volume, right 
thalamus volume, delta GLSZM large area high 
gray level emphasis (NAWM) 

Non harmonised 
Radiomics and 
clinical features 

11 

delta GLSZM gray level non uniformity 
(NAWM), left thalamus volume, delta GLDM 
large dependence high gray level emphasis 
(NAWM), right thalamus volume, brain stem 
volume, delta right thalamus volume, delta 
right caudate volume, EDSS_T0, clinical age in 
years, delta clinical age in years, gender 
(female) 
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Machine Learning Models Performance 

The results of the best ML model per prognostic approach is summarised in Table 4. As shown in 

figures 4 and 5, for the clinical approach, LGBM performed the best by achieving a validation PR AUC 

of 0.12 and a validation ROC AUC of 0.57. On the test set, it attained a PR AUC of 0.08 and a ROC 

AUC of 0.6. 

Figure 4. Area under the precision-recall curve (PR AUC) or model performance on clinical validation and 

test sets. The PR curves illustrate the performance of the best-performing model LGBM model trained on clincial features 

for predicting disability progression. Validation PR AUC was 0.12, while the test set PR AUC was 0.08. 

Figure 5. Receiver operating characteristic curve with area under the curve (ROC AUC) for model 

performance on clinical validation and test set. The ROC curves display the discriminative ability of the 

best-performing LGBM model trained on clinical features for predicting disability progression. The ROC AUC for the 

validation set was 0.57, with a test set ROC AUC of 0.60. The red dots indicate the optimal thresholds determined using 

Youden's index, balancing sensitivity and specificity. 
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For the baseline imaging approach LGBM performed best in the radiomics and clinical features 

subset. As shown in Figure 6 and Figure 7, LGBM achieved a validation PR AUC of 0.28 and a 

validation ROC AUC of 0.73. On the test set, it attained a PR AUC of 0.20 and an ROC AUC of 

0.64. While the non hamornised baseline models also generalised well on the test set, it however, did 

not achieve better results compared to the baseline harmonised model (See Appendix D).  

Figure 6. Area under the precision-recall curve (PR AUC) for model performance on baseline imaging 

validation and test sets with harmonised radiomics and clinical feature subset. The PR curves illustrate the 

performance of the best-performing model LGBM trained on baseline imaging harmonised radiomics and clinical feature 

subset for predicting disability progression. Validation PR AUC was 0.25, while the test set PR AUC was 0.20. 

Figure 7. Receiver operating characteristic curve with area under the curve (ROC AUC) for model 

performance on baseline imaging validation and test sets with harmonised radiomics and clinical feature 

subset. The ROC curves display the discriminative ability of the best-performing LGBM model trained on baseline imaging 

harmonised radiomics and clinical feature subset. The ROC AUC for the validation set was 0.65, with a test set ROC AUC 

of 0.64. The red dots indicate the optimal thresholds determined using Youden's index, balancing sensitivity and specificity. 
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For the longitudinal imaging prognostic approach, the BRFC model trained on non-harmonised 

radiomics features achieved the best results compared to the harmonised approach, with a validation 

PR AUC of 0.32 and ROC AUC of 0.78, while on the test set, it achieved a PR AUC of 0.11 and an 

ROC AUC of 0.69 (See figures 8 and 9). The longitudinal imaging harmonised models and the 

combined models, both harmonised and non harmonised, did not generalise well on the test set (see 

Table 4).  

 

 

Figure 8. Area under the precision-recall curve (PR AUC) for model performance on longitudinal imaging 

validation and test sets with non-harmonised radiomics feature subset. The PR curves depict the performance of 

the best-performing model, BRFC, for longitudinal imaging non-harmonised radiomics feature subsets. The validation PR 

AUC is 0.32 and test PR AUC is 0.11. 
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Figure 9. Receiver operating characteristic curve with area under the curve (ROC AUC) for model 

performance on longitudinal imaging validation and test sets with non-harmonised radiomics feature 

subset. The ROC curves display the discriminative ability of the best-performing BRFC model for longitudinal imaging 

non-harmonised radiomics feature subsets. The validation ROC AUC reached 0.78, while the test set ROC AUC was 0.69. 

The red dots indicate the optimal thresholds determined using Youden's index, balancing sensitivity and specificity. 
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Table 4: Performance metrics of the best-performing models across approaches, 

harmonisation strategies, and feature subsets 

Approach Harmonisation Feature Subset Best 
Model 

Validation 
PR AUC 

Validation 
ROC AUC 

Test PR 
AUC 

Test ROC 
AUC 

Clinical Not Applicable Clinical only LGBM 0.16 0.65 0.08 0.6 

Baseline 
imaging 

Harmonised 
(LongCombat) 

Radiomics and 
clinical features 

LGBM 0.25 0.65 0.2 0.64 

Non harmonised 
Radiomics and 
clinical features 

BRFC 0.22 0.69 0.13 0.74 

Longitudinal 
imaging  

Harmonised 
(LongCombat) 

Radiomics volume 
features 

BRFC 0.41 0.66 0.25 0.48 

Non harmonised 
Radiomics 
features 

BRFC 0.32 0.78 0.11 0.69 

Combined 

Harmonised 
(LongCombat) 

Radiomics 
features 

LOGIT 0.54 0.9 0.06 0.41 

Non harmonised 
Radiomics and 
clinical features 

LGBM 0.53 0.91 0.06 0.44 

 

Using Youden's Index (J) to determine the optimal threshold, the clinical model achieved a sensitivity 

of 0.8 and specificity of 0.48 on the test set. For baseline imaging prognostic approach, the LGBM 

trained on the harmonised radiomics and clinical features attained a sensitivity of 0.4 and specificity 

of 0.85 on the test set. Detailed metrics for each approach are shown in Table 5. 
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Table 5. Sensitivity, specificity, precision and recall metrics for the best-performing 

models determined by Youden's index 

Approach Harmonisation Feature Subset Best 
Model 

Youdens 
Index 

Sensitivity Specificity Precision Recall 

Clinical Not Applicable Clinical only LGBM 0.03 0.8 0.48 0.09 0.8 

Baseline 
imaging 

Harmonised 
(LongCombat) 

Radiomics and 
clinical features 

LGBM 0.0086 0.5 0.81 0.15 0.5 

Longitudinal 
imaging  

Non harmonised Radiomics 
features 

BRFC 0.23 1.0 0.45 0.12 1.0 

SHAP based feature analysis 

The SHAP analysis identified the most influential features contributing to the prediction of disability 

progression across the best-performing models in the baseline imaging and longitudinal imaging 

prognostic approaches. For the baseline imaging prognostic approach with harmonised radiomics and 

clinical features, as shown in figure 10, the SHAP analysis revealed GLCM maximum probability 

(WML), left lateral ventricle volume, and GLDM dependence non-uniformity (NAWM) as the top 

three features influencing predictions. Features like gender (female) had a lower impact on the model 

outcome.  

In the SHAP summary plot (figure 10 & 11), features are ranked by their mean absolute SHAP value, 

which quantifies their overall importance in the model. The higher the mean absolute SHAP value, 

the greater the feature's contribution to predictions across all subjects. The color coding in the plot 

represents the value of the feature for each individual subject: red points correspond to higher 

feature values, while blue points indicate lower feature values. For example, higher GLCM maximum 

probability (red points) was associated with a lower likelihood of disability progression, reflecting its 

inverse relationship with the outcome.  

For the longitudinal imaging approach with non-harmonised radiomics feature subset, the delta 

GLDM gray level non-uniformity (WML) and delta GLCM difference entropy (WML) had a higher 

predictive capability for disability progression, whereas the delta left choroid plexus volume had a 

relatively lower contribution to the model’s outcome (see figure 11). 
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For details on the specific model parameters and settings we refer to Appendix I, whereas the details 

of CLEAR checklist and RQS are provided in Appendix E and Appendix F respectively.  
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Figure 10. SHAP summary plot for model trained using baseline imaging prognostic approach with 

harmonised radiomics and clinical feature subset. The SHAP analysis highlights the top contributing features 

influencing the prediction of disability progression. Key features include GLCM maximum probability (WML), left lateral 

ventricle volume, and GLDM dependence non uniformity (NAWM), reflecting the importance of textural and anatomical 

characteristics in predicting progression. Features like gender (female) and age at baseline had relatively lower contributions 

to the model’s predictions. 

 

Figure 11. SHAP summary plot for model trained using longitudinal imaging prognostic approach with non 

harmonised radiomics feature subset. The SHAP analysis for the delta non-harmonised model identifies delta GLDM 

gray level non-uniformity (WML) and delta GLCM difference entropy (WML) as the most predictive features for disability 

progression. The delta left choroid plexus volume exhibited a lower contribution, underscoring the relative importance of 

dynamic changes in lesion structure over time. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

The results of the permutation testing conducted by shuffling the outcome variable and re-evaluating 

the models are presented in Appendix J. The findings show that the performance of the permuted 

models in all the prognostic approaches was worse compared to the original models. 

Discussion 

In this study, we explored the potential of FLAIR MRI-based radiomics and ML techniques on 

multicentric data to predict disability progression in people with multiple sclerosis. We deployed 

three ML models, namely LOGIT, BRFC and LGBM, across four different prognostic approaches, i.e., 

clinical, baseline imaging, longitudinal imaging and combined. Except for the clinical approach, the 

imaging and combined prognostic approaches further consist of harmonised and non-harmonised 

feature subsets comprising radiomics volume features, radiomics features without volumes, radiomics 

features, as well as radiomics and clinical features subset. 

Addressing our first research question, whether radiomics based models can outperform models 

relying solely on clinical variables, we found that LGBM model trained of harmonised radiomics and 

clinical features generalised the best on test set, achieving a PR AUC of 0.2 and ROC AUC of 0.64 

on the test set. As shown in Appendix D, the combination of radiomics and clinical features 

outperformed both the clinical-only and radiomics-only prognostic approaches, demonstrating the 

added value of integrating advanced imaging biomarkers with routinely available clinical data. 

For our second research question whether, radiomics features can predict long-term disability 

progression in PwMS, the most generalisable model was the LGBM trained on harmonised data with 

the radiomics and clinical features subset. As seen in Figure 9, the most influential features constitute 

textural features from the WML and NAWM. The role of textural features in MS disease progression 

has been studied previously (Harrison et al., 2010; Herlidou-Même et al., 2003; Kassner & Thornhill, 

2010; Loizou et al., 2010; Loizou, Kyriacou, et al., 2011; Loizou et al., 2015, 2020; Meier & Guttmann, 

2003; J. Zhang et al., 2008) and our study further strengthens the notion that textural features can 

capture the diffuse pathological changes in these areas. The textural features extracted from WML 

tend to capture the heterogeneity and structural characteristics of the lesions, which can provide a 

non-invasive means of assessing lesion activity and overall burden, which is critical for MS disease 

progression (Y. Zhang et al., 2013). As studied before, the heterogeneity in voxel intensities 
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corresponds to demyelination, axonal loss and inflammation in the WML (Barkovich, 2000; Y. Zhang 

et al., 2013). Furthermore, previous studies have shown that textural heterogeneity can act as 

relevant biomarkers to predict progression (Loizou, Murray, et al., 2011; Tozer et al., 2009). This 

could be due to the origin of the MRI signal from the endogenous protons which are affected by the 

structural changes at the microscopic level in pathology (NAWM and WML) causing magnetic 

resonance signal variation at the macroscopic scale (Y. Zhang et al., 2013). 

The top predictor among the WML textural features in our study was GLCM Maximum Probability 

(WML), which shows an inverse relationship with disability progression. This feature essentially 

measures the most probable co-occurence of intensity values within an ROI (Haralick et al., 1973). In 

the case of WML, this would mean that a higher value of GLCM Maximum Probability would indicate 

a higher degree of homogeneity of intensity values, whereas lower values would indicate lower 

homogeneity or increased heterogeneity in the WML. Therefore, the more textural heterogeneity a 

lesion exhibits, the more demyelination and other microstructural changes occur within that lesion 

(Barkovich, 2000; Y. Zhang et al., 2013). The textural features extracted from the NAWM were also 

deemed as predictive features. They represent possible diffuse pathological changes such as gliosis or 

early demyelination, which are not visible to the naked eye on MRI. This is in line with the literature 

(Y. Zhang, 2012; Y. Zhang et al., 2009).  

In addition to textural features, anatomical volumes such as left lateral ventricle volume and right 

amygdala volume were also deemed useful in our study. Although ventricular enlargement 

corresponds to brain atrophy, which corresponds further to disability progression, in our study, the 

ventricular enlargement exhibited a negative correlation with disability progression, unlike previous 

studies (Genovese et al., 2019; Jakimovski et al., 2020; Zivadinov et al., 2019). As shown in Appendix 

M, this negative correlation can be attributed to cases with advanced atrophy (high left lateral 

ventricle volume) being labelled as non-progressive, as their baseline disability score (EDSS_T0) is 

already high, leaving little room for measurable progression within the two-year follow-up period. 

In contrast, a larger right amygdala volume was associated negatively with disability progression, 

pointing to the possible role of the limbic system in preserving cognitive and neurological function in 

MS. Lastly, the clinical features did not have as much of a higher influence as the others, but they 
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remained important predictors nevertheless. The highest being the age at baseline exhibiting a 

positive correlation with disability progression (Kalnina et al., 2024). 

For our last research question, i.e., whether short-term changes in MRI features can predict 

long-term disability progression, we used the longitudinal imaging prognostic approach in an attempt 

to capture temporal changes and exploit its use to make our models robust. We found that the 

BRFC trained on the non-harmonised radiomics feature subset achieved a PR AUC of 0.11 and ROC 

AUC of 0.69 on the test set. However, looking at the features and their corresponding SHAP values, 

we observed that the selected features, corresponding to the dynamic changes in lesion structure 

over time, exhibited a lower predictive power compared to the harmonised features selected in the 

baseline imaging approach. This could be due to the short temporal window between the baseline 

and follow up and a reduction in the dataset, which inhibits their capability to fully capture short 

term changes to explain long term disability progression in PwMS. 

To further validate our findings and eliminate the risk of overfitting, the permutation results, 

presented in Appendix J, indicate that the permuted models' performance was notably worse than 

the original models. This indicates that the predictive power of our models is driven by meaningful 

patterns in the data rather than random noise or spurious correlations. Furthermore, the poor 

performance of the permuted models validates the robustness of our approach, as any enhancement 

in prediction performance observed in the original models cannot be attributed to chance. 

Interestingly, the combined prognostic approach did not yield a generalisable predictive performance, 

suggesting that the baseline imaging prognostic approach is sufficient to capture the majority of 

relevant information for predicting long-term progression. The integration of longitudinal imaging 

features may have introduced noise, diluting the predictive signal of the more robust baseline 

features. These results underscore the need for careful feature selection and refined temporal 

analysis to optimise combined approaches. 

This study brings important advancements compared to the existing literature. By leveraging 

multicentric data from two centers with diverse MRI acquisition protocols, it enhances the 

generalisability of findings. The robust preprocessing pipeline, including super-resolution 

reconstruction and longitudinal ComBat harmonisation, attempted to ensure consistency in imaging 
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data across sites and protocols. Additionally, the use of SHAP analysis provided interpretable insights 

into feature importance, offering a deeper understanding of the role of radiomics in predicting MS 

progression. While MRI, unlike computed tomography, is inherently non-quantitative, our study, 

similar to previous work (Lavrova et al., 2021), demonstrates the potential of radiomics features in 

capturing subtle pathological changes. The selection of radiomics features from the WML and 

NAWM, coupled with radiomics and clinical features, further enhances the promise radiomics holds 

to bridge the gap between radiological findings and clinical outcomes, also known as the clinico 

radiological paradox (Uitdehaag, 2018).  

However, certain limitations must be acknowledged. The small number of worsening disability 

progression cases translated into a high class imbalance, which posed challenges despite the use of 

weighted adjustments. The reliance on reconstructed images without ground truth and the absence 

of T1-weighted sequences may have affected segmentation and feature quality. While initially, we 

performed ML analysis where DS2 was kept as a completely held out external set, the models 

tended to generalise poorly on it (see Appendix G). Even though longitudinal ComBat harmonisation 

attempts to mitigate scanner and site variability, its ability to preserve subtle predictive patterns and 

address batch effect warrants further validation. Finally, the retrospective design may introduce 

selection bias, limiting the generalisability of these findings to broader populations. 

Future studies should address these limitations by incorporating larger, multicentric, balanced 

datasets with higher-resolution MRI and ground-truth labels. Expanding the temporal window for 

delta radiomics and integrating advanced imaging modalities, such as diffusion-weighted imaging, may 

enhance the predictive power of radiomics. Additionally, exploring the role of other clinical variables, 

such as disease modifying therapy, disease duration, alongside imaging biomarkers could provide a 

more comprehensive understanding of progression mechanisms in MS. Lastly, deep radiomics with 

pre-trained foundation models can be deployed to see whether a deep learning algorithm might be 

able to uncover patterns that the traditional ML algorithm with hand-crafted radiomics might have 

failed to capture.  
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Conclusion 

This study highlights the potential of FLAIR MRI-based radiomics combined with ML to predict 

long-term disability progression in PwMS. We demonstrated that models combining radiomics and 

clinical features outperforms clinical-only models. Furthermore, we found that radiomics features 

from WML and NAWM, and routine clinical features in baseline imaging prognostic approach 

emerged as predictors, reinforcing their diagnostic value. However, the longitudinal imaging approach 

demonstrated limited predictive power, emphasising the need for refined temporal analysis. Future 

work should address class imbalance, enhance feature quality, and explore advanced imaging 

modalities to further advance MS progression prediction. 

Acknowledgments 

The authors thank Zohaib Salahuddin (The D-Lab, Department of Precision Medicine, GROW – 

Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands) 

for his valuable feedback and insights during the development of this study. We also acknowledge 

Raymond Hupperts (Academic MS Center Zuyd, Department of Neurology, Zuyderland Medical 

Center, Sittard-Geleen, Netherlands) for his guidance and support in shaping the clinical aspects of 

this work. 

Supplementary Materials 

Added Seperately to the manuscript. 

Code Availability 

The code used to conduct this study can be accessed on GitHub. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://github.com/hky365/MS_disability_progression_prediction_using_HCR
https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

Author Contributions 

Conceptualisation, Hamza Khan, Liesbet M. Peeters, Henry C. Woodruff and Philippe Lambin; 

methodology, Hamza Khan, Diana L. Giraldo and Henry C.Woodruff; software, Hamza Khan and 

Diana L. Giraldo; validation, Hamza Khan, Diana L. Giraldo, Lorin Werthen-Brabants, Sina Amirrajab, 

and Edward De Brouwer; formal analysis, Hamza Khan and Diana L. Giraldo; investigation, Hamza 

Khan and Diana L. Giraldo; resources, Jan Sijbers, Oliver Gerlach, Veronica Popescu and Bart Van 

Wijmeersch; data curation, Hamza Khan and Diana L. Giraldo; writing—original draft preparation, 

Hamza Khan; writing—review and editing, Hamza Khan, Henry C Woodruff, Diana L. Giraldo, Lorin 

Werthen-Brabants, Shruti Atul Mali, Sina Amirrajab, Edward De Brouwer, Veronica Popescu, Bart 

Van Wijmeersch, Oliver Gerlach, Jan Sijbers, Liesbet M. Peeters and Philippe Lambin; visualisation, 

Hamza Khan; harmonisation, Hamza Khan, Shruti A Mali, and Diana L. Giraldo, supervision, Jan 

Sijbers, Henry C. Woodruff, Liesbet M. Peeters, and Philippe Lambin; project administration, Hamza 

Khan, Liesbet M. Peeters, and Philippe Lambin; funding acquisition, Liesbet M. Peeters, and Philippe 

Lambin. Raymond Hupperts (ZMC), Oliver Gerlach, Veronica Popescu and Bart Van Wijmeersch 

provided clinical insights. All authors have read and agreed to the published version of the 

manuscript. 

Funding 

This research received funding from the Flemish Government under the “Onderzoeksprogramma 

Artificiële Intelligentie (AI) Vlaanderen" program, Stichting Multiple Sclerosis Research (19-1040 MS) 

and the Bijzonder OnderzoeksFonds (BOF19DOCMA10). Authors acknowledge financial support 

from the European Union’s Horizon research and innovation programme under grant agreement: 

ImmunoSABR n° 733008, CHAIMELEON n° 952172, EuCanImage n° 952103, IMI-OPTIMA n° 

101034347, RADIOVAL (HORIZON-HLTH-2021-DISEASE-04-04) n°101057699, EUCAIM 

(DIGITAL-2022-CLOUD-AI-02) n°101100633, GLIOMATCH n° 101136670, AIDAVA 

(HORIZON-HLTH-2021-TOOL-06) n°101057062, REALM (HORIZON-HLTH-2022-TOOL-11) n° 

101095435.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

Institutional Review Board Statement 

The study has been approved by the ethical commission of the University of Hasselt (CME2019/046), 

and and the Medical Ethics Review Committee of Zuyderland and Zuyd University of Applied 

Sciences (METCZ20200167). No consent to participate was required, given the retrospective nature 

of the study. Furthermore, the images used were pseudonymised. 

Conflicts of interest 

Hamza Khan: No conflict of interest or relevant disclosures to this study. 

Diana L. Giraldo: No conflict of interest or relevant disclosures to this study. 

Henry C Woodruff: Minority shares in the company Radiomics SA 

Lorin Werthen-Brabants: No conflict of interest or relevant disclosures to this study. 

Shruti Atul Mali: No conflict of interest or relevant disclosures to this study. 

Sina Amirrajab: No conflict of interest or relevant disclosures to this study. 

Edward De Brouwer: No conflict of interest or relevant disclosures to this study. 

Veronica Popescu: No conflict of interest or relevant disclosures to this study. 

Bart Van Wijmeersch: No conflict of interest or relevant disclosures to this study. 

Oliver Gerlach: No conflict of interest or relevant disclosures to this study. 

Jan Sijbers: No conflict of interest or relevant disclosures to this study. 

Liesbet M. Peeters: No conflict of interest or relevant disclosures to this study. 

Philippe Lambin: None related to the current manuscript; outside of current manuscript: 
grants/sponsored research agreements from Radiomics SA, Convert Pharmaceuticals SA and 
LivingMed Biotech srl. He received a presenter fee and/or reimbursement of travel costs/consultancy 
fee (in cash or in kind) from Astra Zeneca, BHV srl & Roche. PL has/had minority shares in the 
companies Radiomics SA, Convert pharmaceuticals SA, Comunicare SA, LivingMed Biotech srl and 
Bactam srl. PL is co-inventor of two issued patents with royalties on radiomics (PCT/NL2014/050248 
and PCT/NL2014/050728), licensed to Radiomics SA; one issued patent on mtDNA 
(PCT/EP2014/059089), licensed to ptTheragnostic/DNAmito; one granted patent on LSRT (PCT/ 
P126537PC00, US patent No. 12,102,842), licensed to Varian; one issued patent on Radiomic 
signature of hypoxia (U.S. Patent 11,972,867), licensed to a commercial entity; one issued patent on 
Prodrugs (WO2019EP64112) without royalties; one non-issued, non-licensed patents on Deep 
 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

Learning-Radiomics (N2024889) and three non-patented inventions (softwares) licensed to 
ptTheragnostic/DNAmito, Radiomics SA and Health Innovation Ventures). Philippe Lambin confirms 
that none of the above entities were involved in the preparation of this paper. 

 

 
 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

References 

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation 

Hyperparameter Optimization Framework. Proceedings of the 25th ACM SIGKDD 

International Conference on Knowledge Discovery & Data Mining, 2623–2631. 

https://doi.org/10.1145/3292500.3330701 

Amadasun, M., & King, R. (1989). Textural features corresponding to textural properties. IEEE 

Transactions on Systems, Man, and Cybernetics, 19(5), 1264–1274. IEEE Transactions on 

Systems, Man, and Cybernetics. https://doi.org/10.1109/21.44046 

Barkovich, A. J. (2000). Concepts of Myelin and Myelination in Neuroradiology. American Journal of 

Neuroradiology, 21(6), 1099–1109. 

Beer, J. C., Tustison, N. J., Cook, P. A., Davatzikos, C., Sheline, Y. I., Shinohara, R. T., & Linn, K. A. 

(2020). Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging 

data. NeuroImage, 220, 117129. https://doi.org/10.1016/j.neuroimage.2020.117129 

Calabrese, M., Filippi, M., & Gallo, P. (2010). Cortical lesions in multiple sclerosis. Nature Reviews. 

Neurology, 6(8), 438–444. https://doi.org/10.1038/nrneurol.2010.93 

Calabresi, P. A. (2004). Diagnosis and management of multiple sclerosis. American Family Physician, 

70(10), 1935–1944. 

Cerri, S., Puonti, O., Meier, D. S., Wuerfel, J., Mühlau, M., Siebner, H. R., & Van Leemput, K. (2021). A 

contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple 

sclerosis. NeuroImage, 225, 117471. https://doi.org/10.1016/j.neuroimage.2020.117471 

Çorbacıoğlu, Ş. K., & Aksel, G. (2023). Receiver operating characteristic curve analysis in diagnostic 

accuracy studies: A guide to interpreting the area under the curve value. Turkish Journal of 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

Emergency Medicine, 23(4), 195–198. https://doi.org/10.4103/tjem.tjem_182_23 

Davda, N., Tallantyre, E., & Robertson, N. P. (2019). Early MRI predictors of prognosis in multiple 

sclerosis. Journal of Neurology, 266(12), 3171–3173. 

https://doi.org/10.1007/s00415-019-09589-2 

Dennison, L., Brown, M., Kirby, S., & Galea, I. (2018). Do people with multiple sclerosis want to 

know their prognosis? A UK nationwide study. PLoS ONE, 13(2), e0193407. 

https://doi.org/10.1371/journal.pone.0193407 

Edinger, A., & Habibi, M. (2024). The evolution of multiple sclerosis disease-modifying therapies: An 

update for pharmacists. American Journal of Health-System Pharmacy: AJHP: Official Journal 

of the American Society of Health-System Pharmacists, 81(2), 37–55. 

https://doi.org/10.1093/ajhp/zxad247 

Feng, F., Wang, P., Zhao, K., Zhou, B., Yao, H., Meng, Q., Wang, L., Zhang, Z., Ding, Y., Wang, L., An, 

N., Zhang, X., & Liu, Y. (2018). Radiomic Features of Hippocampal Subregions in Alzheimer’s 

Disease and Amnestic Mild Cognitive Impairment. Frontiers in Aging Neuroscience, 10, 290. 

https://doi.org/10.3389/fnagi.2018.00290 

Ferrè, L., Clarelli, F., Pignolet, B., Mascia, E., Frasca, M., Santoro, S., Sorosina, M., Bucciarelli, F., 

Moiola, L., Martinelli, V., Comi, G., Liblau, R., Filippi, M., Valentini, G., & Esposito, F. (2023). 

Combining Clinical and Genetic Data to Predict Response to Fingolimod Treatment in 

Relapsing Remitting Multiple Sclerosis Patients: A Precision Medicine Approach. Journal of 

Personalized Medicine, 13(1), 122. https://doi.org/10.3390/jpm13010122 

Galloway, M. M. (1975). Texture analysis using gray level run lengths. Computer Graphics and Image 

Processing, 4(2), 172–179. https://doi.org/10.1016/S0146-664X(75)80008-6 

Genovese, A. V., Hagemeier, J., Bergsland, N., Jakimovski, D., Dwyer, M. G., Ramasamy, D. P., 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

Lizarraga, A. A., Hojnacki, D., Kolb, C., Weinstock-Guttman, B., & Zivadinov, R. (2019). 

Atrophied Brain T2 Lesion Volume at MRI Is Associated with Disability Progression and 

Conversion to Secondary Progressive Multiple Sclerosis. Radiology. 

https://doi.org/10.1148/radiol.2019190306 

Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: Images Are More than Pictures, They Are 

Data. Radiology, 278(2), 563–577. https://doi.org/10.1148/radiol.2015151169 

Giraldo, D. L., Khan, H., PINEDA, G., Liang, Z., Van Wijmeersch, B., Woodruff, H., Lambin, P., 

Romero, E., Peeters, L. M., & Sijbers, J. (2024). Perceptual super-resolution in multiple 

sclerosis MRI. Frontiers in Neuroscience, 18. https://doi.org/10.3389/fnins.2024.1473132 

Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image Classification. IEEE 

Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610–621. IEEE Transactions on 

Systems, Man, and Cybernetics. https://doi.org/10.1109/TSMC.1973.4309314 

Harrison, L. C. V., Raunio, M., Holli, K. K., Luukkaala, T., Savio, S., Elovaara, I., Soimakallio, S., Eskola, 

H. J., & Dastidar, P. (2010). MRI texture analysis in multiple sclerosis: Toward a clinical 

analysis protocol. Academic Radiology, 17(6), 696–707. 

https://doi.org/10.1016/j.acra.2010.01.005 

Heidt, C. M., Bohn, J. R., Stollmayer, R., von Stackelberg, O., Rheinheimer, S., Bozorgmehr, F., 

Senghas, K., Schlamp, K., Weinheimer, O., Giesel, F. L., Kauczor, H.-U., Heußel, C. P., & 

Heußel, G. (2024). Delta-radiomics features of ADC maps as early predictors of treatment 

response in lung cancer. Insights into Imaging, 15, 218. 

https://doi.org/10.1186/s13244-024-01787-5 

Herlidou-Même, S., Constans, J. M., Carsin, B., Olivie, D., Eliat, P. A., Nadal-Desbarats, L., Gondry, C., 

Le Rumeur, E., Idy-Peretti, I., & de Certaines, J. D. (2003). MRI texture analysis on texture 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

test objects, normal brain and intracranial tumors. Magnetic Resonance Imaging, 21(9), 

989–993. https://doi.org/10.1016/s0730-725x(03)00212-1 

Inojosa, H., Proschmann, U., Akgün, K., & Ziemssen, T. (2021). Should We Use Clinical Tools to 

Identify Disease Progression? Frontiers in Neurology, 11, 628542. 

https://doi.org/10.3389/fneur.2020.628542 

Jakimovski, D., Dujmic, D., Hagemeier, J., Ramasamy, D. P., Bergsland, N., Dwyer, M. G., Eckert, S., 

Kolb, C., Lizarraga, A., Hojnacki, D., Weinstock-Guttman, B., & Zivadinov, R. (2020). Late 

onset multiple sclerosis is associated with more severe ventricle expansion. Multiple 

Sclerosis and Related Disorders, 46, 102588. https://doi.org/10.1016/j.msard.2020.102588 

Kalincik, T., Manouchehrinia, A., Sobisek, L., Jokubaitis, V., Spelman, T., Horakova, D., Havrdova, E., 

Trojano, M., Izquierdo, G., Lugaresi, A., Girard, M., Prat, A., Duquette, P., Grammond, P., Sola, 

P., Hupperts, R., Grand’Maison, F., Pucci, E., Boz, C., … MSBase Study Group. (2017). 

Towards personalized therapy for multiple sclerosis: Prediction of individual treatment 

response. Brain: A Journal of Neurology, 140(9), 2426–2443. 

https://doi.org/10.1093/brain/awx185 

Kalnina, J., Trapina, I., Sjakste, N., & Paramonova, N. (2024). Clinical characteristics and dynamics of 

disability progression in a cohort of patients with multiple sclerosis in Latvians. Neurological 

Sciences, 45(7), 3347–3358. https://doi.org/10.1007/s10072-024-07404-z 

Kassner, A., & Thornhill, R. E. (2010). Texture Analysis: A Review of Neurologic MR Imaging 

Applications. AJNR: American Journal of Neuroradiology, 31(5), 809–816. 

https://doi.org/10.3174/ajnr.A2061 

Kearney, H., Miller, D. H., & Ciccarelli, O. (2015). Spinal cord MRI in multiple sclerosis—Diagnostic, 

prognostic and clinical value. Nature Reviews. Neurology, 11(6), 327–338. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

https://doi.org/10.1038/nrneurol.2015.80 

Kocak, B., Baessler, B., Bakas, S., Cuocolo, R., Fedorov, A., Maier-Hein, L., Mercaldo, N., Müller, H., 

Orlhac, F., Pinto dos Santos, D., Stanzione, A., Ugga, L., & Zwanenburg, A. (2023). CheckList 

for EvaluAtion of Radiomics research (CLEAR): A step-by-step reporting guideline for 

authors and reviewers endorsed by ESR and EuSoMII. Insights into Imaging, 14(1), 75. 

https://doi.org/10.1186/s13244-023-01415-8 

Kurtzke, J. F. (1983). Rating neurologic impairment in multiple sclerosis: An expanded disability status 

scale (EDSS). Neurology, 33(11), 1444–1452. https://doi.org/10.1212/wnl.33.11.1444 

Lambin, P., Leijenaar, R. T., Deist, T. M., Peerlings, J., De Jong, E. E., Van Timmeren, J., Sanduleanu, S., 

Larue, R. T., Even, A. J., & Jochems, A. (2017). Radiomics: The bridge between medical 

imaging and personalized medicine. Nature Reviews Clinical Oncology, 14(12), 749–762. 

Lambin, P., Leijenaar, R. T. H., Deist, T. M., Peerlings, J., de Jong, E. E. C., van Timmeren, J., 

Sanduleanu, S., Larue, R. T. H. M., Even, A. J. G., Jochems, A., van Wijk, Y., Woodruff, H., van 

Soest, J., Lustberg, T., Roelofs, E., van Elmpt, W., Dekker, A., Mottaghy, F. M., Wildberger, J. E., 

& Walsh, S. (2017). Radiomics: The bridge between medical imaging and personalized 

medicine. Nature Reviews. Clinical Oncology, 14(12), 749–762. 

https://doi.org/10.1038/nrclinonc.2017.141 

Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R. G. P. M., Granton, P., 

Zegers, C. M. L., Gillies, R., Boellard, R., Dekker, A., & Aerts, H. J. W. L. (2012). Radiomics: 

Extracting more information from medical images using advanced feature analysis. European 

Journal of Cancer (Oxford, England: 1990), 48(4), 441–446. 

https://doi.org/10.1016/j.ejca.2011.11.036 

Lambin, P., Zindler, J., Vanneste, B. G. L., De Voorde, L. V., Eekers, D., Compter, I., Panth, K. M., 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

Peerlings, J., Larue, R. T. H. M., Deist, T. M., Jochems, A., Lustberg, T., van Soest, J., de Jong, E. 

E. C., Even, A. J. G., Reymen, B., Rekers, N., van Gisbergen, M., Roelofs, E., … Walsh, S. 

(2017). Decision support systems for personalized and participative radiation oncology. 

Advanced Drug Delivery Reviews, 109, 131–153. https://doi.org/10.1016/j.addr.2016.01.006 

Lavrova, E., Lommers, E., Woodruff, H. C., Chatterjee, A., Maquet, P., Salmon, E., Lambin, P., & 

Phillips, C. (2021). Exploratory Radiomic Analysis of Conventional vs. Quantitative Brain 

MRI: Toward Automatic Diagnosis of Early Multiple Sclerosis. Frontiers in Neuroscience, 15, 

679941. https://doi.org/10.3389/fnins.2021.679941 

Li, Y., Jiang, J., Lu, J., Jiang, J., Zhang, H., & Zuo, C. (2019). Radiomics: A novel feature extraction 

method for brain neuron degeneration disease using 18F-FDG PET imaging and its 

implementation for Alzheimer’s disease and mild cognitive impairment. Therapeutic 

Advances in Neurological Disorders, 12, 1756286419838682. 

https://doi.org/10.1177/1756286419838682 

Liu, Z., Wang, Y., Liu, X., Du, Y., Tang, Z., Wang, K., Wei, J., Dong, D., Zang, Y., Dai, J., Jiang, T., & 

Tian, J. (2018). Radiomics analysis allows for precise prediction of epilepsy in patients with 

low-grade gliomas. NeuroImage. Clinical, 19, 271–278. 

https://doi.org/10.1016/j.nicl.2018.04.024 

Loizou, C. P., Kyriacou, E. C., Seimenis, I., Pantziaris, M., Christodoulou, C., & Pattichis, C. S. (2011). 

Brain White Matter Lesions Classification in Multiple Sclerosis Subjects for the Prognosis of 

Future Disability. In L. Iliadis, I. Maglogiannis, & H. Papadopoulos (Eds.), Artificial Intelligence 

Applications and Innovations (pp. 400–409). Springer. 

https://doi.org/10.1007/978-3-642-23960-1_47 

Loizou, C. P., Murray, V., Pattichis, M. S., Seimenis, I., Pantziaris, M., & Pattichis, C. S. (2011). 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

Multiscale amplitude-modulation frequency-modulation (AM-FM) texture analysis of multiple 

sclerosis in brain MRI images. IEEE Transactions on Information Technology in Biomedicine: 

A Publication of the IEEE Engineering in Medicine and Biology Society, 15(1), 119–129. 

https://doi.org/10.1109/TITB.2010.2091279 

Loizou, C. P., Pantzaris, M., & Pattichis, C. S. (2020). Normal appearing brain white matter changes in 

relapsing multiple sclerosis: Texture image and classification analysis in serial MRI scans. 

Magnetic Resonance Imaging, 73, 192–202. https://doi.org/10.1016/j.mri.2020.08.022 

Loizou, C. P., Petroudi, S., Seimenis, I., Pantziaris, M., & Pattichis, C. S. (2015). Quantitative texture 

analysis of brain white matter lesions derived from T2-weighted MR images in MS patients 

with clinically isolated syndrome. Journal of Neuroradiology = Journal De Neuroradiologie, 

42(2), 99–114. https://doi.org/10.1016/j.neurad.2014.05.006 

Loizou, C. P., Seimenis, I., Pantziaris, M., Kasparis, T., Kyriacou, E. C., & Pattichis, C. S. (2010). 

Texture image analysis of normal appearing white matter areas in Clinically Isolated 

Syndrome that evolved in demyelinating lesions in subsequent MRI scans: Multiple sclerosis 

disease evolution. Proceedings of the 10th IEEE International Conference on Information 

Technology and Applications in Biomedicine, 1–5. https://doi.org/10.1109/ITAB.2010.5687688 

Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: A high resolution 3D surface construction 

algorithm. SIGGRAPH Comput. Graph., 21(4), 163–169. 

https://doi.org/10.1145/37402.37422 

Lundberg, S. M., Erion, G. G., & Lee, S.-I. (2019). Consistent Individualized Feature Attribution for 

Tree Ensembles (No. arXiv:1802.03888). arXiv. https://doi.org/10.48550/arXiv.1802.03888 

Manjón, J. V., Coupé, P., Martí-Bonmatí, L., Collins, D. L., & Robles, M. (2010). Adaptive non-local 

means denoising of MR images with spatially varying noise levels. Journal of Magnetic 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

Resonance Imaging: JMRI, 31(1), 192–203. https://doi.org/10.1002/jmri.22003 

Meier, D. S., & Guttmann, C. R. G. (2003). Time-series analysis of MRI intensity patterns in multiple 

sclerosis. NeuroImage, 20(2), 1193–1209. https://doi.org/10.1016/S1053-8119(03)00354-9 

Moll, N. M., Rietsch, A. M., Thomas, S., Ransohoff, A. J., Lee, J.-C., Fox, R., Chang, A., Ransohoff, R. 

M., & Fisher, E. (2011). Multiple sclerosis normal-appearing white matter: Pathology-imaging 

correlations. Annals of Neurology, 70(5), 764–773. https://doi.org/10.1002/ana.22521 

Noyes, K., & Weinstock-Guttman, B. (2013). Impact of diagnosis and early treatment on the course 

of multiple sclerosis. The American Journal of Managed Care, 19(17 Suppl), s321-331. 

Number of people with MS | Atlas of MS. (n.d.). Retrieved November 26, 2024, from 

https://www.atlasofms.org/map/global/epidemiology/number-of-people-with-ms#about 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, 

M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of 

Machine Learning Research, 12(85), 2825–2830. 

Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., ter Haar Romeny, 

B., Zimmerman, J. B., & Zuiderveld, K. (1987). Adaptive histogram equalization and its 

variations. Computer Vision, Graphics, and Image Processing, 39(3), 355–368. 

https://doi.org/10.1016/S0734-189X(87)80186-X 

Pontillo, G., Cocozza, S., Lanzillo, R., Russo, C., Stasi, M. D., Paolella, C., Vola, E. A., Criscuolo, C., 

Borrelli, P., Palma, G., Tedeschi, E., Morra, V. B., Elefante, A., & Brunetti, A. (2019). 

Determinants of Deep Gray Matter Atrophy in Multiple Sclerosis: A Multimodal MRI Study. 

AJNR. American Journal of Neuroradiology, 40(1), 99–106. 

https://doi.org/10.3174/ajnr.A5915 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

Pontillo, G., Tommasin, S., Cuocolo, R., Petracca, M., Petsas, N., Ugga, L., Carotenuto, A., Pozzilli, C., 

Iodice, R., Lanzillo, R., Quarantelli, M., Brescia Morra, V., Tedeschi, E., Pantano, P., & Cocozza, 

S. (2021). A Combined Radiomics and Machine Learning Approach to Overcome the 

Clinicoradiologic Paradox in Multiple Sclerosis. AJNR: American Journal of Neuroradiology, 

42(11), 1927–1933. https://doi.org/10.3174/ajnr.A7274 

Rogers, W., Thulasi Seetha, S., Refaee, T. A. G., Lieverse, R. I. Y., Granzier, R. W. Y., Ibrahim, A., Keek, 

S. A., Sanduleanu, S., Primakov, S. P., Beuque, M. P. L., Marcus, D., van der Wiel, A. M. A., 

Zerka, F., Oberije, C. J. G., van Timmeren, J. E., Woodruff, H. C., & Lambin, P. (2020). 

Radiomics: From qualitative to quantitative imaging. The British Journal of Radiology, 

93(1108), 20190948. https://doi.org/10.1259/bjr.20190948 

Schmidt, P. (2017). Bayesian inference for structured additive regression models for large-scale 

problems with applications to medical imaging [Ludwig-Maximilians-Universität München]. 

http://nbn-resolving.de/urn:nbn:de:bvb:19-203731 

Sospedra, M., & Martin, R. (2005). Immunology of multiple sclerosis. Annual Review of Immunology, 

23, 683–747. https://doi.org/10.1146/annurev.immunol.23.021704.115707 

Storelli, L., Rocca, M. A., Pagani, E., Van Hecke, W., Horsfield, M. A., De Stefano, N., Rovira, A., 

Sastre-Garriga, J., Palace, J., Sima, D., Smeets, D., Filippi, M., & MAGNIMS Study Group. 

(2018). Measurement of Whole-Brain and Gray Matter Atrophy in Multiple Sclerosis: 

Assessment with MR Imaging. Radiology, 288(2), 554–564. 

https://doi.org/10.1148/radiol.2018172468 

Sun, C., & Wee, W. G. (1983). Neighboring gray level dependence matrix for texture classification. 

Computer Vision, Graphics, and Image Processing, 23(3), 341–352. 

https://doi.org/10.1016/0734-189X(83)90032-4 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

Thibault, G., Fertil, B., Navarro, C., Pereira, S., Cau, P., Levy, N., Sequeira, J., & Mari, J.-L. (2013). 

Shape and texture indexes application to cell nuclei classification. International Journal of 

Pattern Recognition and Artificial Intelligence, 27(01), 1357002. 

https://doi.org/10.1142/S0218001413570024 

Thompson, A. J., Banwell, B. L., Barkhof, F., Carroll, W. M., Coetzee, T., Comi, G., Correale, J., 

Fazekas, F., Filippi, M., Freedman, M. S., Fujihara, K., Galetta, S. L., Hartung, H. P., Kappos, L., 

Lublin, F. D., Marrie, R. A., Miller, A. E., Miller, D. H., Montalban, X., … Cohen, J. A. (2018). 

Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet 

Neurology, 17(2), 162–173. https://doi.org/10.1016/S1474-4422(17)30470-2 

Tilling, K., Lawton, M., Robertson, N., Tremlett, H., Zhu, F., Harding, K., Oger, J., & Ben-Shlomo, Y. 

(2016). Modelling disease progression in relapsing-remitting onset multiple sclerosis using 

multilevel models applied to longitudinal data from two natural history cohorts and one 

treated cohort. Health Technology Assessment (Winchester, England), 20(81), 1–48. 

https://doi.org/10.3310/hta20810 

Tozer, D. J., Marongiu, G., Swanton, J. K., Thompson, A. J., & Miller, D. H. (2009). Texture analysis of 

magnetization transfer maps from patients with clinically isolated syndrome and multiple 

sclerosis. Journal of Magnetic Resonance Imaging: JMRI, 30(3), 506–513. 

https://doi.org/10.1002/jmri.21885 

Treaba, C. A., Granberg, T. E., Sormani, M. P., Herranz, E., Ouellette, R. A., Louapre, C., Sloane, J. A., 

Kinkel, R. P., & Mainero, C. (2019). Longitudinal Characterization of Cortical Lesion 

Development and Evolution in Multiple Sclerosis with 7.0-T MRI. Radiology, 291(3), 740–749. 

https://doi.org/10.1148/radiol.2019181719 

Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

N4ITK: Improved N3 Bias Correction. IEEE Transactions on Medical Imaging, 29(6), 

1310–1320. https://doi.org/10.1109/TMI.2010.2046908 

Uitdehaag, B. M. J. (2018). Disability Outcome Measures in Phase III Clinical Trials in Multiple 

Sclerosis. CNS Drugs, 32(6), 543–558. https://doi.org/10.1007/s40263-018-0530-8 

van Timmeren, J. E., Leijenaar, R. T. H., van Elmpt, W., Reymen, B., Oberije, C., Monshouwer, R., 

Bussink, J., Brink, C., Hansen, O., & Lambin, P. (2017). Survival prediction of non-small cell 

lung cancer patients using radiomics analyses of cone-beam CT images. Radiotherapy and 

Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 123(3), 

363–369. https://doi.org/10.1016/j.radonc.2017.04.016 

Walton, C., King, R., Rechtman, L., Kaye, W., Leray, E., Marrie, R. A., Robertson, N., La Rocca, N., 

Uitdehaag, B., van der Mei, I., Wallin, M., Helme, A., Angood Napier, C., Rijke, N., & Baneke, 

P. (2020). Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, 

third edition. Multiple Sclerosis (Houndmills, Basingstoke, England), 26(14), 1816–1821. 

https://doi.org/10.1177/1352458520970841 

Wattjes, M. P., Ciccarelli, O., Reich, D. S., Banwell, B., Stefano, N. de, Enzinger, C., Fazekas, F., Filippi, 

M., Frederiksen, J., Gasperini, C., Hacohen, Y., Kappos, L., Li, D. K. B., Mankad, K., 

Montalban, X., Newsome, S. D., Oh, J., Palace, J., Rocca, M. A., … Oh, J. (2021). 2021 

MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with 

multiple sclerosis. The Lancet Neurology, 20(8), 653–670. 

https://doi.org/10.1016/S1474-4422(21)00095-8 

Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1), 32–35. 

https://doi.org/10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3 

Zhang, J., Tong, L., Wang, L., & Li, N. (2008). Texture analysis of multiple sclerosis: A comparative 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

study. Magnetic Resonance Imaging, 26(8), 1160–1166. 

https://doi.org/10.1016/j.mri.2008.01.016 

Zhang, Y. (2012). MRI texture analysis in multiple sclerosis. International Journal of Biomedical 

Imaging, 2012, 762804. https://doi.org/10.1155/2012/762804 

Zhang, Y., Moore, G. R. W., Laule, C., Bjarnason, T. A., Kozlowski, P., Traboulsee, A., & Li, D. K. B. 

(2013). Pathological correlates of magnetic resonance imaging texture heterogeneity in 

multiple sclerosis. Annals of Neurology, 74(1), 91–99. https://doi.org/10.1002/ana.23867 

Zhang, Y., Zhu, H., Mitchell, J. R., Costello, F., & Metz, L. M. (2009). T2 MRI texture analysis is a 

sensitive measure of tissue injury and recovery resulting from acute inflammatory lesions in 

multiple sclerosis. NeuroImage, 47(1), 107–111. 

https://doi.org/10.1016/j.neuroimage.2009.03.075 

Zivadinov, R., Horakova, D., Bergsland, N., Hagemeier, J., Ramasamy, D. P., Uher, T., Vaneckova, M., 

Havrdova, E., & Dwyer, M. G. (2019). A Serial 10-Year Follow-Up Study of Atrophied Brain 

Lesion Volume and Disability Progression in Patients with Relapsing-Remitting MS. AJNR: 

American Journal of Neuroradiology, 40(3), 446–452. https://doi.org/10.3174/ajnr.A5987 

Zwanenburg, A., Abdalah, M., Ashrafinia, S., Beukinga, J., Bogowicz, M., Dinh, C. V., Götz, M., Hatt, 

M., Leijenaar, R., Lenkowicz, J., Morin, O., Rao, A., Socarras Fernandez, J., Vallieres, M., Dijk, 

L. van, Griethuysen, J. van, Velden, F. H. P. van, Whybra, P., Troost, E., … Löck, S. (2018). 

Results from the Image Biomarker Standardisation Initiative. Radiotherapy and Oncology. 

https://doi.org/10.1016/S0167-8140(18)31291-X 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/


 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 25, 2025. ; https://doi.org/10.1101/2025.01.23.25320971doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.23.25320971
http://creativecommons.org/licenses/by/4.0/

	Leveraging Hand-Crafted Radiomics on Multicenter FLAIR MRI for Predicting Disability Progression in People with Multiple Sclerosis 
	 
	Abstract 
	Introduction 
	Materials and Methods 
	Inclusion Criteria 
	Endpoint Definition 
	Modelling Pipeline 
	Image Processing 
	MRI Data 
	MRI Pre-processing 

	Feature Processing 
	Feature Extraction 
	Feature Harmonisation 
	Dataset Partitioning 
	Prognostic Approaches 

	Modeling 
	Feature Subsets 
	Feature Selection 
	Selection of Classification Model 


	 
	Results 
	Cohort Characteristics 
	Feature Selection 
	Machine Learning Models Performance 
	SHAP based feature analysis 

	Discussion 
	Conclusion 
	Acknowledgments 
	Supplementary Materials 
	Code Availability 
	Author Contributions 
	Funding 
	Institutional Review Board Statement 
	Conflicts of interest 
	References 

