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Abstract 
Metastatic disease is the main cause of breast cancer-related deaths. Given advances 
in the molecular profiling of tumors, we here aimed at integrating proteome, 
phosphoproteome and transcriptome data for the profiling of primary tumors to 
allow for discovery of new subtypes and features predicting lymph node and distant 
metastases in breast cancer (BC). We analyzed a total of 182 estrogen-receptor (ER) 
positive, human epidermal growth factor receptor 2 (HER2) negative BC samples 
using label-free Data Independent Acquisition (DIA) liquid chromatography 
tandem mass spectrometry (LC-MS/MS), quantifying a total of 13571 protein 
groups, 7107 phosphopeptides and 13085 expressed genes in at least 70% of the 
samples. Unsupervised consensus cluster analyses permitted the identification of 
potential subtypes with differential immune infiltration pattern and survival. 
Immune deconvolution data was combined with multiomics factor analysis, 
providing unique insight into different markers for lymph node and distant 
metastases. In summary, we further developed a protocol for parallel acquisition of 
matched proteomics, phosphoproteomics and transcriptomics data, resulting in the 
most comprehensive dataset of its kind and allowing for unique insights into 
metastatic processes in ER-positive/HER2-negative BC. 
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Introduction 
According to statistics from the Global Cancer Observatory, in 2022, Breast Cancer 
(BC) was responsible for nearly one quarter of all cancer diagnoses in women. It 
also ranks first in cancer mortality for women, with 666 103 deaths registered in 
20221-5. Continuous advances both in terms of genomic and transcriptomic 
characterization, as well as early detection by public screening programs, have 
contributed to a reduction in the mortality rate and improved patient stratification6-
8. 

Metastasis, one of the hallmarks of cancer described by Hanahan9 is the main cause 
of death amongst cancer patients 9-12. The metastatic dissemination is a process 
which can take place via blood vessels and lymphatic vessels11. In BC, the lymphatic 
system is thought to be crucial for metastatic spread, where the presence of lymph 
node metastases is not only the earliest sign of metastatic spread, but it also 
constitutes an important prognostic marker10,13,14. 

In BC, lymph node staging is a crucial part of the diagnostic process14. Clinically, 
the initial assessment of axillary lymph node (ALN) status is commonly performed 
via ultrasound. However, since imaging alone is not enough to rule out negative 
cases, these patients are further submitted to sentinel lymph node (SLN) biopsy, 
recommended for clinically node-negative cases14-16. If the results of SLN biopsy 
(SLNB) are positive, then completion axillary node dissection (cALND) would 
previously be performed14. 

Originally, cALND was designed for staging and improving the overall survival of 
patients. However, the procedure is also associated with several side effects. The 
proposal of SLNB came as an alternative to minimize such side effects, supported 
by the results from different clinical trials which demonstrated that SLNB was not 
inferior to cALND in terms of survival14,15,17. In recent years, however, the use of 
SLNB has been questioned. Although SLNB is the standard procedure for ALN 
evaluation in node negative disease, it is still associated with reduced quality of life, 
besides having negative findings in 70% to 80% of cases and a well-established 
false negative rate of 10%, rendering the procedure mostly diagnostic and not 
therapeutic5,14-16. 

Molecular profiling of tumor biopsies is becoming standard practice and is guiding 
treatment along with clinical parameters. Several biomarkers are used for cancer 
classification, and it is feasible to believe that protein activity profiles could be used 
also to predict tumor spread. Transcriptional profiling has indeed added predictive 
power to lymph node prediction, although still at a limited scale. With protocols 
enabling simultaneous proteomics and transcriptomics profiling of tumors, 
multiomics profiling could thus further improve our understanding of metastatic 
potential through lymph node involvement, with possible clinical implications. 
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Here, we build on a previously developed protocol for characterization of tumors 
through transcriptomics and proteomics and include phosphoproteomics to study a 
selection of samples from the SCAN-B cohort18. The aim is to detect molecular 
characteristics of tumors with metastatic potential, focusing on the largest group of 
breast cancer patients, i.e., estrogen-receptor (ER) positive and human epidermal 
growth factor receptor 2 (HER2) negative tumors, with a relatively good prognosis. 

Results 

Acquisition of multiomics data from breast cancer tissue 
In the present study, we aimed at investigating a multiomic profile of metastatic 
processes in estrogen receptor positive BC. A high throughput protocol allowing for 
parallel RNA and protein measure was previously described 19. Here, we further 
developed the protocol to include parallel phosphoproteome data acquisition. 

A total of 182 BC samples belonging to the SCAN-B cohort18 were used in the 
present study. Based on immunohistochemistry (IHC) results, the samples were 
selected to be ER-positive HER2-negative. As the two main histological 
classifications of invasive BC are invasive breast carcinoma of no special type (IBC-
NST) – or just non-special type (NST) carcinomas – and invasive lobular (ILC), 
samples of both subtypes were selected. A graphical representation of the study 
design can be seen in Figure 1. 

The input sample material corresponds to the flowthrough after DNA and RNA 
extraction via the implementation of the AllPrep protocol in the Qiagen cube, 
described in 18. These flowthroughs contain the protein fraction, except for proteins 
potentially lost during previous extraction steps. As the input material comes from 
the same original biopsy collected, our current protocol allows for matched 
transcriptome, proteome and phosphoproteome data. To the best of our knowledge, 
this is the most comprehensive matched proteomic and phosphoproteomic dataset 
of such nature, allowing for a unique insight into the metastatic processes in ER-
positive HER2-negative BC. 

The Data Independent Acquisition (DIA) strategy used allowed for identification of 
a total of 17860 protein groups and 26150 phosphopeptides (Table 1). These data 
were further combined with previously acquired transcriptomics data 20 and studied 
using integrative omics methods. To validate the potential of the approach, we first 
conducted characterization of histological subtypes with known molecular 
differences, before exploring molecular differences of lymph node involvement and 
distant metastasis. 
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Key differences between invasive ductal and lobular carcinomas 
Due to the heterogeneity of BC, different histological subtypes have been 
described21. However, the two most common are NST and ILC21-23. These subtypes 
differ at the clinical, histological and molecular level23. 

The ILC subtype corresponds to around 10-15% of all BC cases21,22, and in our 
selected cohort 20, further filtered to focus on ER-positive HER2-negative cases, 
ILC represents approximately 17% of cases. ILC differs from NST in that cases are 
normally less proliferative, of lower grade, and the vast majority, over 90%, presents 
as ER-positive and HER2-negative21-23. Morphologically, ILC is characterized by 
having small discohesive cells that grow in a single file. As a result, cases are less 
likely to form masses, which makes them more difficult to be detected via 
conventional imaging techniques 21-23. 

The hallmark of ILC, and what drives these morphological differences, is the loss 
of E-Cadherin (CDH1) expression22. This loss is observed in about 90% of ILCs 
and can be used in the context of immunohistochemistry to aid in the classification 
of borderline cases, i.e., those that have mixed histological features22. 

As a way of validating the data collected in the present study, we investigated 
whether differentially abundant features between NST and ILC were in line with 
the biological characteristics of these subtypes. To achieve that, we performed 
differential expression analysis between NST and ILC at the proteome, 
phosphoproteome and transcriptome levels (Figure 2). 

At the proteome level, comparing NST and ILC resulted in 29 differentially 
abundant protein groups (FDR<0.05, absolute log2 Fold Change > 1) 
(Supplementary Table 1). Of these, three were overexpressed in ILC, while the 
remaining 26 were overexpressed in NST. The most enriched protein in NST was 
Cadherin-1 (CADH1; adjusted p-value<5.5E-27, log2 Fold Change > 3). Moreover, 
several of the protein groups highlighted in this comparison have roles in cell 
adhesion, such as alpha and beta catenins (CTNA1, CTNA2, CTNB) as well as 
junction plakoglobins (PLAK). 

At the phosphoproteome and transcriptome levels, a similar pattern is observed, 
where the most enriched features (FDR<0.05, absolute log2 Fold Change >1) in 
NST are related to cell adhesion (Figure 2). 

Besides differential expression analysis, we conducted a Gene Set Enrichment 
Analysis (GSEA) of features found across all three omics layers (Figure 2). 
Cadherin-1 is listed as being part of three gene sets in the Hallmarks gene sets from 
MSigDB, namely TGF_BETA_SIGNALLING, ESTROGEN_RESPONSE_LATE, 
and APICAL _JUNCTION. Our results show that NST samples are significantly 
enriched (FDR<0.25) in all three pathways, with apical junction and TGF beta 
signaling pathways being enriched in all three omics layers, with at least two omics 
showing high significance (adjusted p-value < 0.01). 
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Our results thus corroborate that CADH1 and other features related to cell adhesion 
compose the main differences between NST and ILC, and the acquired multiomics 
data is in line with the biological characteristics of these two subtypes. 

Multiomics analysis reveals novel subtypes with distinct characteristics 
and survival 
As our results captured known biological differences between the NST and ILC 
subtypes, we were interested in investigating whether the different omics would 
contribute to the identification of novel subtypes. To achieve that, we performed 
unsupervised consensus clustering at the proteome, phosphoproteome and 
transcriptome level. 

As baseline, we first performed unsupervised consensus clustering at the proteome 
level for all available samples (177), resulting in 6 distinct clusters (Figure 3A). 
Nottingham histological grade (NHG), PAM50 subtype and the invasive 
histological subtype appear to show some correlation to the clusters. For instance, 
cluster 2 is dominated by grades 2 and 3 NSTs, whereas cluster 4 has, for the most 
part, grade 2 ILCs. Both clusters are dominated by the Luminal B subtype, whereas 
cluster 3 consists of mostly lower grade Luminal A cases. 

G:profiler 24 was used to add representative terms to each feature cluster. These 
results suggest that Cluster 2 is enriched in pathways related to interferon signaling 
and antigen processing and presentation, highlighting the potential role of an 
immune component in this cluster. This is further evidenced by the higher 
proportion of infiltrating lymphocytes as estimated by histological scoring in this 
cluster. 

These annotations were further confirmed by performing differential expression 
analysis between the different clusters followed by GSEA at the proteome level 
(Figure 3B). Compared to the other proteome clusters, cluster 2 showed enrichment 
in, e.g., pathways related to interferon signaling, inflammatory response, MTORC1 
and MYC signaling. 

To further characterize the immune component of this cluster, we looked at the 
general immune cell marker PTPRC (CD45) in the proteome data, confirming 
significantly higher levels (FDR<0.05) in cluster 2 compared to the others, and 
further significantly lower levels in cluster 5. This protein also correlated (Spearman 
correlation coefficient 0.44) with histological scoring18 of lymphocyte cell 
infiltration percentages across the dataset. To gain insight about specific immune 
cell types, we performed transcriptome data deconvolution using CIBERSORTx, 
and significantly higher levels (FDR<0.05) of CD-4 and CD8 T-cells, as well as 
higher levels of monocytes and macrophages were found in cluster 2 compared to 
the others. The absolute CIBSERSORTx immune cell score was also higher in this 
cluster, in line with the PTPRC protein. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
has granted medRxiv a license to display the preprint in perpetuity. 

 is the author/funder, who(which was not certified by peer review)The copyright holder for this preprint 
this version posted January 23, 2025. ; https://doi.org/10.1101/2025.01.22.25320944doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.22.25320944
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

Performing consensus at the phosphoproteome level led to the identification of 5 
clusters (Supplementary Figure S1A). A similar trend could be observed here 
compared to the proteome. Phosphoproteome clusters 2 and 5 were defined by being 
mostly composed of histological grade 3 tumors of Luminal B subtype, while the 
others were mixed. 

In terms of GSEA, the pathways enriched in these two clusters show some overlap 
with those enriched in proteome cluster 2. The alluvial plot (Figure 3C) illustrates 
that, where samples belonging to proteome cluster 2 are mostly assigned to 
phosphoproteome clusters 2 and 5. 

Finally, at the transcriptome level, 5 distinct clusters were defined (Supplementary 
Figure S1B). Associating the clusters with GSEA results also points to an 
enrichment of interferon signaling, inflammatory response and MTORC1 signaling 
in those clusters defined by higher histological grade, which can also be observed 
in the alluvial plot. 

To further investigate these similarities, we applied a Cox proportional hazards 
model to compare the clusters in each omics layer and investigate if patterns in 
survival would follow the same trend (Figure 3D). 

Looking at the forest plots for recurrence-free survival (RFS) for the proteome 
clusters, cluster 3 shows significant improved survival compared to the others 
(univariable p-value=0.04, HR = 0.34). Conversely, despite not being significant, 
cluster 2 shows overall worse survival (univariable p-value = 0.09, HR = 1.77). The 
GSEA results indicate opposite trends, where interferon and MTORC1 signaling 
appear to be downregulated in cluster 3 and upregulated in cluster 2. Interestingly, 
pathways associated with bile acid metabolism, coagulation and complement 
system are enriched in cluster 3. 

Identification of features associated with LN metastasis 
As mentioned previously, the presence of tumor cells in lymph nodes is not only the 
earliest sign of dissemination, but it also constitutes an important prognostic marker 
in BC. For that reason, we were interested in finding features associated with LN 
metastasis  

We first performed differential expression analysis between LN-positive and 
negative cases across both NST and ILC, excluding the subgroup of NST samples 
with a known distant recurrence event (Group 2). At an FDR cutoff of 0.1, two 
features (AKAP2 protein; PRC2A phosphopeptide, phosphorylation on Threonine 
1347) passed. To detect systemic changes based on more subtle differences, we 
performed GSEA using the proteome, phosphoproteome and transcriptome data 
(Figure 4A). Several gene sets indicated similar trends across the omics layers, 
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including interferon gamma and alpha response, complement, coagulation, and 
apical junction. 

As a way of finding more relevant features, throughout this study, feature selection 
was performed based on survival analysis. However, building a univariable Cox 
proportional hazards model with these two features did not result in significant 
association with RFS or overall survival (OS). 

Considering that the results based on differential expression did not prove very 
insightful, we then investigated an alternative approach, based on integrating 
multiomics data. We employed Multi-Omics Factor Analysis (MOFA) 25 to the 
same samples used in the differential expression analysis. Akin to principal 
component analysis, MOFA allows for data decomposition in different (hidden) 
factors. The method allows for integration of multiple data modalities in an 
unsupervised fashion. Compared to other approaches, it allows for data 
reconstruction and association with clinical covariates, providing increased 
interpretability of the results 25. 

Given the possibility to integrate different data modalities, besides the three omics 
datasets, we also included immune infiltration data based on two distinct 
deconvolution algorithms, CIBERSORTx 26 and EPIC 27. Both these algorithms are 
commonly used for deconvoluting transcriptome data, and they both belong to the 
reference-based category of deconvolution algorithms28. While initially developed 
for use with transcriptomics data, the algorithms are also capable of handling 
proteome data. 

To select features associated with LN metastasis, we first selected latent factors 
from the MOFA model with a significant correlation to LN status and features 
correlated to these from each of the data layers, i.e., proteomics, 
phosphoproteomics, transcriptomics and deconvolution-based immune cell 
composition, resulting in a total of 289 unique features. These were individually run 
in a univariable Cox proportional hazards model to assess their association with RFS 
or OS. Those which did not violate the proportional hazards assumption were then 
further evaluated in a multivariable model (Supplementary Table 2). A total of 14 
features passed univariable test, and 3 passed the multivariable test, but only one 
(ES8L2 phosphopeptide, phosphorylation on Serine 570, multivariable p-value = 
0.05, hazard ratio 0.61) proved to be significant in both (Figure 4D). Of note, 
Figure 4B depicts a boxplot of the normalized phosphopeptide intensities between 
the two LN groups. The two means were compared via Student’s t-test, showcasing 
marginally significant (p-value = 0.052) results supporting a decrease in abundance 
for this peptide in connection to LN involvement. 

Repeating the same process with OS as the survival endpoint resulted in 58 features 
passing the univariable test. In the multivariable setting, 4 features were considered 
significant, but none were significant on both tests (Supplementary Table 2). 
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To validate these findings, we further evaluated ES8L2 in the Human Protein Atlas 
(HPA)29,30, Kaplan-Meier Plotter31,32 and with RNAseq data available from other 
samples belonging to the SCAN-B cohort 18,20,29,32, as no additional 
phosphoproteome data were available for this purpose. 

According to UniProt, the ES8L2 protein corresponds to the epidermal growth 
factor receptor kinase substrate 8-like protein 2, and it acts in the stimulation of Ras-
bound guanine exchange activity of SOS1 (son of sevenless homolog 1) and has a 
possible role in remodeling of the actin cytoskeleton. 

In the HPA BC pathology, ES8L2 is not listed as prognostic in BC, as only features 
with a p-value lower than 0.001 receive such denomination. The Log-Rank p-value 
based on the best transcript expression cutoff, i.e., the FPKM value which yields 
maximal difference with regards to survival between the two groups was 0.014, with 
the 5-year survival being 84% for the high group and 80% for the low group, i.e., it 
appears to be associated with improved survival. 

In the Kaplan-Meier plotter, at the mRNA level, selecting for ER-positive/HER2-
negative samples and using RFS as the survival endpoint with the cutoff at the 
median resulted in a p-value of 0.39 and hazard ratio of 0.93. However, when 
stratifying cases further based on LN status, a significant trend was detected in LN-
positive cases (p-value 0.02, HR = 0.74) (Figure 4C). 

Finally, when using the transcriptome data available from other SCAN-B samples, 
a similar trend was observed in RFS. It was considered significant in both 
univariable and multivariable tests for mixed cases, i.e., both LN statuses in 
conjunction (number of cases = 3355, univariable p-value = 0.02, HR = 0.86, 
multivariable p-value = 0.003, HR = 0.082), and when LN-negative cases were 
analyzed separately (number of cases = 2097, univariable p-value = 0.002, HR = 
0.81, multivariable p-value = 0.014, HR = 0.79). It was not deemed significant when 
LN-positive cases were analyzed separately. When using OS as the survival 
endpoint, the ES8L2 transcript was significant in univariable Cox models for all 
samples and LN-negative cases separately, but it did not pass the multivariable tests. 
Of note, despite significance, the calculated hazard ratios had opposite trends when 
comparing RFS and OS, i.e., the transcript was associated with improved RFS and 
worse OS. 

Identification of features associated with distant metastasis 
Metastatic disease is the main cause of cancer-related deaths11. Nevertheless, the 
location of metastasis also holds prognostic and diagnostic value, with loco-regional 
metastases being considered curable stage III disease, and distant metastases 
constituting stage IV disease, at which stage palliative care is generally used33. 
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Cancer cells must travel different distances in order to reach local lymph nodes and 
distant sites, which ultimately exerts different selection pressures on them, 
culminating in distinct molecular characteristics33. 

With this aspect in mind, our focus was on identifying features linked to the 
presence of distant metastasis. To separate the two metastatic events, we focused on 
a subset of 61 LN-negative NST samples, Group 1 and Group 2, of which the later 
was selected for having a distant recurrence event. 

Initial differential expression analysis identified a total of five distinct features at 
FDR <10%, a protein group composed of heat shock protein 90 alpha and beta 
(H90B3;HS902;HS90A;HS90B, adj. p-value=0.054), and four phosphopeptides, 
namely serine/threonine-protein kinase SIK2 (SIK2, phosphorylation residue serine 
534, adjusted p-value = 0.08), RelA-associated inhibitor (IASPP, phosphorylation 
residue threonine 173, adjusted p-value = 0.08), Neuron navigator 1 (NAV1, 
phosphorylation residue serine 391, adjusted p-value = 0.08), and Lamin-B2 
(LMNB2, phosphorylation residue threonine 34, adjusted p-value = 0.09). 

The results from this step were also used in GSEA to assess potential pathways 
involved in the two groups, despite no further individual proteins being significant 
after p-value adjustment for multiple testing (Figure 5A). Pathways associated with 
estrogen response – both early and late – and epithelial mesenchymal transition 
appear enriched in the group with no distant recurrence event. On the other hand, 
pathways involved in G2M checkpoint, E2F targets, MYC targets, MTORC1 
signaling and interferon alpha and gamma response, show some enrichment in the 
group with distant recurrence. To further characterize differences and similarities 
between lymph node and distant metastases, we utilized the phosphoproteome data 
to search for common and distinct signatures using PTM signature enrichment 
analysis34 (Figure 5B). Interestingly, the general pattern of enrichment score 
directions were similar between the two groups when compared to the lymph node 
negative samples for signatures with significant enrichment in any of the 
comparisons (FDR<0.01), although with different significance levels. However, 
only the perturbation signature PSP_PHORBOL_ESTER was significantly 
enriched in the control group vs the two metastasis groups. The kinase signatures 
iKiP_STK4 and iKiP_NEK6 were significantly enriched in the lymph node 
metastasis group, while the kinase signature iKIP_CDK2_CCNA2 was significantly 
enriched in the distant metastasis group. 

Both univariable and multivariable cox proportional hazards models were used to 
evaluate the association of these differentially abundant features with survival. 
Since the event separating the two groups is distant recurrence, Distant Recurrence 
Free Survival (DRFS) was used as the survival outcome instead of RFS, given that 
it is more specific. 

With DRFS as the survival outcome, all five features were deemed significant in 
both univariable and multivariable models. In general, the protein group 
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H90B3;HS902;HS90A;HS90B (univariable p-value < 0.001, HR = 2.25, 
multivariable p-value = 0.006, HR = 2.10), the SIK2 S534p (univariable p-value < 
0.001, HR = 2.44, multivariable p-value = 0.003, HR = 2.25), and NAV1 S391p 
(univariable p-value < 0.001, HR = 2.04, multivariable p-value = 0.001, HR = 2.17) 
were associated with worse DRFS survival, while LMNB2 T34p (univariable p-
value < 0.001, HR = 0.55, multivariable p-value = 0.02, HR = 0.60) and IASPP 
T173p (univariable p-value = 0.002, HR = 0.50, multivariable p-value = 0.02, HR 
= 0.55) were associated with improved DRFS survival (Supplementary Table 3). 

In terms of OS, the Heat Shock Protein 90 protein group, and phosphopeptides from 
LMNB2 and SIK2 were significant in a univariable model following the same trends 
observed with DRFS. From these three, H90B3;HS902;HS90A;HS90B and SIK2 
were also significant in a multivariable model for OS (Supplementary Table 3). 

In addition to the differential expression analysis, we built a MOFA model including 
immune deconvolution data from CIBERSORTx and EPIC in addition to the three 
omics layers described across the subset of 61 samples mentioned previously in this 
section. The same strategy as for assessing feature LN involvement was used, with 
feature selection based on association with latent variables correlating with distant 
metastasis, followed by analysis in univariable and multivariable Cox proportional 
hazards models. 

Across the different omics and cell types derived from the deconvolution 
algorithms, a total of 53 features were selected. Of these, 50 passed the proportional 
hazards assumption test. Supplementary Table 4 contains these selected features, 
and the statistics derived from univariable and multivariable Cox models. A total of 
5 features had p-value lower than 0.05 in both models with DRFS as the survival 
endpoint. 

Analyzing the same 53 features with OS as the survival endpoint resulted in 49 
features passing the proportional hazards assumption (Supplementary Table 4). Of 
these, only one was considered significant on both univariable and multivariable 
analysis, namely RBM39 (univariable p-value = 0.005, HR = 2.30, multivariable p-
value = 0.04, HR = 2.28). 

External validation of these findings – performed in the HPA, Kaplan-Meier Plotter 
and with the transcriptome data from other SCAN-B samples20 – was in line with 
what was conducted for the feature associated with lymph node metastasis. 

Starting with the H90B3;HS902;HS90A;HS90B protein group, the genes 
HSP90AA1 and HSP90AB1 were searched in the HPA. Both are considered 
significant with higher expression being linked to worse survival. Moreover, 
HSP90AA1 is also listed as prognostic in BC (p-value = 0.00056). Searching for the 
same two genes in KM Plotter within ER-positive/HER-negative cases and using 
DRFS and OS as the survival outcomes resulted in only HSP90AB1 being 
significant in LN-negative cases for DRFS (p-value = 0.0058, HR = 1.81). Of note, 
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if using RFS as the survival outcome, both genes are significant (Figure 5D, E) in 
both mixed LN status and LN-negative cases. 

The analysis of these two genes using transcriptome data from other SCAN-B 
samples did not result in any significant observation, although the normalized 
intensity of the corresponding protein group in our analysis proved highly 
significant (Figure 5C). 

Among corresponding genes from the four phosphopeptides identified via 
differential expression analysis, only LMNB2 was considered significant in both the 
HPA (p-value = 0.039) and KM Plotter (DRFS p-value = 0.0088, HR = 1.49), in 
both cases with higher expression being linked to worse outcome. However, 
employing the complementary SCAN-B validation, LMNB2 was the only gene 
among these which showed some degree of significance, albeit only in LN-negative 
cases and univariable analysis (number of cases = 2098, p-value = 0.003, HR = 
1.41). 

Moving on to the features identified via MOFA, in the HPA, all but MFGM were 
considered significant. The corresponding genes from the protein groups 
TSP1;TSP2 (TSP1 p-value = 0.0017, TSP2 p-value = 0.029) and RBM39 (p-value 
= 0.014) were associated with worse survival, while those from 
MYH10.MYH11.MYH9 (only MYH10 was significant, p-value = 0.047) and 
KCND3 (p-value = 0.011) were linked with improved survival. Subsequent 
validation in the KM Plotter of the same genes resulted in two significant hits with 
DRFS as the outcome, namely MYH10.MYH11.MYH9 (only MYH11 was 
significant, p-value = 0.00058, HR = 0.59) and KCND3 (p-value = 0.0035, HR = 
1.55). Finally, in the SCAN-B validation, the results were mixed, with some features 
only being significant in univariable or multivariable models. Within LN-negative 
cases, however, the corresponding genes for RBM39 (univariable p-value = 0.012, 
HR = 0.71, multivariable p-value = 0.005, HR = 0.69) and MFGM (univariable p-
value = 0.037, HR = 1.36, multivariable p-value = 0.01, HR = 1.42) were evaluated 
as significant in both univariable and multivariable analysis. 

Discussion 
In the present study, we generated a multiomic profile of metastatic processes in 
ER-positive/HER2-negative BC, combining transcriptomics, proteomics, 
phosphoproteomics and immune infiltration estimates from the same original 
sample material. This was achieved by utilizing flowthroughs collected via standard 
procedures as integral part of the SCAN-B cohort sample processing pipeline. 
Building on a previously developed semi-automated protocol 19, we acquired 
phosphoproteome DIA data in addition to the already standard proteomic DIA data. 
The proteome and phosphoproteome data were then integrated with already 
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published transcriptome data, generating the most comprehensive dataset of its kind 
in ER-positive/HER2-negative BC. Moreover, new to this study was the integration 
of such data with immune infiltration estimates generated by two deconvolution 
algorithms, EPIC and CibersortX. 

Our multiomic analysis enabled the identification of 6 distinct clusters based by 
consensus clustering at the proteome level. While all clusters possess distinct 
characteristics in terms of enriched hallmark pathways and survival, two were of 
particular interest, namely clusters 2 and 3. In our univariable survival analysis, 
cluster 3 was significantly associated with improved RFS, while cluster 2 had the 
opposite trend, although not significant (Figure 3D). 

Together with the heatmap shown in Figure 3A, which showed higher grade 
luminal B tumors with higher immune infiltration for Cluster 2, the GSEA results 
highlighted pathways associated with e.g., interferon (IFN) signaling (i.e., interferon 
alpha response and interferon gamma response) as well as MYC targets, IL6 JAK 
STAT3 signaling, DNA repair and allograft rejection. Of note, the identification of 
an immune hot cluster is in line with the results reported in Asleh, K. et. al. (2022)35, 
although our findings concern ER-positive/HER2-negative samples exclusively. 

In broad terms, IFNs are cytokines produced primarily in antiviral response 36, 
although their functions related to immunity and cancer have also been documented 
36-38. IFNs are broadly classified in three types, type I, consisted of IFN-alpha and 
IFN-beta, type II (IFN-gamma) and type III (IFN-lambda). While types I and III are 
produced by different cells, type II is mainly produced by T cells and NK cells, 
underscoring its role in immune responses 36. 

The use of IFNs as therapeutic agents was also suggested in the past 36. For instance, 
the use of IFN-beta in combination with tamoxifen was an early strategy to 
circumvent hormonal therapy resistance in ER-positive BC 36,39. However, the 
complexity of IFN signaling in conjunction with substantial toxicity ultimately 
limited their use 36. 

Since then, it has been debated that IFN has a dual role in the tumor 
microenvironment (TME), being able to exert both anti-tumor and pro-tumor 
functions 36,40. For example, it has been reported that chronic exposure to IFN-
gamma would induce the expression of inhibitory factors, ultimately leading to 
immune exhaustion and evasion due to the immunosuppressive TME 36,41,42. 

When it comes to the role of the immune system in BC, distinct immune biology 
can be observed in different BC subtypes, with ER-negative tumors, i.e., HER2-
positive and triple negative tumors (TNBC) typically having increased immune 
infiltration – defined by tumor infiltrating lymphocytes (TILs) – in comparison to 
ER-positive tumors, making those more immunogenic and, by consequence, 
targetable by immunotherapy 43,44. Still, our results suggest that there could be 
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subsets of ER-positive/HER2-negative tumors with potentially actionable immune 
profiles. 

Denkert and colleagues (2018)45 analyzed data from 3771 BC patients treated with 
neoadjuvant chemotherapy originated from six randomized, multicenter clinical 
trials with the goal of assessing the link between the presence of TILs and response 
to treatment and survival, as well as the differences between luminal/HER2-
negative tumors and TNBC. As expected, the percentage of cases with high TILs in 
TNBC and HER2-positive BC was higher than in luminal/HER2-negative cases45. 
When assessing the prognostic value of TILs in overall survival and disease-free 
survival by means of logistic regression, the authors observed that, unsurprisingly, 
higher TILs contributed to longer disease-free survival and overall survival in 
TNBC. In luminal/HER2-negative cases, a negative association was seen in overall 
survival, i.e., low TILs were significantly associated with longer overall survival45. 
Similar trends were observed when TILs were stratified into low, intermediate and 
high groups, where higher TILs were associated with both decreased overall 
survival and disease-free survival in luminal/HER2-negative cases45. 

Of note, contrary to these findings, a study conducted by Lundgren and colleagues 
(2020) showed that improved prognosis, i.e., Breast Cancer-Free interval (BCFi), 
was seen in cases with high TILs infiltration, irrespective of subtype, seen in both 
univariable and multivariable analyses. For ER-positive/HER2-negative cases 
alone, multivariable analysis was significant for both BCFi and OS, despite non-
significant univariable results. The study included a randomized trial of 
premenopausal patients of different BC subtypes with over 30 years of follow-up 
data44. 

The predictive value of TILs infiltration in ER-positive cases with 2 years of 
adjuvant tamoxifen therapy (TAM) was also assessed. Here, it was shown that TAM 
improved BC survival (BCFi) for the groups with low and intermediate TILs, 
although the predictive value of TILs could not be confirmed44. 

Since the immune component refers to different cell types, Denkert and colleagues 
also investigated samples from the Metabric database 45,46 as well as TNBC and 
luminal/HER2-negative cases. Based on available mRNA expression data, a 
microenvironment-cell-populations (MCP) counter method was applied to estimate 
the abundance of different immune cell populations 45. They observed that while 
most immune cells in TNBC were associated with better prognosis, in 
luminal/HER2-negative cases, only B cells and myeloid-derived dendritic cells 
(DCs) were associated with improved prognosis. In contrast, monocytes or 
macrophages were linked to poor prognosis 45. 

These findings align with our own results, since Cluster 2 has the highest immune 
infiltration, consisted mainly of increased T cells – CD8+, CD4+ and regulatory T 
cells (Tregs) – as well as macrophages (Supplementary Figure S2). Interestingly, 
although M0-like and M2-like macrophages are comparable across the different 
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clusters, Cluster 2 also shows increased presence of M1-like macrophages 
(Supplementary Figure S2). 

Cytotoxic T cells are the main producers of IFN-gamma, which is also responsible 
for the upregulation in the expression of inhibitory factors such as programmed cell 
death protein ligand 1 (PD-L1) in macrophages and tumor cells with chronic 
exposure, resulting in a tumor suppressive environment 36. This profile with 
increased IFN signalling and possible T cell exhaustion could potentially be the 
target or immune checkpoint blockade (ICB) therapy 36,47. 

The other cluster that stood out in our analysis was Cluster 3, this time for a 
significant association with improved RFS. In terms of the variables included in the 
heatmap presented in Figure 3A and the immune infiltration results, this cluster is 
primarily characterized by lower grade tumors of the luminal A subtype. 

Turning to the list of differentially expressed features and the GSEA analysis, this 
cluster is associated with significant positive enrichment in pathways related to 
complement, coagulation and xenobiotic metabolism, and significant negative 
enrichment in pathways linked to IFN signaling. The list of differentially abundant 
proteins is dominated by apopoliproteins (APOs), with apopoliprotein A1 being the 
most significant differentially abundant protein (APOA1, adj. p-value = 5.12E-10, 
log2 FC = 1.07). 

In general, APOs are proteins that bind to lipids and can act as ligands for cell 
surface receptors, enzymatic cofactors and lipid carriers, where they are typically 
divided based on density into very-low-density lipoprotein (VLDL), low-density 
lipoprotein (LDL), intermediate-density lipoprotein (IDL) and high-density 
lipoprotein (HDL)48.  

The most abundant lipoprotein is HDL, and it has been associated with the 
regulation of different immune functions, as well as having anti-inflammatory, anti-
oxidative and anti-apoptotic properties 49. Although it has also been associated with 
the risk of different cancers, it is unclear whether HDL itself or its main constituent 
APOA1 is the main responsible for exerting these roles 49. 

Pedersen et. al. (2020) 49 tested the hypothesis that low HDL is associated with 
increased risk of cancer. For this purpose, individuals from two independent Danish 
population-based cohorts (16,728 individuals in total) were followed for up to 25 
years and the risk of different cancer types was investigated 49. The authors observed 
an increased risk of BC with low levels of HDL/APOA1, although this was not 
considered significant upon correction for multiple hypotheses 49. They further 
discussed possible mechanisms mediating this protective effect and highlighted the 
ability of HDL to regulate immune response, inflammation and apoptosis 48,49, as 
well as a possible inhibition in the proliferation of hematopoietic stem cells 49,50, 
which would fall in line with the previously discussed associations between worse 
prognosis in highly infiltrated luminal/HER2-negative tumors. 
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Our analysis of multiomic features associated with lymph node metastasis led to the 
identification of a phosphopeptide belonging to the EPS8L2 protein. EPS8L 
proteins constitute a family of EPS8-related proteins which is composed of three 
members, EPS8L1, L2 and L3 51,52. The EPS8 protein is essential for activation of 
Rac via the formation of a tricomplex (EPS8-SOS1-ABI1) 51,52. 

In the work of Offenhäuser et al (2004) 51, the authors discuss that despite the 
essential role of EPS8, EPS8 null mice lack an associated phenotype, with the most 
plausible explanation being the existence of redundant functions 51. The family of 
EPS8L proteins was further analyzed in their capacity to form the tricomplex, 
interact with actin and recover EPS8 activity in EPS8 -/- fibroblasts derived from 
EPS8 knockout mice 51. The authors concluded that the expression pattern of EPS8 
and EPS8L2 were overlapping, leading to functional redundancy at the protein level 
51,52. Moreover, in terms of Rac activation via the tricomplex, EPS8L2 was equally 
efficient as EPS8 itself51. 

These findings and functional redundancy led to the investigation of potential roles 
of EPS8L2 and EPS8. In their review on the effects and mechanisms of EPS8 in 
malignant tumors, Luo et. al. 52 discuss the expression of EPS8 in different cancers 
(both solid tumors and hematological malignancies) and highlight the potential use 
of EPS8 as a biomarker or target 52. 

EPS8 is part of a variety of signaling processes, including epidermal growth factor 
receptor (EGFR) transduction, actin binding and regulation of cell cycle and cell 
proliferation 52, where it is typically seen as a marker of poor prognosis and 
generally associated with tumorigenesis, proliferation, migration, metastasis, 
chemoresistance 52,53. 

Contrary to these findings, He et. al. 53 demonstrated that EPS8 can induce 
maturation of dendritic cells, T-cell proliferation and cytotoxicity in vitro, with 
significant increases in the expression of major histocompability complex class II 
(MHC-II), CD80, CD86, interleukin 12 (IL-12) and increased IFN-gamma secretion 
53. 

A murine breast cancer model, 4T1, was used to investigate the effect of an EPS8 
vaccine53. Even though no mice remained tumor free, immunization with EPS8 
vaccine inhibited tumor growth considerably and led to longer survival with 
subsequent injection of subcutaneous 4T1 cells 53. A reduction in the percentage of 
Tregs was also observed 53. 

Considering our own findings, where EPS8L2 S570p is linked to improved RFS and 
appears to have lower expression in LN-positive cases, a possible mechanism 
involving a protective role of EPS8L2 could be in reducing the population of Tregs 
and mitigating the potential T-cell exhaustion previously mentioned. Similarly, 
given the increased IFN-gamma expression observed by He et. al. 53, it is possible 
that ICB therapy could be applied in some cases. However, these mechanisms and 
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uses need further investigation. Finally, in our validation results, EPS8L2 showed 
different associations with RFS and OS, which could, at least in part, be explained 
by functional redundancy with EPS8 and the intricate signaling pathways associated 
with it, besides possible differences resulted from the validation being done at the 
transcriptome level. 

Continuing with the findings from our multiomic analysis of features associated 
with distant metastasis, one of the features highlighted were a protein group 
composed of different isoforms of the Heat Shock Protein 90 (HSP90). 

In general, Heat Shock Proteins (Hsps) are highly conserved, and their expression 
is upregulated in response to stress, be it physical, chemical or in pathological 
processes, including carcinogenesis 54,55. In mammals, Hsps are divided into six 
different families based on their molecular size, with the HSP90 family being 
encoded by HSPA genes 54. In relation to their role in cancer, the expression of 
different Hsps has been shown to be increased in several different tumors, including 
BC 54. 

The HSP90 proteins are constituted by three domains, an N-terminal domain, a C-
terminal domain and a middle domain 54,55. The HSP90 family is crucial for their 
chaperone activity, assisting in the correct folding of its client proteins and inducing 
protein degradation where appropriate 55. To date, over 400 different client proteins 
have been identified, several of which are essential for cancer cell proliferation 54,55. 
In BC, expression of HSP90 is typically associated with a worse prognosis 54,56,57. 

Considering that HSP90 is typically overexpressed in BC and that it is associated 
with worse prognosis, its inhibition could prove beneficial. In fact, different HSP90 
inhibitors have been proposed and evaluated in different clinical trials 54,55. Li et. al. 
55 reported a total of 18 HSP90 inhibitors divided in five different categories 
associated with their chemical structures. 

Historically, most HSP90 inhibitors targeted the N-terminus domain. However, 
these typically lead to the development of toxicity and resistance by means of 
upregulation of other Hsps, resulting in a process known as the heat shock response 
54,55. Targeting the C-terminal, on the other hand, appears to partially mitigate the 
issue 55. 

On the other hand, it has been shown that the HSP90 family is composed of four 
different isoforms, namely HSP90-alpha, HSP90-beta, GRP94 and TRAP-1 55. Of 
these four, the alpha and beta isoforms are the most abundant 55. For that reason, the 
use of isoform specific inhibitors that target these more abundant isoforms, such as 
SNX-0723 and TAS-116, would be the optimal choices due to increased selectivity 
and reduced toxicity, in monotherapy or combination therapy scenarios 55,58,59. 

In addition to the use of inhibitors, Zhu et. al. 60 developed a risk signature for BC 
based on markers involved in immunogenic cell death (ICD), a process which 
involves the transformation of tumor cells from non-immunogenic to an 
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immunogenic phenotype given a death stimulus 60. Among the different markers 
identified, the authors highlight the HSP90AA1 gene as that with the highest risk 
factor and further demonstrate that knockdown of HSP90AA1 with siRNA resulted 
in a significant reduction in BC cell migration and invasion 60, underscoring the 
potential value as a biomarker of metastasis. Our results both from the multiomic 
discovery cohort and in the external validations agrees with the potential usage of 
this protein or transcript as a predictive biomarker, especially in LN-negative cases. 

Conclusions 
In the present study, we present the most comprehensive multiomic dataset of 
metastatic processes in ER-positive/HER2-negative BC clinical samples. This was 
achieved by further developing a workflow and combining LC-MS/MS-based 
proteome and phosphoproteome data, and immune infiltration estimates with 
transcriptome data from tumor biopsies, followed by integrative omics analysis 
methods such as consensus clustering and MOFA. We identified possible subtypes 
with differential survival, highlighting a possible immune exhausted phenotype. 
Finally, we identified potential markers of LN involvement and distant metastasis 
which are part of several important signaling pathways that are targets of active 
clinical developments. Further investigation of their potential predictive and 
prognostic roles of these markers could be crucial in the context of personalized 
medicine in ER-positive/HER2-negative BC. 

Methods 

Ethics approval and consent to participate 
Included patients were enrolled in the Sweden Cancerome Analysis Network – 
Breast (SCAN-B) study (ClinicalTrials.gov ID NCT02306096) 
(PMID:25722745,29341157) approved by the Regional Ethical Review Board in 
Lund, Sweden (registration numbers 2009/658, 2010/383, 2012/58, 2013/459, 
2014/521, 2015/277, 2016/541, 2016/742, 2016/944, 2018/267 and the Swedish 
Ethical Review Authority (registration numbers 2019-01252, 2024-02040-02). All 
patients provided written informed consent prior to enrolment and all analyses were 
performed in accordance with patient consent and ethical regulations and decisions. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
has granted medRxiv a license to display the preprint in perpetuity. 

 is the author/funder, who(which was not certified by peer review)The copyright holder for this preprint 
this version posted January 23, 2025. ; https://doi.org/10.1101/2025.01.22.25320944doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.22.25320944
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

Sample Selection and Study Design 
All samples used in the present study are from the Sweden Cancerome Analysis 
Network – Breast (SCAN-B) cohort18,20. A total of 182 samples were obtained in 
collaboration with the SCAN-B Steering Committee and the Division of Oncology, 
Department of Clinical Sciences Lund, Lund University. 

The samples correspond to the flowthrough resulted from RNA and DNA extraction 
performed in tumor biopsies using the Qiagen All Prep kit18. This material contains 
the protein fraction, which was used in the present study for proteome and 
phosphoproteome data acquisition. 

The clinical specimens were selected from the early-stage IBC cohort defined in 20. 
In summary, this cohort constitutes of non-redundant IBC cases representative of 
the background IBC population in the SCAN-B catchment area 20. From this cohort, 
samples were selected to only comprise ER-positive, HER2-negative tumors 
collected between 2010 and 2016 to allow for at least 5-year follow-up data to be 
available and standardize treatment. The samples were then further filtered based 
on the interquartile range of size with the objective of standardizing size across 
samples, given it is highly correlated with aggressiveness and metastatic spread. 

The aim of the study was to profile the lymph node involvement and distant 
metastasis in BC. With that in mind, the samples were then split into 6 experimental 
groups, which can be observed in Figure 1. First, samples were divided according 
to the two histological subtypes, i.e., 120 NSTs and 62 ILCs. These groups were 
further stratified in LN-positive and LN-negative, resulting in an average of 60 
samples per group for NST and 31 per group within ILC. 

Given that NST is much more prevalent than ILC, the LN-negative samples were 
further stratified according to the absence or presence of distant recurrences, Group 
1 and Group 2, respectively.  The LN-positive samples were divided according to 
nodal burden, with samples classified as 1to3 being placed in Group 3, and 4toX 
samples composing Group 4. For ILC samples, Group 5 corresponds to LN-negative 
and Group 6 to LN-positive. 

In summary, an average of 30 samples per group was selected, preferring samples 
belonging to the Follow-up Cohort20, collected between 2010 and 2012 and 
completing the group with samples up until 2016. A Shapiro-Wilk test of normality 
was performed for the size of all defined groups. Apart from Group 6, all other 
groups had normal size distributions. No further corrections were made for Group 
6, given the very limited number of samples available to satisfy the selection criteria. 

Estimation of Protein Concentration 
The protein concentration in the samples was estimated based on regression analysis 
described in19. Given the poor correlation between protein and RNA concentration 
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in the lower range, a cutoff of 200 ng/µL was stipulated and applied as a selection 
criterium in the present study. 

Sample Preparation 
A total of 100 µg of each sample was transferred to KingFisher 96 deep-well 
microtiter plates (Thermo Fisher Scientific, Waltham, MA, USA). The volumes 
were normalized to 200 µL using MS-grade water. 

Reduction and Alkylation 
The proteins were then reduced and alkylated for 1 hour at room temperature to a 
final concentration of 5 mM Tris(2-carboxyethyl)phosphine hydrochloride (TCEP-
HCl) and 10 mM 2-Chloroacetamide (2-CAA), using 100 mM stocks from each. 

Automated Digestion via Protein Aggregation Capture 
Protein Aggregation Capture (PAC) was performed for protein digestion. The 
protocol was automated using a KingFisher Flex robot (Thermo Fisher Scientific). 
Briefly, the tip comb was stored in position #1. In position #2, the plate containing 
the reduced and alkylated samples was added. To it, 10 µL MagReSyn® Hydroxyl 
beads (Resyn Biosciences, Edenvale, Gauteng, South Africa), corresponding to a 
bead-to-protein ratio of 2:1 (w/w), was added, followed by addition of Acetonitrile 
(ACN) to a final concentration of 70%. The beads were washed three times in 95% 
ACN in plates #3, #4 and #5, followed by two washes with 70% ethanol (plates #6 
and #7). Finally, the proteins were digested overnight in 50 mM Ammonium 
Bicarbonate in the presence of Lys-C (1:500 enzyme/protein, w/w) and Trypsin 
(1:250 enzyme/protein, w/w). Digestion took place at 37°C with intermittent 
agitation, i.e., intervals of 15 seconds of agitation followed by 135 seconds without 
agitation. Protease activity was quenched by adding trifluoroacetic acid (TFA) to a 
final concentration of 1%. The resulting peptide solutions were stored at -80°C until 
desalting. 

The resulting peptide solutions were dried on a SpeedVac Vacuum Concentrator 
(ThermoFisher Scientific) and stored at -80°C until desalting. 

Desalting 
The peptide mixtures were desalted on Sep-Pak 40 mg tC18 96-well plates (Waters 
Corporation, Milford, MA, USA). The columns were first conditioned with 100% 
ACN using a centrifuge at 100G for 1 minute, and the flowthrough was discarded. 
Then, equilibration was performed three times using 0.1% TFA in water. After each 
step, the flowthrough was discarded. The acidified peptide samples were loaded and 
passed through the columns at 80G on the centrifuge. At this stage, the flowthrough 
was collected, and the loading step was repeated a total of three times. The columns 
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were washed three times with 0.1% TFA and the cleaned peptides were eluted in 
two steps, with 40% ACN and 70% ACN, respectively. A small aliquot of the 
cleaned peptide mixtures was taken for full proteome analysis. This aliquot was 
dried on a SpeedVac Vacuum Concentrator (ThermoFisher Scientific) and kept at -
80°C until LC-MS/MS analysis. The remaining eluate was stored at -80°C until 
phosphopeptide enrichment was conducted. 

As a result of a technical error during the drying step after phosphopeptide 
enrichment, the samples were lost. The protocol was run for a second time with 
minor differences from the steps mentioned above. Specifically, the desalting of 
peptides was performed using Oasis Prime HLB 10 mg 96-well plates (Waters 
Corporation). For this round of desalting, columns were conditioned with ACN in a 
centrifuge at 100G for 1 minute. Unless otherwise specified, the flowthroughs after 
each centrifugation step were discarded. Equilibration was performed using 0.1% 
TFA at the same speed setting. The acidified samples were loaded, and at this stage 
the flowthroughs were collected, and this step was repeated two additional times. 
Washing was then performed using 0.1% TFA, and the peptides were eluted in two 
steps using 60% ACN, 5% TFA and 0.1M GA. The samples were stored at -80°C 
until ready for phosphopeptide enrichment. 

Automated Phosphopeptide Enrichment via Immobilized Metal Ion Affinity 
Chromatography (IMAC) Beads 
Automated Phosphopeptide enrichment was automated using the KingFisher Flex 
robot (ThermoFisher Scientific) and based on61. The tip comb was stored in position 
#1. In position #2, 10 µL MagResyn® Zr-IMAC HP beads (Resyn Biosciences) 
were added in addition to 200 µL binding solution, which consisted of 80% ACN, 
5% TFA, 0.1 M glycolic acid (GA). The beads were then washed once in binding 
solvent in position #3. In position #4,200 µL 5% TFA, 0.1M GA in ACN was added 
and mixed with the desalted peptides. In position #5, the beads were washed in 
binding solution, followed by two consecutive washes in positions #6 and #7 in 80% 
ACN, 1% TFA, and 10% ACN, 0.2% TFA, respectively. Elution was performed in 
1% ammonia solution. A second round of enrichment was performed by looping 
over the protocol once without adding new beads. Enriched peptides were then 
acidified with 10% TFA, transferred to PCR plates and dried on a SpeecVac. 

The current protocol was devised to allow for parallel processing of samples for 
acquisition of full proteome and phosphoproteome data. Unfortunately, due to a 
technical error during the drying step after phosphopeptide enrichment, the samples 
were lost at this stage. The protocol was rerun with minor changes. Specifically, the 
desalting step for the second run was performed in Oasis Prime HLB 10 mg 96-well 
plates (Waters Corporation). 
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Evotip Loading 
For full proteome analysis, sample concentration was determined using a Nanodrop 
ND-1000 Spectrophotometer (ThermoFisher Scientific). Based on the concentration 
results, approximately 600 ng of peptides were loaded onto Evotip Pure tips 
(EvoSep Biosystems, Odense, Denmark) with minor modifications from the 
manufacturer’s instructions. Briefly, the equilibration step and the washing step 
were repeated an additional time, and 300 µL of solvent A (0.1% formic acid in 
water) was added to the tips in the last step, instead of the recommended 100 µL. 

For loading of the enriched phosphopeptides, the entire eluate resulting from the 
enrichment step was loaded onto the Evotip Pure tips (EvoSep Biosystems). The 
modifications from the manufacturer’s protocol were also kept. 

LC-MS/MS 
LC-MS/MS was performed on an Evosep One LC system (EvoSep Biosystems) 
coupled to an electrospray ionization Q-Exactive HF-X Hybrid Quadrupole-
Orbitrap mass spectrometer (ThermoFisher Scientific). Samples were separated 
using a 15 cm long fused silica capillary with emitter tip and frit (360 µm OD x 75 
µm ID x 50 cm L, 15 µm Tip ID; MS Wil B. V., Aarle-Rixtel, The Netherlands) 
packed in house with ReproSil-Pur 1.9 µm C18 material (Dr. Maisch GmbH, 
Ammerbuch-Entringen, Germany). The peptides were separated in 0.1% FA in 
water (Solvent A) and 0.1% FA in ACN (Solvent B), and a column oven was 
attached and set to 40°C. The Whisper 20SPD method (Evosep Biosystems), 
corresponding to a 58-minute gradient, was used for full proteome analysis. For 
phosphoproteome, the Whisper 40SPD method was used (31-minute gradient). 

All data was acquired in DIA mode. The methods were based on overlapping 
windows as described in 62. For full proteome analysis, the run time was set between 
4 minutes and 58 minutes. The MS1 AGC target was set at 3E6 ions with a 
maximum injection time of 55 ms and resolution 60,000, with the scan range 
between 395 and 1005 m/z. DIA MS2 spectra were collected with staggered 
windows in 75 loops, 8 m/z isolation window, normalized collision energy (NCE) 
of 27, maximum injection time set to “auto” and resolution at 15,000. 

For phosphoproteome acquisition, MS1 data were acquired between 4 and 31 
minutes between the scan ranges of 350 and 1400 m/z, with AGC target at 3E6, 25 
ms of maximum injection time and resolution 120,000. DIA MS2 data were 
acquired in staggered windows, with a loop count of 50, isolation window of 13.7 
m/z, NCE at 27, “auto” maximum injection time and resolution of 15,000. For this 
method, a first fixed mass was set at 100 m/z. 
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Data Processing 
First, all DIA RAW files were converted to mzML with demultiplexing at 10 ppm 
mass error using msconvert version 3.0.21266-1f16dae (developer build)63. mzML 
files were then converted to DIA files using DIA-NN version 1.8.164, which was 
also used for all quantitative data processing in library-free mode with 1% false 
discovery rate (FDR) at both peptide and protein levels. 

A total of three FASTA files were used in the searches. Two corresponded to non-
redundant FASTA files, namely UP000005640_9606.fasta and 
UP000005640_9606_additional.fasta, both downloaded in June 2023. The first file 
corresponds to canonical sequences from the human proteome, while the additional 
file contains isoforms/variants65. The third file used was a list of common 
contaminants66. 

For full proteome searches, the precursor m/z range was set between 300 and 1800 
m/z, precursor charge in the range of 1 to 4, peptide length range between 7 and 30 
and a maximum of one missed cleavage was allowed. N-terminal methionine 
excision and cysteine carbamidomethylation were enabled. Mass accuracy was 
automatically set, and runs were treated as unrelated, i.e., mass accuracy and 
retention time scan window were determined for each file separately. “Robust LC 
(high-accuracy)” was used for quantification, with match between runs (MBR) 
enabled. 

For phosphoproteome searches, the same parameters were used, with the exception 
that phosphorylation was enabled as a variable modification, and a maximum of 2 
variable modifications were allowed. 

Bioinformatics and statistical analyses 
Proteome and phosphoproteome peptide-level data were cyclic Loess normalized 
using NormalyzerDE. For protein-level inference, peptide identifications were 
subjected to protein rollup through the RRollup approach67 using an implementation 
deposited on GitHub (https://github.com/ComputationalProteomics/ProteinRollup). 
Briefly, the peptides, filtered at 1% FDR on DIA-NN, were grouped into protein 
groups with a minimum requirement of two peptides per group. 

Transcriptome data for all samples was available from20. Gene expression 
Fragments per Kilobase per Million reads (FPKM) data from StringTie, adjusted to 
transform all data to TruSeq-like expression was used68. The same cyclic Loess 
normalization via NormalyzerDE was applied. 

Samples were also accompanied by clinical data20, with registration at time of 
diagnosis from the Swedish National Quality Register for Breast Cancer (NKBC). 
The data included, for instance, information on receptor status, tumor grade, lymph 
node status, age, and follow-up data. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
has granted medRxiv a license to display the preprint in perpetuity. 

 is the author/funder, who(which was not certified by peer review)The copyright holder for this preprint 
this version posted January 23, 2025. ; https://doi.org/10.1101/2025.01.22.25320944doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.22.25320944
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

Immune infiltration data – estimated by histological scoring – was also available. 
Cellularity was determined based on hematoxylin and eosin staining of tissue 
microarrays created using a tissue piece adjacent to that used for nucleic acid and 
protein extraction. Based on the staining, scores were derived for normal epithelium, 
invasive and in situ tumor, lymphocyte, stroma and adipocyte content 18. 

All statistical analyses were performed in RStudio, using R version 4.3.3. A 
Nextflow workflow was implemented to run all steps of the analysis and generate 
all figures. A graphical representation of such workflow can be seen in Figure 6. 
All source code is available on GitHub: 
https://github.com/ComputationalProteomics/BreastCancerMultiomics. A Docker 
container with all dependencies installed is available. 

 

Differential Expression Analysis 
Differential expression analysis between different conditions was performed at the 
protein level for full proteome data, peptide level for phosphoproteome data and 
transcript level for transcriptome data. It was conducted via LIMMA statistics 
implemented in NormalyzerDE. 

Gene Set Enrichment Analysis 
Gene set enrichment analysis (GSEA) was performed via the GSEA() function 
implemented in ClusterProfiler69 using a ranked list of features based on differential 
abundance between different conditions and omics. The list was ranked based on 
the -log10 of the p-value with the added sign from the log2 fold change values. All 
parameters were kept at their default settings, apart from the p-value adjustment 
method (pAdjustMethod = 'fdr') and q-value cutoff (pvalueCutoff=0.25). The 
ranked list was searched against the Hallmark gene set from the Molecular 
Signatures Database (MSigDB)70-72. For PTM Signature Enrichment Analysis 
(PTM-SEA)34 of the phosphoproteome data, the quantitative phosphopeptides data 
were first aggregated per phosphosite, with mean intensities of phosphopeptides 
covering the same phosphosite. PTM-SEA was then run using flanking sequence 
phosphosite annotation with ranking based on signed log10 p-values of group 
comparisons (as for the GSEA) using the ssGSEA2.0 implementation downloaded 
from https://github.com/broadinstitute/ssGSEA2.0 with the complete list of 
ptmsigdb 2.0 human signatures. For illustrations the PTM signatures passing 
FDR<0.01 in any comparison were plotted. 

Unsupervised Consensus Clustering 
Consensus clustering was performed with the ConsensusClusterPlus R package73. 
Incomplete features were removed from, and the 25% most variable features at the 
protein and transcript levels (based on median absolute deviation) were used. For 
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phosphoproteome data, the 50% most variable peptides were used. A total of 1000 
repeats of the Partitioning Around Medoids (PAM) algorithm was run with Pearson 
correlation as the distance metrics and a maximum number of clusters of 12 
(maxK=12). 

The optimal number of clusters for each omics was decided based on inspection of 
correlation matrices, consensus Cumulative Distribution Function (CDF) plots and 
delta area plots. 

For visualization of the clustering results, the ComplexHeatmap R package was 
used74. 

After removal of incomplete features, the top 15%, 25% and 75% most variable 
features (based on MAD) were kept for transcriptome, proteome and 
phosphoproteome data, respectively. All feature values were then converted to Z-
scores prior to clustering. 

Features were clustered in 5 distinct clusters using 1000 repetitions of K-means 
clustering when generating the heatmap. For each block, functional annotation was 
added. The annotations were generating by performing g:Profiler enrichment 
analysis in the gprofiler2 R package75. The following parameters were used: 
organism = 'hsapiens', multi_query = FALSE, significant = TRUE, ordered_query 
= FALSE, exclude_iea = TRUE, measure_underrepresentation = FALSE, evcodes 
= TRUE, user_threshold = 0.1, correction_method = 'gSCS', custom_bg = NULL, 
numeric_ns = "", domain_scope = 'annotated', sources = NULL. The results were 
then filtered to keep sources in GO:BP, GO:MF or REACTOME, term size below 
150 for transcriptome and proteome data and below 600 for phosphopeptide data. 
Finally, the 5 terms with lowest p-value were selected and added to the heatmaps. 

To give an overview of the cluster membership of samples across the different omics 
layers, an alluvial plot was generated using the ggalluvial R package 76. 

Estimation of Immune Infiltration 
Immune cell infiltration was estimated using the CIBERSORTx 26 and EPIC 27 
algorithms. For CIBERSORTx analysis, the CIBERSORTx web tool was employed 
as the Docker container does not support using absolute mode. EPIC was run via 
the immunedeconv R package 77. Prior to running CIBERSORTx or EPIC, the 
protein data was subjected to several preprocessing steps. Briefly, HGNC gene 
symbols were updated to match current nomenclature, protein groups and gene 
groups were condensed into the first protein or gene in each group, missing values 
were imputed with the minimum value found in the dataset, duplicate occurrences 
of genes were removed (preferring the gene with overall highest intensities) and 
scaling was performed in a TPM-like manner. For EPIC, the built-in transcriptome-
based signature based on tumor-infiltrating lymphocytes was used. For 
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CIBERSORTx, either the LM22 matrix derived from microarray data, or a custom 
matrix derived from proteome data was used. 

Multi Omics Factor Analysis 
Multi omics Factor Analysis (MOFA) was performed using the MOFA2 R 
package25. For this integrative omics analysis, proteome, phosphopeptide and 
transcriptome data were used. First, the data were filtered to only keep features with 
a minimum of 70% data completeness, defined by a cutoff of maximum 30% for 
incomplete observations, as well as keeping the 25% most variable features based 
on median absolute deviation. Immune infiltration data based on two deconvolution 
algorithms, EPIC and CIBERSORTx, were also included as separate omics layers. 
Each omics layer, referred as views in MOFA documentation, was scaled prior to 
model training. 

All models were generated based on 20 factors, with spike and slab sparsity and 
ARD sparsity enabled (model_opts$spikeslab_weights = TRUE, 
model_opts$ard_weights = TRUE). Default training options were used, with 
convergence mode set to “slow”. For each model generated, 10 different models 
were trained with different seeds and the best one was selected using the 
select_best() function from the MOFA2 package, which selects the best model 
based on the best ELBO value. 

Survival Analysis 
Survival analysis was performed using the censored extension of the tidymodels 
meta-package 78,79. The proportional_hazards() model was used with the survival 
package as the engine and “censored regression” as the mode.  

Two different approaches were used for performing survival analyses in the 
identification of relevant features, the first originating from features based on the 
differential expression analyses across different omics, and the second based on 
factors in the MOFA models which significantly correlated to the outcome of 
interest. For the survival endpoints, overall survival (OS), recurrence-free interval 
(RFi), and distant recurrence-free interval (DRFi) were used 20,80,81. Features which 
were deemed significant in univariable model, and which did not violate the 
proportional hazards assumption – defined by non-significant (p-value>0.05) results 
based on the cox.zph function – were tested in a multivariable model, compensating 
for age at diagnosis, tumor size, grade, lymph node status and treatment. Forest plots 
were generated using the forest_model() function from the forestmodel R package. 

For the first approach, differentially abundant features from all three omics layers 
were filtered based on adjusted p-value (adj. p-value < 0.1) followed by removal of 
features with incomplete observations. 

For survival analysis based on MOFA models, factors correlated with the clinical 
outcome of interest, i.e., lymph node involvement or presence of distant metastasis, 
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were selected (adjusted p-value < 0.05). Features with an absolute weight greater 
than 0.5 in any of these factors were chosen. 

Cox proportional hazards was also used to investigate whether the clusters defined 
by consensus clustering analysis had differential survival outcomes. Forest plots 
based on univariable analysis were generated using the ggplot2 package. 

External Validation 
Candidates deemed significant at both univariable, and multivariable survival 
analysis were further validated using the Human Protein Atlas 29,30 and the Kaplan-
Meier Plotter31,32. 

Survival analysis reported on the Human Protein Atlas is based on the FPKM value 
of each gene. Patient group prognosis is determined by Kaplan-Meier plots and log-
rank tests. Both median and maximally separated values are reported. Worth 
mentioning, genes with log-rank p-values under 0.001 are considered prognostic, 
with the survival of the high expression group determining whether it is favorable 
or unfavorable. Moreover, lowly expressed genes, defined by median expression 
below FPKM 1 are classified as unprognostic regardless of the survival analysis 
results. 

Kaplan-Meier Plotter 82 survival analysis was performed at the gene level, using 
median expression for cutoff 

An additional external validation was conducted based on published transcriptome 
data from SCAN-B samples20,68. Significant features from either univariable or 
multivariable analysis were selected and mapped to gene identifiers found in the 
transcriptome data. Gene expression data from ER-positive/HER2-negative samples 
not included in the present study and collected latest in 2016 underwent the same 
Loess normalization described previously, followed by analysis via univariable and 
multivariable Cox proportional hazards models as described previously. 
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Tables 

Table 1: Overview of the number of features identified in all three omics layers 
OMICS Number of Features At Least 70% 

D.C. 
Complete 
observations 

  

Proteomics DIA (protein groups) 17860 13571 4426 

Phosphoproteomics DIA (peptides) 26150 7107 1329 

Transcriptomics (genes) 19675 13085 13065 

D.C.: Data Completeness 
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Figure Legends 
Figure 1 Flowchart representing the study design. A total of 182 breast cancer 
samples were selected, 120 of which are NST and the remaining 62 are ILC. The 
samples were further stratified according to lymph node status. Due to the higher 
incidence of NST, the lymph node subgroups were further stratified according to 
the absence or presence of distant recurrence event (Group1 and Group2, 
respectively), and according to nodal burden, 1to3 in Group3 and 4toX in Group4. 
Groups 5 and 6 represent lymph node negative and positive ILC cases, respectively. 
Created with BioRender.com. 

Figure 2 Differential features in NST versus ILC. A-C) Volcano plot of 
differentially abundant (A) proteins, (B) phosphopeptides, and (C) genes. D) Gene 
set enrichment analysis between NST and ILC across all three omics. FDR threshold 
was set at 0.25. Values with adjusted p-value < 0.01 are marked with an asterisk. 

Figure 3 Multiomic identification of novel subtypes. A) Consensus clustering at the 
proteome level using the top 25% most variable proteins based on median absolute 
deviation. The proteins were further clustered in 5 distinct clusters based on K-
means and the terms represent enrichment based on G:profiler. B) Gene set 
enrichment analysis in the proteome-defined clusters. FDR threshold was set at 0.25 
and values with adjsuted p-value < 0.01 are marked with an asterisk. C) Alluvial 
plot demonstrating how samples in the proteome clusters get classified when 
consensus clustering is run at the phosphoproteome or transcriptome level. D) 
Forest plot of the clusters defined at the proteome level based on the univariable 
Cox regression model with recurrence free interval (RFI) as clinical outcome. 

Figure 4 Features associated with lymph node involvement. A) Gene set enrichment 
analysis based on differentially expressed proteins,phosphopeptides and transcripts 
in LN-posive vs LN-negative (Group 2 excluded). B) Boxplot of normalized 
intensity values for ES8L2 S570p phosphopeptide. P-value based on Student’s t-test 
C) Kaplan-Meier plot for EPS8L2 from KM Plotter mRNA gene chip (see methods) 
based on ER-positive/HER2-negative LN-positive cases and using median RFS as 
survival outcome. D) Forest plot based multivariable Cox model using RFS for the 
ES8L2 S570p phosphopeptide. 

Figure 5 Features associated with distant metastasis. A) Gene set enrichment 
analysis based on differentially expressed proteins,phosphopeptides and transcripts 
in Group 1 vs Group 2. FDR threshold was set at 0.25 and features with adjusted p-
value < 0.01 are marked with an asterisk. B) Plot based on PTM-SEA analysis of 
phosphopeptides in either LN-negative vs LN-positive (red) or Group1 vs Group 2 
(blue). C) Boxplot of normalized intensity values for the Heat Shock Protein 90 
protein group. P-value based on Student’s t-test D-E) Kaplan-Meier plot for 
HSP90AA1 (D) or HSP90AB1 (E) from KM Plotter mRNA gene chip (see 
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methods) based on ER-positive/HER2-negative cases and using median RFS as 
survival outcome. 

Figure 6 Data analysis workflow. Created with BioRender.com. 
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Figure 1 
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Figure 6  
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Supplementary Figures 

Legends 
Supplementary Figure S1 Consensus clustering at the phosphoproteome (A) and 
transcriptome (B) level. The features were further clustered in 5 distinct clusters 
based on K-means and the terms represent enrichment based on G:profiler. 

Supplementary Figure S2 Comparison of immune infiltration estimates based on 
CibersortX using absolute mode and LM22 signature matrix. P-values are based on 
Wilcoxon test.
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Supplementary Figure S1
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Supplementary Figure S2
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Supplementary Tables 

Supplementary Table 1: Differentially abundant proteins in NST vs ILC at FDR<0.05 and absolute log2 Fold 
Change > 1. 

Supplementary Table 2: Summary of univariable and multivariable Cox analysis based on RFS and OS for 
features identified in the MOFA model and associated with lymph node involvement. 

Supplementary Table 3: Summary of univariable and multivariable Cox analysis based on DRFS and OS 
for features identified in differential expression analysis and associated with distant metastasis. 

Supplementary Table 4: Summary of univariable and multivariable Cox analysis based on DRFS and OS 
for features selected in MOFA model and associated with distant metastasis. 
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