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Abstract 

 

Purpose 

To evaluate the performance of LLMs in extracting data from stroke CT reports in the 

presence and absence of an annotation guideline.  

 

Methods 

In this study, performance of GPT-4o and Llama-3.3-70B in extracting ten imaging findings 

from stroke CT reports was assessed in two datasets from a single academic stroke center. 

Dataset A (n = 200) was a stratified cohort including various pathological findings, whereas 

Dataset B (n = 100) was a consecutive cohort. Initially, an annotation guideline providing 

clear data extraction instructions was designed based on a review of cases with inter-

annotator disagreements in dataset A. For each LLM, data extraction was performed under 

two conditions – with the annotation guideline included in the prompt and without it. Queries 

for both LLMs were run with a temperature setting of 0. For GPT-4o, additional queries with 

a temperature of 1 were performed. 

 

Results 

GPT-4o consistently demonstrated superior performance over Llama-3.3-70B under identical 

conditions, with micro-averaged precision ranging from 0.83 to 0.95 for GPT-4o and from 

0.65 to 0.86 for Llama-3.3-70B. Across both models and both datasets, incorporating the 

annotation guideline into the LLM input resulted in higher precision rates, while recall rates 

largely remained stable. In dataset B, precision of GPT-4o and Llama-3-70B improved from 

0.83 to 0.95 and from 0.87 to 0.94, respectively. The greatest increase in precision on a 

variable-level was seen in infarct demarcation (0.59 to 1.00) and subdural hematoma (0.67 

to 1.00). Overall classification performance with and without annotation guideline was 

significantly different in five out of six conditions (e.g. dataset B/Llama-3.3/temp=0: p = 

0.001). 

 

Conclusion 

Our results demonstrate the potential of GPT-4o and Llama-3.3-70B in extracting imaging 

findings from stroke CT reports, with GPT-4o steadily exceeding the performance of Llama-

3-70B. We further provide evidence that well-defined annotation guidelines can enhance 

LLM data extraction accuracy. 
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Introduction 

 

CT imaging in suspected acute stroke, including non-enhanced CT (NECT), CT-angiography 

(CTA), and CT perfusion (CTP), provides critical insights into the type of stroke (ischemic or 

hemorrhagic), the presence of vessel occlusions, and the extent of brain damage. The 

imaging findings, which are recorded in radiological reports, are pivotal in determining 

eligibility for intravenous thrombolysis or mechanical thrombectomy. Importantly, the data 

contained in these CT reports holds enormous value beyond its utility in clinical decision-

making, enabling various studies on epidemiology (1), pathophysiology (2), treatment 

efficacy (3,4), and patient outcomes (5,6). Key data variables can further be utilized as labels 

for training machine learning algorithms for tasks such as detecting large vessel occlusion 

(7), automatic evaluation of ASPECTS (8), infarct segmentation (9,10), and lesion 

classification (11). Imaging findings also play a crucial role in national stroke registries 

aiming to monitor and improve quality of stroke care (12,13).  

 

Yet, given that most radiology reports still consist of prose and lack standardized terminology, 

large-scale analysis of textual descriptions of imaging findings previously necessitated labor-

intensive manual annotations by clinical experts, thereby limiting scalability (14). Natural 

language processing (NLP) systems based on machine learning have shown promising 

results in automating information extraction from radiology reports, but were limited by the 

scarcity of annotated training data as well as the variability and ambiguity of reports (15–17).  

 

Recently, large language models (LLMs) have demonstrated great potential in overcoming 

these limitations. LLMs are artificial intelligence (AI) systems trained on vast datasets and 

capable of performing various natural language tasks such as text classification, 

summarization and generation (18). In radiology, LLMs have shown significant promise in 

tasks such as report generation (19,20), report translation (21), differential diagnosis (22,23), 

and patient education (24). The performance of LLMs in data extraction has been evaluated 

in different imaging modalities ranging from X-ray to interventional angiography (25–29), and 

studies most frequently focused on chest and head examinations (30). Notably, both 

proprietary (25,27,28) and open-source LLMs (26,29) have been assessed, with open-

source models offering the advantage of local data processing as an additional layer of 

safety to protect patient data privacy. In models of both categories, high accuracy levels of 

more than 90% of correctly extracted parameters have been reported, demonstrating their 

potential utility. 
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However, methodical inconsistencies in these types of studies pose challenges. For instance, 

many studies relied on manual annotations performed by only a single annotator (27,28,31), 

making the gold standard prone to subjective bias and human error. In addition, a scoping 

review by Reichenpfader et al points out that only 9% (3/34) of studies reported annotation 

guidelines (30), unveiling a frequent lack of standardization and transparency in the 

annotation process. Moreover, many studies modeled findings in radiology reports as simple 

binary variables, which fails to capture the nuanced levels of diagnostic uncertainty 

expressed in the textual descriptions (26,30,32). 

 

Against this background, the aim of this study was to evaluate the performance of LLMs in 

data extraction from head CT reports in suspected acute stroke in the presence and 

absence of a comprehensive annotation guideline.  
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Methods 

 

This retrospective study was approved by the Institutional Review Board of the Technical 

University of Munich (TUM) and the need for informed consent was waived. 

 

Datasets 

This study employed two different datasets from a single German academic institution with a 

comprehensive stroke center. Both datasets included patients who underwent a CT 

examination in suspected acute stroke, using protocols that featured either unenhanced CT 

with CT angiography only, or an additional CT perfusion. Reports were available in German 

language. 

Dataset A (n = 200) was a stratified cohort comprising five purposively sampled subgroups 

with the following imaging findings each (exam dates ranging from 14 June 2022 to 14 July 

2024): ischemic stroke of the anterior circulation (n = 40), ischemic stroke of the posterior 

circulation (n = 40), extracranial pathology (e.g. carotid stenosis or arterial dissection) (n = 

40), intracranial hemorrhage (n = 40), and miscellaneous pathologies (n = 40). Covering a 

variety of pathological findings, this dataset served as the basis for creating a 

comprehensive annotation guideline. Dataset B (n = 100) contained a chronologically 

collected, consecutive cohort between 1 August 2024 and 14 September 2024.  

 

Data Extraction Parameters 

A template with the following ten imaging findings was created and represented in 

JavaScript Object Notation (JSON) format (Figure 1): intracerebral hemorrhage (ICH), 

epidural hemorrhage (EDH), subdural hemorrhage (SDH), subarachnoid hemorrhage (SAH), 

infarct demarcation, vascular occlusion, vascular stenosis, aneurysm, dissection, and 

perfusion deficit.  

 

Manual Annotations and Annotation Guideline 

A prototypic user interface (provided by Smart Reporting GmbH, Munich, Germany), was 

used to perform manual data entries. One radiology resident with two years of dedicated 

neuroradiology experience (SHK) and one fourth-year medical student (JW) independently 

annotated dataset A (n = 200). A brief annotation guideline with general instructions (e.g. 

handling of missing data) defined by SHK was followed by both annotators. During the 

annotation process, ambiguous instances were identified and recorded by the raters. 

SHK and DMH (a board-certified neuroradiologist with 10 years of experience) reviewed 

cases with inter-rater disagreement and, added a detailed addendum to the original 
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annotation guideline addressing the identified edge cases. Manual annotations of dataset A 

were revised according to the final guideline. Manual annotations of dataset B were equally 

conducted by SHK and JW according to the final guideline, and cases of inter-rater 

disagreement were resolved by DMH. 

Following the closed-world assumption, findings not mentioned in the report were considered 

absent. Findings with uncertainty descriptors (“possible”, “DDx”, etc.) indicating no clear 

positive or negative tendency were labeled as “unknown” by annotators and omitted from the 

LLM data extraction analysis. 

 

LLM Infrastructure 

GPT-4o (‘gpt-4o-2024-08-06’) by OpenAI (33) and Llama-3.3-70B (‘Llama-3.3-70B-Instruct’) 

by Meta (34) were chosen as representative state-of-the-art proprietary and open-source 

LLM each at the time of the study. GPT-4o was accessed via OpenAI’s application 

programming interface (API) (https://platform.openai.com/docs/models#gpt-4o). Llama-3.3-

70B was deployed in a local environment utilizing the Python library “llama-cpp-python”, 

which provides compressed, less memory-intensive LLM instances (‘quantization’). A 

quantization factor of Q4_K_M was chosen to allow full GPU offloading. A single NVIDIA 

Quadro RTX 8000 with 48 GB of video memory was used for local inferences.  

For both GPT-4o and Llama-3.3-70B, the model temperature was set to 0.0 to ensure 

deterministic results. To explore the impact of temperature settings on data extraction 

performance, GPT-4o queries were additionally run with the default temperature setting of 1. 

Our scripts for executing both models are publicly available in our repository at: 

https://github.com/shk03/stroke_llm_data_extraction. 

 

LLM Queries 

For both models, queries were performed with and without annotation guidelines each. The 

base prompt was defined as follows (translated from German to English):  

 

“Extract the information provided in the radiological report in the format of a JSON file. 

Each of the ten parameters should be evaluated as ‘Yes’ or ‘No.’ Findings that are not 

mentioned are considered absent and should be evaluated as ‘No.’ 

Please take the following guidelines into account: 

{annotation_guidelines} 

The JSON file should have the following structure: 

{json_schema} 

Here is the report from which the information should be extracted: 

{report_text}” 
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Queries with a temperature of 0 were conducted only once, assuming that this setting would 

lead to almost fully deterministic results. In contrast, GPT-4o queries with a temperature of 1 

were repeated three times each to account for probabilistic variations. Execution times for 

LLM queries were recorded. 

 

GPT-4o Performance in Diagnostic Certainty Assessment 

In an additional experiment, the ability of GPT-4o to correctly evaluate diagnostic uncertainty 

of report content was evaluated in dataset B, using the default temperature setting of 1. 

GPT-4o was instructed to classify the ten parameters into one of the following five categories: 

‘certainly absent’, ‘unlikely’, ‘possible’, ‘likely’, ‘certainly present’. Accuracy was rated against 

manual annotations by a single annotator (JW). 

 

Analysis 

Statistical analyses and data visualizations were performed using the libraries Pandas and 

Matplotlib in Python (Version 3.11.8). To calculate accuracy metrics for GPT-4o queries with 

a temperature of 1, the mode of the labels across three repetitions was used. The extent of 

probabilistic variation was quantified as the percentage of cases producing consistent results 

across three repetitions. For both models, precision (= positive predictive value), recall (= 

sensitivity), and F1 (= harmonic mean of precision and recall) were reported. Aggregated 

metrics across all extracted parameters were computed using micro-averaging, which 

consolidates true positives, false positives, and false negatives globally. Confidence intervals 

for precision and recall were determined using the Wilson score method (35). The resulting 

lower and upper bounds were used to approximate the confidence interval of the F1 score. 

Overall classification performances were compared between groups with and without 

annotation guideline using the McNemar’s test. A p-value of < 0.05 was considered 

statistically significant. Correction for multiple testing was not performed, given the 

exploratory nature of the study. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 23, 2025. ; https://doi.org/10.1101/2025.01.22.25320938doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.22.25320938


 
Figure 1: Study Design. Initially, two raters annotated dataset A using a preliminary annotation guideline with a 
few general instructions. Based on the guideline deficiencies uncovered based on a review of cases with inter-
rater disagreement, an addendum was appended to the original document, forming the final annotation guideline. 
The data extraction performance of GPT-4o and Llama-3.3-70B with and without annotation guideline was 
evaluated in dataset A and additionally in another dataset (dataset B) that was not used to formulate the 
annotation guideline. At the bottom, a fictional CT report in English is shown along with the data parameters 
extracted from it in JSON format to illustrate the methodology. 
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Results 

 

Cohort Overview 

An overview of the patient cohorts is presented in Table 1. Patients in both datasets had a 

median age of 79 (A: IQR of 72 – 85, B: IQR of 65 - 84), and an equal sex distribution (50.0 

and 51.0% females each). Due to its purposive selection, dataset A exhibited a higher 

proportion of pathological findings than the consecutive dataset B, with particularly high 

occurrences of vascular occlusions (A: 43.0%, B: 21.0%), stenoses (A: 38.5%, B: 26.0%) 

and ischemic perfusion deficits (A: 42.5%, B: 25.0%). Intracranial hemorrhages were 

relatively rare, with intracerebral hemorrhages being most common in both datasets (A: 

8.5%, B: 4.0%). Similarly, aneurysms (A: 4.5%, B: 4.0%) and arterial dissections (A: 1.5%, B: 

1.0%) were found only in rare occasions. 

 

Annotation Guidelines 

The content of the original and final annotation guideline is presented in Table 2. The 

original annotation guideline was used by the two raters during initial annotation of dataset A, 

and contained general instructions on handling purely descriptive image findings, indicators 

of diagnostic uncertainty, and contradictions within the report.  

Annotators agreed in 96.0% (1920/2000) of data points (Cohens’ kappa κ = 0.852). A 

thorough review of cases with inter-annotator disagreement (4.0%; 80/2,000) revealed 1.3% 

(26/2,000) of discrepancies originating from unclear guideline instructions, as opposed to 2.7% 

(54/2,000) of cases resulting from careless mistakes. To address the identified guideline 

deficiencies, an addendum was created which contained both general instructions (e.g. 

handling mentions of previous findings) and directions on classifying edge cases for specific 

parameters (e.g. not counting pseudoaneurysms as aneurysms). Using a few-shot 

prompting approach, some instructions in the annotation guideline included one or more 

example expression, along with the correct label. The final annotation guideline containing 

the original instructions and addendum was provided to GPT-4o and Llama-3.3-70B. 

 

Model Performance 

1.7% (34/2000) and 1.4% (14/1000) of data points were excluded from dataset A and 

dataset B respectively, as the report text indicated diagnostic uncertainty without a clear 

positive or negative tendency (expressions such as “possible”, “DDx”). 

Overall, GPT-4o consistently demonstrated superior performance over Llama-3.3-70B under 

identical conditions, with micro-averaged precision (= positive predictive value) ranging from 

0.86 to 0.95 for GPT-4o and from 0.65 to 0.86 for Llama-3.3-70B. In Dataset B, GPT-4o and 
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Llama-3.3-70B (temperature = 0) yielded a precision of 0.95 and 0.74 each in the presence 

of the annotation guideline, while both exhibited equal recall values (= sensitivity; both 0.98).  

Across all conditions, higher precision rates were observed when the annotation guideline 

was available.  

 

The precision of GPT-4o (temperature = 1) improved from 0.87 to 0.94 in dataset A (p < 

0.001) and from 0.83 to 0.95 in dataset B (p = 0.006). When using a temperature of 0, GPT-

4o’s precision increase from 0.86 to 0.95 in dataset A (p < 0.001) and from 0.86 to 0.93 in 

dataset B, although the difference under these conditions was not significant (p = 0.390). 

Similarly, the precision of Llama-3.3 (temperature = 0) rose from 0.78 to 0.86 (p < 0.001) in 

dataset A and from 0.87 to 0.94 in dataset B (p = 0.001). In contrast, recall rates largely 

remained stable, with values ranging from 0.98 to 0.99 in all conditions (Figure 2).  

 

Temperature settings of GPT-4o had only a minor impact on data extraction performance 

when the remaining conditions were equal. The largest difference in precision was seen in 

dataset B in the absence of guidelines, where an increase of the temperature resulted in a 

small drop in precision from 0.86 (temp = 0) to 0.83 (temp = 1). 

 

Detailed variable-level metrics of GPT-4o in dataset B (temperature = 1) are presented in 

Table 3. Metrics varied widely, particularly in findings with low prevalence in the given 

dataset (e.g. 0 cases with true epidural hematoma, 1 case with subarachnoid hemorrhage). 

The greatest increase in precision through the guideline adoption was seen in infarct 

demarcation (0.59 to 1.00), subdural hematoma (0.67 to 1.00), and vascular stenosis (0.84 

to 0.96). Exemplary cases where the annotation guideline influenced the LLM ratings are 

shown in Table 4. Granular variable-level metrics of remaining groups are provided in 

Supplement 1-5. 

 

Processing Time and Test-Retest Reliability 

Mean processing times for GPT-4o (accessed via API) was 465.1 seconds per 100 reports, 

as compared to 1441.4 seconds per 100 reports for Llama-3.3-70B (operated on a local 

GPU). Mean time for manual annotations (measured in dataset B) was considerably longer 

than both models (9302.0 seconds per 100 reports). GPT-4o with a temperature setting of 1 

featured a very high test-retest reliability, with identical ratings across three repetitions in 

97.6% of data points. 

 

Diagnostic Certainty Assessment 
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GPT-4o accurately classified the diagnostic certainty level in 90.0% (900/1,000) of data 

points in dataset B. Yet, its performance was considerably lower in uncertain findings 

(categories ‘unlikely’, ‘possible’, ‘likely’), with only 35.0% (7/20) correct data points. In 

contrast, it performed markedly higher for certain findings (categories ‘definitely absent’, 

‘definitely present’), achieving 91.1% accuracy (893/980).
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 Dataset A (n = 200) Dataset B (n = 100) 

Demographics 

Median age (IQR) - yr 79 (72 - 85) 79 (65 - 84) 

Female sex - no. (%) 100 (50.0) 51 (51.0) 

Findings [Frequency (%)] 

Intracerebral Hemorrhage (ICH) 17 (8.5) 4 (4.0) 

Epidural Hematoma (EDH) 1 (0.5) 0 (0.0) 

Subdural Hematoma (SDH) 16 (8.0) 2 (2.0) 

Subarachnoid Hemorrhage (SAH) 16 (8.0) 1 (1.0) 

Infarction Demarcation 35 (17.5) 11 (11.0) 

Occlusion 86 (43.0) 21 (21.0) 

Stenosis 77 (38.5) 26 (26.0) 

Aneurysm 9 (4.5) 4 (4.0) 

Dissection 3 (1.5) 1 (1.0) 

Ischemic Perfusion Deficit 85 (42.5) 25 (25.0) 
Table 1: Cohort Overview. Dataset A was a stratified cohort with 40 cases of the following five subgroups each: 
ischemic stroke of the anterior circulation, ischemic stroke of the posterior circulation, extracranial pathology, 
intracranial hemorrhage, miscellaneous pathologies. Dataset B was a consecutive cohort of cases with 
suspected acute stroke. 
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Version Type Instruction 

Original General No Interpretation of Findings 

A finding is only deemed present if it is explicitly mentioned. 

 

Examples: 

- Hypodensity in the parenchyma is not equivalent to infarct 

demarcation. 

- "Calcifications" or "plaques" are not equivalent to stenosis. 

- "Intraluminal thrombus" is not equivalent to stenosis. 

- "Loss of corticomedullary differentiation" is not equivalent to infarct 

demarcation. 

- "Contrast agent discontinuation," "vessel discontinuation," or 

"missing vascular contrast" is equivalent to vessel occlusion. 

- If the ASPECTS score is below 10, it is classified as infarct 

demarcation. 

Original General Diagnostic Certainty 

- Findings with a positive tendency (e.g., "most likely," "suspicion 

of," "probable") are classified as "Yes". 

- Findings with a negative tendency (e.g., "unlikely," "secondary 

consideration") are classified as "No". 

Original General Contradictions 

- In case of contradictions between the "Findings" and "Impression" 

sections, the “Impression” is considered decisive, and the finding 

is classified accordingly. 

Addendum General Exclusion of Previous Findings and Medical History 

- Previous findings that are not present anymore are not 

considered. 

- Previous medical history is not considered. 

Addendum General Location of Findings 

- A finding shall be considered present if at least one location is 

affected. For example, "stenosis" shall be evaluated as "Yes" if a 

stenosis is described in at least one location. 

Addendum Specific Infarct Demarcation 

- "Infarct demarcation" encompasses only acute changes. Chronic 

infarcts or post-ischemic changes shall not be counted. 

Addendum Specific Aneurysms 

- "Aneurysm" refers exclusively to true intracranial aneurysms. 

Aortic aneurysms or pseudoaneurysms shall not be classified as 

aneurysms. 

Addendum Specific Perfusion Deficit 
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- A Tmax delay shall be considered a perfusion deficit.  

- Perfusion deficits do not require a mismatch.  

- Only perfusion deficits attributed to ischemia in the report shall be 

counted. Perfusion deficits due to artifacts or other causes shall 

not be counted. 

Addendum Specific Stenosis / Occlusion 

- In cases where a high-grade stenosis or occlusion is indicated 

("stenosis/occlusion"), "stenosis" shall be evaluated as present 

and "occlusion" as "No."  

- Vascular irregularities shall not be classified as stenosis.  

- Vascular occlusion refers exclusively to arterial occlusions 

(excluding sinus or cerebral venous thrombosis).  

- Pre-existing occlusions shall also be classified as vascular 

occlusion.   

Table 2: Annotation Guideline. 
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Figure 2: Data Extraction Performance of GPT-4o and Llama-3.3-70B across all parameters. Metrics for GPT-4o 
queries with a temperature setting of 1 were calculated based on the mode across three repetitions, whereas 
remaining queries were run only once (with a temperature setting of 0.0). Error bars indicate 95% confidence 
intervals. 1.7% (34/2000) and 1.4% (14/1000) of data points were excluded from dataset A and dataset B each, 
as the report text indicated diagnostic uncertainty without a clear positive or negative tendency (expressions such 
as “possible”, “DDx”). Precision: positive predictive value. Recall: sensitivity. F1-Score: harmonic mean of 
precision and recall.  
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Variable Dataset B: GPT-4o – Guideline (temp = 1) Dataset B: GPT-4o + Guideline (temp = 1) 

 Precision Recall  F1-Score Precision Recall  F1-Score 

Intracerebral hemorrhage (ICH) 
0.80  
(0.38 to 0.96) 

1.00  
(0.51 to 1.00) 

0.89  
(0.43 to 0.98) 

0.80  
(0.38 to 0.96) 

1.00  
(0.51 to 1.00) 

0.89  
(0.43 to 0.98) 

Epidural hematoma (EDH)  
0.00  
(0.00 to 0.00) 

0.00  
(0.00 to 0.00) 

0.00  
(0.00 to 0.00) 

0.00  
(0.00 to 0.00) 

0.00  
(0.00 to 0.00) 

0.00  
(0.00 to 0.00) 

Subdural hematoma (SDH) 
0.67  
(0.21 to 0.94) 

1.00  
(0.34 to 1.00) 

0.80  
(0.26 to 0.97) 

1.00  
(0.34 to 1.00) 

1.00  
(0.34 to 1.00) 

1.00  
(0.34 to 1.00) 

Subarachnoid hemorrhage (SAH) 
0.50  
(0.10 to 0.91) 

1.00  
(0.21 to 1.00) 

0.67  
(0.13 to 0.95) 

0.50  
(0.10 to 0.91) 

1.00 (0.21 to 
1.00) 

0.67  
(0.13 to 0.95) 

Infarct demarcation 
0.59  
(0.36 to 0.78) 

0.91  
(0.62 to 0.98) 

0.71  
(0.46 to 0.87) 

1.00  
(0.74 to 1.00) 

1.00  
(0.74 to 1.00) 

1.00  
(0.74 to 1.00) 

Vascular occlusion 
1.00  
(0.85 to 1.00) 

1.00  
(0.85 to 1.00) 

1.00  
(0.85 to 1.00) 

1.00  
(0.85 to 1.00) 

1.00  
(0.85 to 1.00) 

1.00  
(0.85 to 1.00) 

Vascular stenosis 
0.84  
(0.67 to 0.93) 

1.00  
(0.87 to 1.00) 

0.91  
(0.76 to 0.96) 

0.96  
(0.81 to 0.99) 

0.96  
(0.81 to 0.99) 

0.96  
(0.81 to 0.99) 

Aneurysm 
0.67  
(0.30 to 0.90) 

1.00  
(0.51 to 1.00) 

0.80  
(0.38 to 0.95) 

0.80  
(0.38 to 0.96) 

1.00  
(0.51 to 1.00) 

0.89  
(0.43 to 0.98) 

Dissection 
0.50  
(0.10 to 0.91) 

1.00  
(0.21 to 1.00) 

0.67  
(0.13 to 0.95) 

0.50  
(0.10 to 0.91) 

1.00  
(0.21 to 1.00) 

0.67  
(0.13 to 0.95) 

Ischemic perfusion deficit 
0.96  
(0.81 to 0.99) 

0.96  
(0.81 to 0.99) 

0.96  
(0.81 to 0.99) 

1.00  
(0.86 to 1.00) 

0.96  
(0.81 to 0.99) 

0.98  
(0.83 to 1.00) 

Total 
0.83  
(0.75 to 0.89) 

0.98  
(0.93 to 0.99) 

0.90  
(0.83 to 0.94) 

0.95  
(0.89 to 0.98) 

0.98  
(0.93 to 0.99) 

0.96  
(0.91 to 0.99) 

Table 3: Data extraction performance of GPT-4o (temperature = 1) with and without annotation guideline in dataset B (n = 100). 1.4% (14/1000) of data points were excluded, 
as the report text indicated diagnostic uncertainty without a clear positive or negative tendency (expressions such as “possible”, “DDx”). Metrics for GPT-4o were calculated 
based on the mode across three repetitions. 
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Parameter Report Excerpt Relevant Guideline Instruction 
Rating:  
GPT-4o  
– Guideline 

Rating:  
GPT-4o  
+ Guideline 

Correct 
Rating 

Subdural hematoma (SDH) 

No evidence of hyperdensities 
suggestive of bleeding. S/p left 
frontal trepanation for subdural 
hematoma. 

Previous findings that are not 
present anymore are not 
considered. 
 

Yes No No 

Stenosis Calcified plaques at the carotid 
bulb bilaterally. 

A finding is only deemed present 
if it is explicitly mentioned. 
"Calcifications" or "plaques" are 
not equivalent to stenosis. 

Yes No No 

Stenosis 

Caliber irregularities of the left 
vertebral artery with calcified 
plaque in the V4 segment. Along 
the right vertebral artery, multiple 
calcified plaques are observed. 

"Calcifications" or "plaques" are 
not equivalent to stenosis. 
Vascular irregularities are not 
considered stenosis. 

Yes No No 

Infarct demarcation 

Old partial infarction of the right 
MCA territory. No early signs of 
ischemia, no evidence of 
intracranial hemorrhage. 

"Infarct demarcation" 
encompasses only acute 
changes. Chronic infarcts or post-
ischemic changes shall not be 
counted. 

Yes No No 

Infarct demarcation Hypodense parenchymal defect 
area in the right occipital lobe.  

A finding is only deemed present 
if it is explicitly mentioned. 
Hypodensity in the parenchyma is 
not equivalent to infarct 
demarcation. 

Yes No No 

Aneurysm Bilateral ICA pseudoaneurysms. 

"Aneurysm" refers exclusively to 
true intracranial aneurysms. 
Aortic aneurysms or 
pseudoaneurysms shall not be 
classified as aneurysms. 

Yes No No 

Ischemic perfusion deficit 

Slight Tmax delay in the left high 
frontal and high parietal regions 
with partially increased CBF, DDx 
postictal. 

Only perfusion deficits attributed 
to ischemia in the findings text 
shall be counted. Perfusion 
deficits due to artifacts or other 
causes shall not be counted. 

Yes No No 

Table 4: Exemplary data extraction cases influenced by the annotation guideline (GPT-4o, Dataset B, temp=1). Report excerpts were translated from German to English.
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Discussion 

In this study, we evaluated the performance of GPT-4o and Llama-3.3-70B in extracting data 

parameters from stroke CT reports with and without comprehensive annotation guidelines. 

 

In summary, we demonstrate promising performance of GPT-4o and Llama-3.3-70B in 

extracting key imaging findings from stroke CT reports. Our results extend the findings from 

previous studies illustrating the utility of LLMs in extracting data parameters from mechanical 

thrombectomy reports (28,29), brain MRI reports (26), and more. Although GPT-4o 

invariably outperformed Llama-3.3-70B given the identical dataset and condition, Llama-3.3-

70B showed great potential, with overall precision and recall scores of up to 0.86 and 0.99 

each. This is in accordance with several recent studies highlighting that open-source models 

are rapidly catching up with state-of-the-art proprietary models in clinical tasks (36–38). 

However, numerous advantages of open-source models for clinical use have been pointed 

out by authors, including enhanced data privacy, greater control over updates and 

customization, transparency, and stronger community collaboration (29,39,40). Hence, it is 

reasonable to expect continued interest in and support for open-source models among the 

medical community, even though their local implementation demands great technical 

expertise and an advanced hardware infrastructure. 

 

To explore the role of LLM temperature, we performed GPT-4o queries with two different 

settings (0 and 1) but observed only negligible differences in data extraction metrics. This is 

in alignment with a previous study on LLM-based information extraction from clinical trial 

publications reporting consistent performance in a temperature range of 0 – 1.5 (41). In 

general, temperature is considered a LLM hyperparameter influencing the randomness and 

creativity of model outputs. In medicine, it might be reasonable to avoid too high temperature 

levels that could lead to more frequent hallucinations (42).   

 

Crucially, this study emphasizes the role of a comprehensive annotation guideline on LLM 

data extraction performance. In both models and both datasets evaluated, the inclusion of a 

detailed annotation guideline led to a substantial increase in precision, while retaining very 

high recall scores. The employed annotation guideline, which was equally adopted by the 

human annotators defining the reference standard, included detailed definitions of the 

individual data variables, along with instructions for specific edge cases. A more granular 

analysis on the variable level reveals that the improvement in data extraction metrics was 

primarily driven by a more precise and narrower definition of several key parameters 

including ‘infarct demarcation’ and ‘vascular stenosis’.  
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The guideline additionally provided directions on handling diagnostic uncertainty of findings, 

which is an inherent limitation of diagnostic interpretations in medical imaging. A wide 

variability in phrases conveying certainty levels in radiology reports has been reported 

previously (43,44), and some authors proposed the adoption of standardized certainty scales 

to improve clinical communication (45). While uncertainty of findings cannot be eliminated, 

the data annotation process required a categorization into a binary variable. To resolve this 

issue, our annotation guideline specified that uncertain findings with a clear positive or 

negative tendency be classified as “Yes” or “No” respectively, though equivocal findings (e.g. 

“possible”, “DDx”) were manually excluded for the purpose of the analysis.  

 

In a complementary experiment, we observed that GPT-4o displayed high accuracy in 

classifying findings on a 5-point certainty scale if findings were definitive (‘definitely present’, 

‘definitely absent’) but struggled to correctly assign uncertain findings (‘likely’, ‘possible’, 

‘unlikely’), suggesting a potential weakness. 

 

It is worth noting that the annotation guideline in this study was defined based on a 

meticulous review of cases with inter-annotator disagreement in one of the two datasets. 

This approach uncovered numerous edge cases and rating ambiguities that had not been 

anticipated in advance. When applying LLM-based data extraction in real-world use cases, 

annotation guidelines should be carefully designed to reflect the intended downstream use 

of the extracted data. For example, a more restrictive definition of variables leading to higher 

precision might be sensible if the accurate identification of certainly positive cases is decisive 

(e.g. in a retrospective study with strict inclusion criteria), whereas higher sensitivity (recall) 

should be prioritized if the primary goal is not to miss any true positives (e.g. identifying 

critical incidents). 

 

Despite the fast-paced advancement of LLM capabilities, data extraction from unstructured 

radiology reports is constrained by their lacking standardization of content and terminology. 

Classifications such as ASPECTS (Alberta Stroke Program Early CT Score) (46), that are 

frequently assessed in study settings, cannot be meaningfully analyzed if not routinely 

reported. Extracting the location of a finding is complicated by its variable description (e.g. in 

terms of adjacent structures, vascular territories, or brain lobes). Furthermore, findings that 

are not explicitly stated introduce another layer of ambiguity. In our study, both human 

annotators and LLMs generally operated under the “closed-world assumption”, whereby 

findings were presumed absent unless explicitly mentioned. Nevertheless, it is possible that 

in some cases, lacking mentions are indicative of findings missed by the radiologist. The 

impact of this ambiguity on clinical communication was exemplified in a survey study, where 
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half of the referring clinicians believed the radiologist might not have evaluated a particular 

feature if not explicitly documented in the report (47). 

 

Limitations 

Several limitations need to be acknowledged. First, the single-center nature of this study 

necessitates further validation to confirm the generalizability of our findings. Second, due to 

the relatively small sample size of the consecutive cohort and the low occurrence of some 

findings in the dataset, the variable-level analysis of data extraction metrics was 

underpowered. Third, this study utilized only German reports, and the influence of language 

on LLM performance has not been explicitly assessed. Finally, the performance of guideline-

enhanced LLMs in Dataset A needs to be interpreted with caution, given that the annotation 

guideline was derived from ambiguous cases within the same dataset. 

 

Conclusion 

Our results demonstrate the potential of GPT-4o and Llama-3-70B in extracting key image 

findings from stroke CT reports, with GPT-4o steadily exceeding the performance of Llama-

3-70B. We further provide evidence that well-defined annotation guidelines can enhance 

LLM data extraction accuracy. 
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