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Key Points 
Question: Can we leverage temporal changes in electronic health record (EHR) data to 
improve schizophrenia case selection for genomic studies? 
 
Findings: We trained an XGBoost model on EHR data from 12,739 patients to predict 
schizophrenia diagnostic code dropout in the Million Veteran Program. By excluding 
cases with conditions associated with diagnostic dropout, we achieved a 62% increase 
in effect size when applying polygenic weights to an African ancestry target cohort. 
Filtering based on substance use, a common approach, yielded minimal gains. 
 
Meaning: Modeling diagnostic code dropout enhances the phenotypic quality of 
EHR-linked biobank data, and promotes equitable genomics research across diverse 
populations. 
 
Abstract 
Importance:  Researchers commonly use counts of diagnostic codes from EHR-linked 
biobanks to infer phenotypic status. However, these approaches overlook temporal 
changes in EHR data, such as the discontinuation or “dropout” of diagnostic codes, 
which may exacerbate disparities in genomics research, as EHR data quality can be 
confounded with demographic attributes.  
 
Objective: To address this, we propose modeling diagnostic code dropout in EHR data 
to inform phenotyping for schizophrenia in genomic analyses. 
 
Design: We develop and test our diagnostic dropout model by analyzing EHR data from 
individuals with prior schizophrenia diagnoses. We further validate model performance 
on a subset of patients whose diagnoses were attained through chart review. Using 
PRS-CS and existing GWAS summary statistics, we first extrapolate polygenic weights. 
Then, we apply our dropout model’s outputs to construct a data-driven filter defining our 
target cohort for measuring polygenic score performance.  
 
Setting: Our analysis utilizes EHR and genomic data from the Million Veteran Program. 
 
Participants: To model diagnostic dropout in schizophrenia, we leverage data from 
12,739 patients with a history of schizophrenia, after excluding outliers. For polygenic 
score analyses, we incorporate data from a potential pool of 8,385 European ancestry 
and 6,806 African ancestry patients with a history of schizophrenia. 
 
Main outcomes and measures: We compare the performance of our diagnostic 
dropout model with alternative methodologies both in predicting diagnostic dropout on a 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 21, 2025. ; https://doi.org/10.1101/2025.01.19.25320806doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.19.25320806
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

holdout set, as well as on chart review labeled data. Using the top differential diagnosis 
predictors in our model, we select relevant cases by filtering out patients with a prior 
history of mood or anxiety disorders. We then test the impact of applying different filters 
for measuring polygenic score performance. 
 
Results: When evaluated on chart review-labeled data, our model improves the area 
under the precision-recall curve (AUPRC) by 9.6% compared to competing methods. By 
applying our data-driven filter for schizophrenia, we achieve a 62% increase in the 
association effect size when transferring a European polygenic score to an African 
ancestry target cohort.  
 
Conclusions and Relevance: These findings highlight the potential of modeling 
diagnostic code dropout to enhance the phenotypic quality of EHR-linked biobank data, 
advancing more equitable and accurate genomics research across diverse populations. 
 
Introduction 
While the lack of participant diversity in genome-wide association studies diminishes the 
equitability of leveraging polygenic scores for informing diagnoses1, large electronic 
health record (EHR) biobanks hold great promise for promoting diversity in human 
genetics studies2. Nevertheless, extracting phenotypic definitions from EHR data 
presents serious challenges as EHR data quality can vary in completeness across 
different patients3. Furthermore, cryptically embedded biases in EHRs can compromise 
data quality and exacerbate disparities in genetics research. For example, research has 
demonstrated that Black individuals are more likely to receive a schizophrenia diagnosis 
than their white counterparts, suggesting that data quality can vary across different 
demographic groups4–6. As a result, noisy data can diminish or bias the genetic signal in 
both genome-wide association and polygenic score performance for patients with 
diverse backgrounds7. Consequently, we need methodologies that can robustly identify 
cases from EHRs to mitigate the impact of these hidden disparities in our genetic 
analyses. 
 
Arguably the most popular methodology for assigning cases from EHR data leverages 
diagnosis code counts to identify cases, where researchers define cases by requiring 2 
or more related diagnosis codes to appear in a patient’s chart8,9. Alternative 
methodologies, such as multimodal automated phenotyping (MAP10), use mixture 
models, integrating both structured (e.g., diagnostic code counts) and semistructured 
(e.g., codes from medical narrative) data to estimate the probability of a patient having 
the diagnosis and if needed the diagnostic threshold value. However, these approaches 
do not account for competing diagnoses that could interfere with a clinician’s ability to 
correctly diagnose a patient with schizophrenia. 
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Here, we propose a diagnostic dropout modeling framework to improve the equitability 
of genomics research by identifying data quality issues that affect patients across 
different demographic backgrounds. More specifically, we train an XGBoost (Extreme 
Gradient Boosting) model to predict the discontinuation or “dropout” of diagnostic codes 
for schizophrenia using prior medication and diagnoses from the EHR data in the Million 
Veteran Program. We benchmark our methodology against both MAP and diagnosis 
code count methodologies using two holdout samples, one for predicting the presence 
of future schizophrenia diagnosis codes and the other with diagnoses determined 
through chart review. Finally, we investigate how improving phenotyping definitions for 
schizophrenia impacts the transferability of polygenic risk scores by applying a 
data-driven filter for schizophrenia based on the top risk factors for diagnostic dropout in 
our model.  
 
Methods 
Study Participants 
This study was approved by the Veterans Affairs (VA) Central Institutional Review 
Board, and all patients provided written informed consent. We refer the reader to prior 
work describing the cohort in further detail6,11,12.  
 
MVP 
The Million Veteran Program (MVP) cohort has been previously described6,11–14. 
Analysis of MVP data uses the latest EHR tables, v23.1, covering 33,699 individuals 
with schizophrenia diagnosis codes up to September 2023. After filtering for diagnosis 
frequency, we leverage 12,739 individuals for training and testing our phenotypic model, 
with records covering a median of 21.6 years (interquartile range, IQR = 7.62), a median 
776 outpatient visits (IQR = 823) and a median density of 38.7 outpatient visits per year 
(IQR = 40.32). This cohort includes 146 individuals with chart review labels. For genetic 
analyses, we utilize release 4 of the data, consisting of 8,385 European and 6,806 
African ancestry patients with 2 or more schizophrenia diagnosis codes 
(Supplementary Table S1). Genotyping, quality control and imputation in MVP is 
handled by a dedicated data team. For further details, see the eMethods.     
 
CSP #572 
The CSP #572 cohort has been previously described6. Briefly, participants were 
recruited through participating VA hospitals between 2011 and 2020. Structural Clinical 
Interviews for the DSM were performed for all patients with schizophrenia. For the 
scope of this work, we leverage African ancestry genome-wide summary statistics using 
cases from CSP #572 for schizophrenia to construct a polygenic score.  
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Modeling Diagnostic Code Dropout 

 
 
Figure 1: Schematic of model. 
A schematic diagram illustrating how we define diagnostic dropout for schizophrenia, where we 
expect true schizophrenia cases to continue to have schizophrenia diagnoses based on 
information within the last 5 years since the most recent outpatient encounter in the patient’s 
electronic health record, using the 2+ diagnosis code count rule. To train our predictive model, 
we partition the patient’s electronic health record in time from the most recent outpatient 
encounter. The color indicates the timeframe for defining diagnosis and prescription counts. 
Directional arrows indicate that prior diagnosis and prescription data are used to predict recent 
schizophrenia counts. Abbreviations: Rx: prescriptions; Dx: diagnoses; SCZ: schizophrenia; 
EMR: electronic medical records; 5y: 5 years; 10y: 10 years. 
 
To remedy data quality issues for resolving diagnostic inaccuracies in this EHR dataset, 
we leverage XGBoost15, a machine learning methodology suited for capturing complex 
non-linear relationships between features while combining boosting with regularization, 
to predict future schizophrenia diagnosis codes based on prior prescriptions and 
diagnosis codes (Figure 1). True cases of schizophrenia and other chronic diagnoses 
are expected to continue to receive schizophrenia diagnoses and prescriptions 
throughout their life. We separate counts of diagnoses and prescriptions based on 
whether they occurred more than 10 years before the most recent encounter. “Future 
schizophrenia diagnosis codes” are defined as at least 2 schizophrenia codes in the five 
most recent years in the EHR, using the phecode definition16. For training our diagnostic 
dropout model, we utilize individuals with MAP scores and at least one schizophrenia 
diagnosis code prior to the 5 most recent years of the patient record (n=12,739). 
(eMethods). 
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Chart Review Data Validation 
We validate the model’s predictions by comparing them against manually verified EHR 
information using chart review. We define a subset of 146 charts, randomly partitioned 
and assigned to two expert psychiatrists. (Supplementary Table S2-S3, 
Supplementary Figure S1, eMethods). We define a case if a patient received “Yes 
schizophrenia” ratings from both psychiatrists. We also train a logistic regression model 
to predict “Yes schizophrenia” ratings, leveraging prior diagnosis code counts over a 
five-year period for schizophrenia, substance use disorders, anxiety disorders, mood 
disorders and adjustment disorders. 
 
Assessment of Data-driven Phenotypes with Polygenic Scores 
To test our hypothesis that robustly defined phenotypes will enhance the polygenic 
signal, we construct a data-driven filter by excluding schizophrenia cases with top 
negatively associated diagnoses from the diagnostic dropout model. We consider 
different case definitions based on MAP and diagnosis code count thresholds for African 
and European ancestry validation cohorts from the Million Veteran Program. We employ 
PRS-CS17 to construct polygenic scores from European ancestry GWAS summary 
statistics from the PGC18 as well as African ancestry GWAS summary statistics from 
CSP 57219. We quantify polygenic score performance using logistic regression adjusting 
for sex, age and top ten ancestry principal components (eMethods).  
 
Assessment of Data-driven Phenotypes by Measuring Dilution 
(PheMED) 
We leverage PheMED to measure how data-driven filters can impact the distribution of 
effect sizes on genome-wide association summary statistics7. More specifically, 
integrating noisier data with inaccurately labeled cases can dilute effect sizes by the 
same factor across all variants correlated with the phenotype. Unlike polygenic score 
validation analyses, which include significant measurement error by retaining 
uncorrelated SNPs, PheMED can infer dilution estimates without direct knowledge of 
the causal or correlated SNPs in a GWAS. For further details, on implementation see 
eMethods.  
 
Results 
Predicting Diagnostic Dropout in Electronic Health Record Data 
In Supplementary Figure S2 and Table S4, we examine the top predictors of our 
XGBoost Model for predicting future schizophrenia diagnosis codes. Unsurprisingly, our 
model identifies prior schizophrenia diagnoses as the most important feature in 
predicting future schizophrenia diagnosis codes, with recent counts being more 
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informative, while schizophrenia MAP scores capture supplemental information from 
medical narratives (Supplementary Figure S2a, S2d). Additionally, our model also 
leverages differential diagnoses like mood disorders20,21 and anxiety disorders22 
(Supplementary Figures S2b) to inform predictions of diagnostic dropout for 
schizophrenia. These differential diagnoses are negatively associated with future 
schizophrenia diagnoses as indicated in the accumulated local effect (ALE) plots 
(Supplementary Figure S2b-d). Our model also identifies several medications, 
including second-generation antipsychotics such as olanzapine, known for its strong 
efficacy in managing schizophrenia symptoms. For further details on the medications 
selected by our model, see the Supplementary Results.  
 
EHR and Chart Review Dropout Model Validation 
To assess the performance of our diagnostic dropout model, we measure model 
performance for predicting future schizophrenia diagnosis codes on a holdout set 
comprising 10% of the cohort. We utilize MAP as the primary benchmark for evaluating 
model performance, as MAP incorporates both diagnosis counts and concept unique 
identifiers from patient notes into their predictions. We observe a 3.4% absolute 
increase in AUROC and a 3% increase in AUPRC when selecting the diagnostic 
dropout model over MAP (Supplementary Figure S3). Unsurprisingly, we observe 
larger increases in AUROC and AUPRC of 5.0% and 4.1% respectively when 
comparing our methodology to a classifier that ranks potential cases by diagnosis code 
counts (Supplementary Figure S4). We perform logistic regression to predict future 
schizophrenia codes on the holdout set and observe a statistically significant 
association with our diagnostic dropout model scores (𝛃 = 1.128, p = 6.71 ⨉ 10-30), even 
when adjusting for MAP scores and log transformed diagnosis code counts.  
 
As diagnostic dropout is a proxy measurement for schizophrenia misdiagnosis, we then 
measure our model performance on a separate holdout set of 146 individuals 
(Supplementary Table S2-S3; Supplementary Figure S5, Methods) where diagnoses 
were attained through chart review. Chart review labels were consistent across 
reviewers. When we simplified the classification to two options (yes or no), Cohen's 
interrater kappa ( ), equaled 0.837, reflecting a high level of agreement, consistent with κ
prior literature 23,24 (eMethods). Here, we observe more substantial differences in model 
performance. We attain a 5.7% absolute increase in AUROC and a 9.6% increase in 
AUPRC when selecting the diagnostic dropout model over MAP for predicting 
diagnostic status attained through chart review (Figure 2). When comparing our 
diagnostic dropout model with diagnosis counts, we observe larger absolute increases 
of 11.8% for AUROC and 10.7% for AUPRC, respectively (Supplementary Figure S6). 
We also perform logistic regression to predict chart review labels and observe a 
statistically significant association with our diagnostic dropout model probabilities (𝛃 = 
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.601, p = .001), even when adjusting for MAP scores and log transformed diagnosis 
code counts.   
 

 
 
Figure 2: Performance Predicting Chart Review Labels 
Receiver operator (ROC) and precision recall (PR) curves assessing the performance of our 
diagnostic dropout model (a-b) and MAP model (c-d) on predicting diagnoses attained through 
chart review. For the precision-recall curves (b,d), the x-axis identifies the recall value, and the 
y-axis identifies the precision. A dashed line highlights the baseline precision of a random 
classifier. In the receiver operator curves, the x-axis identifies the false positive rate and the 
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y-axis indicates the true positive rate. The dashed diagonal line corresponds to the performance 
of a random classifier. Points are color-coded identifying the threshold that yields the 
corresponding precision-recall or false positive rate/true positive rate value. 
 
Leveraging the Dropout Model for Schizophrenia Case Selection in 
Genetic Studies 
Even though our diagnostic dropout model yields substantial improvements compared 
to the MAP and phecode count benchmarks, we observe that our model 
overemphasizes prior schizophrenia diagnosis code counts and underemphasizes 
relevant differential diagnoses (Supplementary Figure S2), which will likely produce 
noisy definitions for schizophrenia in genomic analyses. Since our model was designed 
to predict future diagnosis code counts and not true schizophrenia status, we instead 
focus on constructing a data-driven filter to flag potentially noisy data, as even modestly 
noisy phenotypes can dilute the signal when performing polygenic score (PGS) 
validation7.  Consequently, we construct an auxiliary logistic regression model to 
measure statistical significance of the top differential diagnoses in the model. We find 
that only  “mood disorders”, which encompasses both unipolar and bipolar depression, 
and “anxiety disorders” achieve statistical significance after accounting for multiple test 
correction, (anxiety disorders p = 1.52⨉10-26; mood disorders p = 2.49⨉10-46) 
(Supplementary Figure S7). Furthermore, prior mood disorders and anxiety disorders 
reached or nearly reached nominal significance for predicting chart-reviewed 
schizophrenia cases  (anxiety disorders p = .045, mood disorders p = .061, one-sided) 
(Supplementary Table S4, Supplementary Figure S8, Methods) Based on prior 
literature25, we also tested if there was an association between substance use disorders 
and schizophrenia chart review scores or diagnostic dropout in the electronic health 
record data, but we did not achieve statistical significance in these analyses. For 
subsequent analyses, we define our data-driven definition for schizophrenia  to 
construct our target cohorts for aggregate polygenic risk stratification, where we exclude 
cases that have codes for the statistically significant differential diagnoses associated 
with diagnostic dropout.  
 
Polygenic Score Performance of Diagnostic Dropout Filter 
We observe significant improvements in the PGS-trait association effect sizes when the 
base (GWAS used for PGS estimation) and target (individuals for which the PGS is 
estimated) cohorts share the same ancestry for both European (EUR) and African 
(AFR) ancestries on MAP-defined schizophrenia cases (Figures 3a, Supplemental 
Figure S9, Supplementary Table S5, Methods). For example,  our PGS log odds ratio 
increases from .599 to .726 when the training and target cohort both share European 
ancestry (p = 4.59 ⨉10-6, 21.2% relative increase). Furthermore, applying our diagnostic 
dropout filter improves PGS transferability, yielding the largest relative gains when 
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validating EUR GWAS-derived PGS on an AFR target cohort (𝛃 increases from .120 to 
.195, 62.2% relative increase, p = 7.55 ⨉10-3 with MAP defined cases). In contrast, we 
observe no significant improvement when validating AFR GWAS-derived PGS on a 
EUR target cohort. We also observe similar improvements when utilizing a 2+ diagnosis 
code count rule for defining schizophrenia (Figure 3b, Supplemental Figure S9, 
Supplementary Table S5), where our PGS log odds ratio increases from .526 to .673 
(p = 6.86 ⨉10-8, 27.95% relative increase) when the training and target cohort both 
share European ancestry and from .114 to .190  (p = 7.86 ⨉10-3, 67.66% relative 
increase) when transferring European ancestry scores to an African ancestry cohort.  
PheMED7 analysis demonstrates that genome-wide summary statistics from cases not 
passing the diagnostic dropout filter had, on average, SNP-phenotype association effect 
sizes 1.328 times smaller (p =1.84 ⨉10-4) than those from cases that passed the filter 
(Supplemental Table S6). 
 
a             b 

 
 
Figure 3: Improvement of PGS Performance when applying Data-Driven Filter 
(a-b) Forest plots for the differences in effect size of polygenic score predictor between applying 
and not applying our data-driven filter for schizophrenia cases based on the diagnostic dropout 
model. The x-axis indicates the difference in the log odds ratio of the polygenic score. The 
y-axis corresponds to the training cohort GWAS for constructing the PGS as well as the target 
cohort. While we plot two-sided confidence intervals, statistical tests are one-sided. A dashed 
vertical line corresponds to the null hypothesis of no difference in effect between filters.  
P-values are annotated as follows: * p < .05, ** p < .01, *** p < .001. Plot (a) uses the MAP 
definition to define schizophrenia cases, whereas plot (b) uses the diagnosis code count to 
define schizophrenia cases. Cases were matched to mitigate differences in distributions of MAP 
scores or diagnosis code counts between cases that passed and failed the filter (Methods). 
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Robustness of Results across Different Thresholds 
We assess our diagnostic dropout filter across varying diagnostic stringency thresholds, 
(as selecting larger MAP probabilities should increase the certainty that a patient has 
schizophrenia). Surprisingly, PGS performance increases from our filter are robust 
across all tested thresholds (Figures 4a-4b). We observe these improvements both 
when the target cohort’s genetic ancestry matched the training cohort and when 
transferring EUR GWAS-derived PGS to an AFR target cohort. We do not however 
observe a statistically significant improvement for AFR GWAS-derived PGS applied to a 
EUR target cohort, similar to our initial analysis.  
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a          

 
b 

  
Figure 4: Improvement of PGS Performance across Thresholds 
(a-b) Here, we plot the effect size of the polygenic risk score (y-axis) across a range of 
thresholds (x-axis) for defining cases based on the MAP definition (a) or the phecode (grouped 
diagnosis (dx) code) count definition (b). The color of the curve corresponds to whether the data 
driven filter was applied for filtering cases. We also provide 95% confidence intervals for the 
curves in the plot as well. The subtitle of the plot indicates the training cohort GWAS for 
constructing the PGS as well as the target cohort.  
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Comparison Against Existing Filtering Strategies 
We compare our data-driven filtering approach to other proposed filters, including a 
strict filter for bipolar disorder filter (a highly co-heritable disorder26–29) and the mode 5 
filter, which uses the prevailing diagnosis of either schizophrenia or bipolar disorder 
from the last 5 encounters (Figure 5). Our filter outperforms these methods. When 
applying European ancestry-derived PGS on MAP-defined cases with European 
ancestry, our data-driven filter increases the log odds ratio by .093 (p =  7.15 ⨉10-4) and 
.125 (p =  4.79 ⨉10-6) when compared to a strict bipolar disorder and a mode 5 filter for 
bipolar disorder respectively. Furthermore, when transferring polygenic scores from a 
European ancestry training cohort to an African ancestry target cohort, our data-driven 
filter increases the log odds ratio by .05 (p =  .0483) compared to the strict bipolar 
disorder filter and by .0780 (p =  8.27 ⨉10-3), compared to the mode 5 bipolar disorder 
filter. 
 
We also explored the impact of a substance use filter on top of a bipolar disorder filter25. 
We find that applying a substance use filter often resulted in weaker effect sizes 
(Supplementary Figures S11-S12, Supplementary Table S5). For instance, the 
substance use filter decreased the PGS effect size by 13.9% (p = .0124) compared to a 
stringent bipolar disorder baseline filter, when the training and target cohorts both 
shared African ancestry on MAP-defined cases. This aligns with our finding that 
substance use is positively correlated with future schizophrenia diagnoses and may not 
be suitable for exclusion in genomic analyses (Supplementary Figure S7, 
Supplementary Table S5). These findings underscore the importance of data-driven 
filters to enhance polygenic score analyses. 
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a          b 

 
Figure 5: Comparing Data-Driven Filtering approaches 
(a-b) Forest plots for the differences in effect size of polygenic score predictor among applying 
different filters for schizophrenia cases. In (a) we compare the dropout filter against a strict 
bipolar disorder filter and in (b) we compare the diagnostic dropout filter against the Mode 5 
filter, removing cases where bipolar disorder diagnoses is more commonly observed than 
schizophrenia diagnoses across the five most recent bipolar/schizophrenia diagnoses. The 
x-axis indicates the difference in the log odds ratio of the polygenic score. The y-axis 
corresponds to the training cohort GWAS for constructing the PGS as well as the target cohort. 
The color of the confidence interval corresponds to whether the MAP or diagnosis code 
(phecode) count definition was used for identifying schizophrenia cases. While we plot 
two-sided confidence intervals, statistical tests are one-sided. A dashed vertical line 
corresponds to the null hypothesis of no difference in effect between filters.  P-values are 
annotated as follows: * p < .05, ** p < .01, *** p < .001.  
 
Discussion 
To mitigate disparities in data quality across demographic groups, we present a novel 
approach for improving phenotypic data quality by using machine learning to predict 
diagnostic dropout for schizophrenia in MVP. This model identifies top confounding 
diagnoses contributing to diagnostic dropout and low chart review ratings for 
schizophrenia. From these differential diagnoses, we construct a data-driven filter to 
improve phenotypic data quality. We observe a 62.2% increase in the PGS association 
effect size when transferring European ancestry-derived scores to an African ancestry 
validation cohort and a 17.4% and 21.2% increase in effect size for African and 
European ancestries respectively when the target cohort shares the same ancestry as 
the training cohort. Our results suggest that to enhance PGS-based risk stratification for 
schizophrenia, both within and across ancestries, we must use approaches that 
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produce a “cleaner” phenotype for PGS estimation. This incentive conflicts with two 
major priorities in traditional GWAS studies: maximizing sample size for locus discovery 
power and using simple phenotypic definitions across cohorts by large consortia. At this 
juncture, we discuss the broader implications of our work. 
 
Our schizophrenia diagnostic dropout model demonstrates that differential diagnoses 
such as mood disorders, and anxiety disorders increase the probability of diagnostic 
dropout for schizophrenia. Notably, a prior study found that up to 40% of schizophrenia 
patients will also meet the diagnostic criteria for major depression within their 
lifetime30,31. Consequently, while researchers may be inclined to retain patients with both 
diagnoses, we recommend caution against overly inclusive trait definitions, as noisy 
phenotypes can dilute findings in GWAS and PGS analyses7. Our work highlights the 
potential consequences when researchers do not apply robust phenotyping approaches 
for assessing PGS performance. By leveraging data-driven techniques to select 35% of 
the potentially relevant schizophrenia cases (Supplementary Table S1), we achieved a 
62% relative increase in the effect size when transferring findings from a European 
ancestry study to an African ancestry cohort. 
 
Subsequently, we compare the efficacy of our data-driven filter with other approaches, 
including a strict bipolar disorder exclusion and a mode-based method (Mode 5)6. While 
Mode 5 retains more cases, it's prone to noise due to a small sample of recent 
diagnoses. Our filter outperforms these, increasing PGS effect sizes by 15.4% to 20.9% 
in European ancestry cohorts and 35.4% to 65.6% in African ancestry cohorts. 
Consequently, our data-driven approach for identifying diagnoses that contribute to 
diagnostic dropout for schizophrenia is crucial for mitigating disparities in research, 
where healthcare disparities impact data quality in genomic analyses. 
 
Prior research has advocated for substance use filters due to potential misdiagnosis 
with schizophrenia, as substance use can induce psychosis25,32. However, such a filter 
could promote inequities in genomic research, as Blacks in the United States, are more 
likely to be overdiagnosed with substance use disorders19,33,34. Substance use disorders 
are highly comorbid with schizophrenia and a history of substance use could support a 
schizophrenia diagnosis35. Our analyses show positive associations between a history 
of substance use diagnoses and future schizophrenia codes in a patient’s chart. This 
trend aligns with our chart review analysis, where substance use disorder codes were 
positively (although not statistically significantly) correlated with higher chart review 
ratings (Supplementary Figures S7-S8). The lack of evidence between schizophrenia 
misdiagnosis and substance use disorders suggests that such a filter would 
unnecessarily exclude 47% of schizophrenia patients with concomitant substance use 
disorders35. Applying this filter in PGS analyses shows either statistically significant 
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decreases or no evidence of a change in the effect size for nearly all training-target 
cohort combinations. This finding aligns with our diagnostic dropout model, where 
substance use was not a top feature in predicting diagnostic dropout. As a result, our 
data-driven approach for modeling diagnostic dropout provides researchers with a 
valuable tool for identifying relevant filters that can enhance polygenic signals across 
patients with diverse backgrounds.  
 
Limitations 
Notably, diagnostic dropout models work best for chronic diagnoses, like schizophrenia, 
where patients with the diagnosis receive lifelong support to help mitigate the severity of 
both their persistent and recurrent symptoms. Furthermore, while our diagnostic model 
was trained using data from MAP, we stress that our modeling framework does not 
strictly require MAP probabilities if concept unique identifier counts from patient notes 
are not readily available to researchers. When comparing findings across different 
EHR-linked biobanks, results may differ. For example, whereas anxiety disorders served 
as a top predictor for diagnostic dropout in our model, anxiety disorders were not 
commonly found as a common misdiagnosis in an electronic health record study from a 
cohort in Spain20. Demographically, our cohort is distinct from other biobanks, as it is 
predominantly composed of male participants with either European or African ancestry. 
Finally, negative mental health outcomes, including depression and anxiety which are 
part of the data-driven filter, are also positively associated with self-reported stressors 
and racism36,37. Consequently, it is feasible that a significant percentage of the increased 
PGS performance is not attributable to the use of a “cleaner” phenotype, but rather from 
studying individuals under less stress.  
 
Conclusions 
Achieving greater certainty in case status in EHRs is crucial for mitigating disparities in 
EHR-linked biobanks. Modeling diagnostic dropout probabilities improves phenotypic 
data quality, generating a 9.6% and 10.7% absolute increase in AUPRC compared to 
MAP and phecode counts, respectively. Furthermore, we observe a 62% relative 
increase in polygenic score effect sizes when transferring European ancestry weights to 
an African ancestry target cohort. Our findings are robust across MAP and PheCode 
definitions. As a result, we anticipate that modeling diagnostic dropout will serve as a 
valuable technique for researchers to mitigate cryptically embedded biases in genomic 
analysis from EHR-linked biobanks.  
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