
 

 

 

Virus testing optimisation using Hadamard  pooling 

Godfrey S. Beddard (1, 2)* & Briony A. Yorke (2)* 

 

(1) School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ  

(2) School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom. 

* Corresponding Authors: G.S.Beddard@leeds.ac.uk, B.A.Yorke@leeds.ac.uk  

Abstract Word Count: 99. Manuscript Word Count: 4550 (excluding references) 

Abstract 

Pooled testing is an established strategy for efficient surveillance testing of infectious diseases 

with low prevalence. Pooled testing works by combining clinical samples from multiple 

individuals into one test, where a negative result indicates the whole pool is disease free and a 

positive result indicates that individual testing is needed. Here we present a straightforward and 

simple method for pooled testing that uses the properties of Hadamard matrices to design 

optimal pooling strategies. We show that this method can be used to efficiently identify positive 

specimens in large sample sizes by simple pattern matching, without the requirement of 

complex algorithms. 
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Background 

Many countries have used the ‘test, trace and isolate’ strategy to control the spread of highly 

infectious diseases such as SARS-CoV-2. The global capacity for clinical testing is limited by 

factors including cost, availability of reagents and testing capacity of clinical laboratories. The 

gold-standard for detecting SARS-CoV-2 is RT-PCR [1], this technique is expensive, requires 

specialized equipment and reagents, and is relatively slow, taking a few hours per test on 

average [2, 3]. 
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During the height of the COVID-19 pandemic lateral flow testing (LFT) provided a solution to 

issues regarding laboratory testing capacity but were not without limitations. The ‘test, trace 

and isolate strategy’ relies on accurate, reproducible testing and data monitoring, however, LFT 

self-testing is hindered by test variability, false negatives, and data loss due to errors in 

self-reporting [4]. In combination, SARS-CoV-2 testing resulted in tens of thousands of tons of 

plastic waste [5], an unsustainable consumption of reagents [6] and gold nanoparticles [7]. 

 

Strategies to address this issue have resulted in the development of biodegradable and 

recyclable biosensors [8, 9], methods to recover gold nanoparticles [10] and microfluidic and 

reagent-free testing devices [11–14]. Despite these developments, individual testing remains 

inefficient when the fraction of positives in a population is small, i.e. when almost all tests are 

expected to be negative. However, this is just the situation that needs surveillance-type testing, 

so that a new pandemic can be anticipated. When the infection rate is lower and urgency is not 

so pressing, one way of increasing capacity is to group or pool samples. This batch analysis was 

first suggested by Dorfman [15] more than 70 years ago, but has received renewed interest due 

to the critical testing bottlenecks that were highlighted during the COVID-19 pandemic [16–18]. 

Sample Pooling 

Dorfman’s method consists of two stages, the first is to combine samples from multiple 

individuals for analysis. If this test result is negative then all samples are negative, if the test is 

positive for the pool then each sample is tested again. The efficiency of this method depends on 

the positivity rate and can be improved by applying various strategies generally defined as 

adaptive, non-adaptive and hybrid [19]. Non-adaptive pooling is performed by generating a 

number of pools according to a predefined combinatorial design, all of the pools are tested in 

parallel before identifying the positive sample by deconvolution with an algorithm based on the 

combinatorial design [20–23]. Adaptive strategies are performed in series, data concerning 

transmission and the results of each test informs which samples will be included in the next test 

[24–26]. Hybrid methods involve multiple rounds of combinatorial pooling and all samples are 

tested in parallel during each round [27, 28]. 

 

We propose a new method, Hadamard pooling, which is suitable for single round testing when 

the rate of positivity is low, or which can be used in a hybrid approach when the positivity rate is 

higher. Hadamard pooling is based upon the orthogonality properties of Hadamard S matrices 

that can identify an individual positive sample in a pool. This method is also compatible with 

multiplex testing, in which multiple targets can be identified in a single assay, for example by RT- 

PCR [29, 30], CRISPR-Cas9 assays [31] or colorimetric RT-LAMP analysis [32]. Hadamard pooling 

has the potential to increase the accuracy and efficiency of surveillance testing programs to 
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track the emergence and spread of infectious diseases in the event of a new pandemic. The idea 

is explained in fig 1. 

                                                 

 

Figure 1. Hadamard pooling strategy scheme based on a 7 × 7 Hadamard matrix (Left). RIght. 

Pools A - G are generated by grouping together 4 of the 7 individual samples according to the 

sequence of 1’s and 0’s in each row of the matrix where 1 indicates a sample should be added 

to the pool and 0 indicates that it is omitted. In the case of pool D (red) samples 2, 3, 4 and 7 

would be grouped. 

Hadamard Pooling 

Hadamard S matrices (Figure 1, Left) have found application in numerous instances of 

experimental optimal design including signal processing [33–36], imaging [8, 37, 38], X-ray 

crystallography [39, 40] and spectroscopy [41–46]. In each of these Types of experiments, a 

signal is modulated by the pattern of a row in the matrix and summed on the detector. After 

this a linear transform with the inverted Hadamard S matrix returns the individual data. By 

summing up the signal its size is increased, but random noise of detection is averaged towards a 

constant value and therefore the signal-to-noise can be improved. The process of using the 

matrices and different ways of generating their patterns is described in the supporting 

information, S1 appendix, in our online code and in references [39, 40, 43, 47]. Hadamard 

matrices in general are described in Harwit & Sloan [47]. 

 

In the context of pooling methods, individual samples can be grouped into multiple pools 

according to each row of an S matrix with equivalent order to the number of samples being 

tested. Figure 1 shows a 7 × 7 S matrix to illustrate the pooling approach, in practice one of 

many larger Hadamard matrices could be used, although Hadamard matrices can only be 

generated with specific sizes, they are numerous. 
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In the example shown in Figure 1, n tests are needed for n samples and so there is no 

improvement over efficiency in comparison to testing individuals. However, in practice only a 

fraction of the matrix is needed to successfully identify a positive individual. For the purpose of 

demonstration, a set of seven samples in which one is positive are used. Three pools A, D and F 

are generated by grouping four of the samples together according to a reduced 3 × 7 matrix 

constructed from the corresponding three rows of the 7 × 7 S matrix (Figure 2). 

                             

Figure 2: Reduced matrix with samples numbered 1 to 7 grouped into pools A, D and F.  Red 

indicates which sample is positive. The analysis vector elements indicate the results of the pool 

testing where 1 indicates a positive analysis result and 0 a negative one. Orange highlights the 

column of the reduced matrix that matches the analysis vector and therefore indicates that 

sample 4 is positive. 

 

Since the pattern of each column in the matrix is unique it is possible to identify which 

particular individual is positive and this is done by matching the pattern of results from a 

specific test to the corresponding column of the reduced matrix. In the example shown in Figure 

2, pools A and F return a negative test result, while pool D is positive. The results from each pool 

are recorded in a vector where 0 indicates a negative pool and 1 indicates a positive pool. This 

analysis vector is then compared to each column in the reduced matrix, if the analysis vector 

and column match this indicates that the corresponding sample is positive. For the case shown 

in Figure 2 the analysis vector, [0 1 0], matches the column in the reduced matrix corresponding 

to sample 4. 

 

With this method if, for example, eleven specimens need to be checked the nature of the 11 × 

11 Hadamard matrix is such that only four measurements are needed to confirm a result 

provided that no more than one specimen is positive. The pattern of the 11 × 11 matrix is 

shown, with others, in the Supporting information. Similarly, assuming that just one sample is 

positive, only four rows of the n = 15 and six of the n = 31 Hadamard S matrices are needed, 

Table 1, labelled as Type (i). 
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The condition of low prevalence and hence a low probability of a positive test should be the 

general expectation when large swathes of a population are tested and the infection is not 

spreading exponentially i.e. reproduction ratio R < 1. The type when more than one sample is 

positive is examined next as this involves choosing rows more carefully. 

Choosing Rows  

 

If, for example, seven samples are tested using an S matrix size of, say 15 × 15, then 

combinatorially a large number of rows are available to determine which pools to generate, e.g.  

15!/(7!(15-7)!) = 6435 and this increases very rapidly with the size of the matrix. Combinations 

of rows with columns that contain the same pattern of ones and zeros must be excluded. For 

the example in Figure 1, using pools A, B and D is not suitable because columns 5 and 6 will 

have the same pattern in the corresponding reduced matrix and therefore the analysis vector 

cannot distinguish whether sample 5 or 6 is positive.  

 

A further condition is imposed when the number of positive samples is either one or two. Rows 

must be selected such that when two of their columns are added together, they are not equal to 

a third. This cannot be achieved if the result is not quantitative, not in an absolute way but that 

a result containing one positive can be distinguished from that containing two. The 

consequence of this restriction is that one column of the S matrix must be removed (reducing 

the total number of samples) and in the case of the 7 × 7 matrix one more row is added to the 

reduced matrix of figure 2, meaning that four pools are now needed from 6 samples. The only 

acceptable combination of pools for this matrix is A D F G, shown in Figure 3. Table 1 lists rows 

for other matrices. 

 

 

Figure 3: The optimal reduced matrix based on a 7 × 7 Hadamard S matrix with corresponding 

pools. Red shows that no two columns are identical. 
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There can be several acceptable groups of rows in larger matrices, but still only about 1% of the 

total combinations. With the 11 x 11 matrix these rows are A C G H I K and in all cases the last 

column in the Hadamard S matrix must be deleted. Different rows will be produced if an 

alternative column is deleted. Choosing rows so that duplicates are avoided and reducing by 

one the number of columns and assuming the measurements are relatively quantitative is 

called Type (ii), see Table 1. Type (i) assumes only one positive is present. When several samples 

are positive the result will not correspond to any single column in the matrix, in this case all 

patterns must be checked and these can easily be computed ‘on the fly’ by using a 

combinatorial function or via a pre-computed look-up table. An example of this is given in table 

2 of the SI. 

Methods 

Matrix Generation 

All calculations were performed using Python 3 (v 3.9) with the NumPy package (v 1.23) within a 

Jupyter Notebook (v 6.4). Hadamard matrices were generated using the Quadratic Residue, Shift 

Register or Doubling methods, as appropriate, and described in [33, 39, 47, 48] and in online 

code. 

To find suitable combinations of the Hadamard matrix rows as shown in Table 1, all the 

combinations Cr,n = n!/(r!(n−r)!) of r rows out of a total of n were calculated. For example, 

selecting 10 rows of the n = 15 × 15 matrix produces 3003 different combinations, but this rises 

rapidly to over 200 million for the n = 31 matrix with 13 rows. For smaller numbers of 

combinations each was exhaustively checked. The values of r were increased until a satisfactory 

list was found, see Table 1. There is only one smallest list for a n = 11 × 11 matrix, i.e. A C G H I K 

and 65 smallest but equivalent lists out of 92378 when r = 10, n = 19 one of which is shown in 

Table 1. For larger matrices there are also several acceptable lists, but still a small fraction of the 

total (<1%), and only one of them is given in Table 1. (The exception is n = 15 where there are 

many (≈ 13 %) suitable combinations). When the number of combinations runs into millions, as 

it does for larger matrices, an exhaustive search is not feasible so the combinations were chosen 

at random until a suitable one was found. This is possible because, luckily, it happens that the 

suitable combinations tend to cluster and so can be accessed more quickly by random selection 

than a linear search. 
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Pooling Simulation 

​​The test/person ratio was calculated for different sample sizes in two different ways. First using 

Equation 1 (see below) assuming m rows were used out of an n x n matrix with proportions  f0, 

f1 · · · calculated from the Poisson distribution for the percentages of 0, 1, ≥ 2 positives, some of 

which are  given in Table 1. The result is shown in fig 4 as the line with grey circles for 0.1 % 

positive samples. The second and more detailed simulation started by randomly placing 0.1% or 

1% ones into a vector 10000 x n long and then splitting this into 10000 groups each of n values 

and pooling these groups according to the two stage Dorfman method. These vectors were then 

analysed as in an experiment using the matrix rows as listed in Type (ii), Table 1. The resulting 

tests/person are shown in fig. 4 as the blue circles with 0.1% positive and orange circles with 1% 

positive. By separately analysing the initial 10000 groups each of length n the Binomial nature of 

the distribution was confirmed for each percentage of positives. These percentages were 

effectively identical to those produced by the Poisson distribution. 

Results and Discussion 

The Hadamard matrix method is suitable when using Dorfman two-stage pooling and the 

likelihood of measuring positive samples is low, which here means less than 1%. This limit is the 

result of the initial pooling greatly increasing the effective percentage of positive samples, thus 

if the probability is p before pooling, when placed into m bins it becomes mp.  In an individual 

set of data, for example generated using rows of a Hadamard matrix given by Type (ii) of Table 1, 

if there are two positives then both are correctly identified for each matrix size provided that 

the samples can be measured quantitatively relative to one another. Finding suitable rows was 

achieved by exhaustively choosing them and selecting only those that have this property as 

described in Methods. A consequence of a quantitative measurement is, for example, that if 

there are 3 positive samples in an initial 11 x 11 matrix all will be detected correctly except that 

10 out of the 120 possible ones will need to be fully retested because the pattern produced in 

these few cases is ambiguous; see Table SI(1) for other examples. In a single measurement this 

offers only a slight advantage over initially measuring all samples individually, but in the 

two-stage Dorfman process it is advantageous because, as mentioned, the fraction of positives 

after pooling is increased.   

In Table 1 the first column labelled Type (i) shows the rows that could be used when Dofrman 

pooling is not used and it is known that exactly one sample is positive and if this is the case then 

the rows in this column represent the minimum measurements needed to identify this sample. 

However, in reality this is never the case and there is generally a (Poisson) distribution of 

positives, 0, 1, 2, etc. In the case when the matrix size chosen is 11, zero positives will be 
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expected in 89.6% of samples, one positive in 9.85% of them and retesting needed for the 

remaining ≈ 0.56%. The number of tests on average in Type (i) would be approximately 0.995x4 

+ 0.005x11 ≈ 4, but this is misleading because in Type (i) some results could be ambiguous, i.e. 

the same pattern can correspond to different positive samples and this will require retesting to 

sort out. This ambiguity is not present for Type (ii) testing and now ≈ 6 tests are needed but in 

this case no-retesting is needed for 0, 1, 2 positives and retesting is necessary at only the 0.05% 

level, (= 0.56 x 10/120, see Table SI(1)) for 3 or more positives. The pattern of rows from Type 

(ii) is therefore the best option to use. 

 

n 

     Row labels.  

     1 positive sample. 

     Type (i) 

     Row labels, 

      > = 1 positive sample.   

     Type (ii) 

  Chance (as %)  of  0, 1,  ≥ 2  

present. (Using n-1 in the 

Poisson distribution  with 

probability p = 0.01) 

7      A D F     A D F G     94.2,   5.65,   0.173  

11      B D E F     A C G H I K     90.5,   9.05,  0.468   

15      B C D E        A B C D E F I J K O     86.9,  12.2,   0.893  

19      B E F H N       A C D I K M N O P S     83.5,  15.0,   1.44    

23      A H K N Q       A F H I K O P R T V W     80.3,  17.7,   2.09    

27     A B E N S     A B C D E F G H J M O T X     77.1,  20.1,   2.85   

31      B C E G L N       C D G J L N P U V X Y a e     74.1,  22.2 ,   3.69    

 

Table 1. Suitable combinations of Hadamard S matrices initially of size n x n. The last column of 

the S matrix was ignored in choosing lists of rows in Type (ii). In the larger matrices there are 

equivalent rows that could be used. The right-hand column shows the probability, as a 

percentage, of detecting 0, 1 or ≥ 2 positives calculated using the Poisson distribution when 

there are 1% positive samples placed into n - 1 bins. This shows the change in percentage of 0, 

1, 2 etc. positives in round one of pooling particularly with larger matrices. The letters follow 

the order ‘A, B, C, . . Z, a, b, c, . . z’. 
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Large sample sizes 

For a large number of samples with low positivity rate, a strategy similar to that of Dorfman [15] 

can be used. In this method, all the specimens are pooled into a few large groups and then each 

of those that tested positive is retested. Our approach is similar but differs slightly in that these 

initial groups are tested according to the Hadamard method and then the specimens comprising 

any positive ones are tested again, also using the Hadamard method. Thus for 225 samples (15 x 

15 matrix ) if only one sample is positive the Dorfman method involves testing 15 pooled groups 

then 15 more tests of the group containing the positive one. Using the Hadamard method, if 

only one positive is known to be present and 4 rows, Table 1 Type(i) are used to generate the 

pools, then four further measurements are needed from the group that contains the positive 

result, or 2m where m is the number of rows used. This is 3.6% of the total sample when n = 15 

or a test/person ratio of 0.036. These values are similar to the 0.1% positives simulation and 

shown as blue circles in Figure 4. 

 

In the general case the number of positive samples should be present in proportions given by 

the Poisson distribution. If more than one positive is found in the first round using Type (i), 

retesting is needed to properly find all positives, which could be by using rows from Type (ii), 

and then the results from this analysed further if there are any.  If m rows are initially used from 

a matrix of size n and then m rows subsequently and i = 0, 1, 2 positive samples occur with the 

fraction fi when grouped in the first round and f0
i in the second round.  The number of tests per 

person T when the probability of a positive sample is low is the weighted sum of zero, one, two 

or three positives etc. and this approximately given by,  

​ ​ ​ ​ (1) 𝑇 ≈(𝑚 + 𝑚
𝑖=1
∑ 𝑓

𝑖
0

 𝑖=1 
∑ 𝑖𝑓

𝑖
+ 𝜀 )/𝑛2

Since the initial test is always made and no further test made when the result is zero, f0 is 

absent.  A plot of T is effectively the same as that from a stochastic simulation when the  

probability is 0.1%; both are shown in fig. 4.   When the percentage of positives is very small 

indeed, equation 1 is largely given by the first term, so that but when this is not the 𝑇 →  𝑚/𝑛2 
case the summation becomes important. The term  is added and accounts for the fact that at 𝜀
large matrix sizes and at a larger percentage of positive samples, many groupings will contain 

more than 5 positives, this being approximately the limit of the Hadamard method, see table 

SI(1). This term is given by  , and is only important if the percentage positive is ≥ 𝜀 = 𝑛
𝑖=6

𝑛

∑ 𝑖𝑓
𝑖
0

1% and the matrix size n is large, i.e. when the probability,  fi ,(i > 5)  is no longer very small. The 
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stochastic simulation ratio of tests/person at 1% is also shown in fig 4. The same calculation 

using eqn. 1 follows this curve.  

Data points taken from the literature and the Dorfman function for the number of tests per 

person are also shown in fig. 4. The Dorfman function is given by equation 2, 

​ ​ ​ ​ (2)    𝑇
𝐷

= 1/𝑤 + 1 − (1 − 𝑝)𝑤

where w is the sample size and p the probability of infection.  The sample size  for the minimum 

number of tests/person is wmin=1/p1/2 which is 10 when p = 0.01 as seen in fig 4. The number of 

tests required per person by the Dorfman function subsequently increases with the sample size, 

in contrast, using the Hadamard method the number of tests decreases for small positivity and 

is comparable to results of Mutesa et al. [16] for large numbers of samples.  At larger positivity, 

e.g. 1% there is a small decrease with increase in sample size with Hadamard pooling, as with 

Dorfman pooling, however, the number of tests/person is always significantly lower than that. 

The Hadamard pooling method produced similar results to previous pooling strategies 

[16],[28],[49] but has the advantage that no complicated algorithm is needed to interpret the 

results, only simple pattern matching.  

 

One approach to test the positivity would be to use the minimum number of tests initially (Type 

(i) Table 1) to find if any of n the groups of samples is positive and then use this again for those 

found to be positive. However, because some ambiguity may arise this will not always identify 

individuals but instead approximately the number of positives present. With the 11 x 11 matrix 

and at 1% positivity this would be on average ≈ 4.1 measurements and test/person of 0.04. 

However, if Type (ii) rows only are used the average number of tests rise to ≈ 6.2 so this may be 

preferred as all the positives are identified not just their number.  An alternative approach could 

be to test all the n samples in round 1, and then test again using Type (i) rows for the second 

round. This will lead to about twice as many tests per person as using Type(ii) in both rounds 

(see fig. 4),  but could be a good approach if the initial percentage of positives is larger than 1%.  

Should the full matrix have to be evaluated the simplest way to identify all positive samples 

using the Hadamard method is to left-multiply the column of results by the inverse of the S 

matrix, see the Supplementary Information.   

 

The pooling method can be extended further for larger numbers, for example with three stages, 

153 = 3375 samples, between 12 and 21 measurements are needed. However, this and larger 

numbers are probably only rarely within the capacity of a single testing station and, although 

dilution of samples is possible [16, 26], such huge dilution may not be desirable or even feasible 

in practice. 
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Finally, we note that the possibility of a false positive or negative can be reduced by carefully 

choosing the rows, see Table(1). If the data is arranged as a matrix, as in fig. 3 the 4 x 6 matrix 

(based on the n = 7, S matrix) only has 2 positives in any column and in a fixed pattern, similarly 

the 6 x 10 matrix (n = 11, S matrix) only has 3 values in any column, n = 15, has 6 values and n = 

19, 5 values. A false positive or negative should therefore be detectable. 

 

 

​​Figure 4: The number of tests / person vs. the sample size (reduced matrix column size squared, 

(n - 1)2) in a two step or Dorfman  consecutive (two-stage or hierarchical) analysis with 0.1 and 

1% positive samples. The top axis shows the S matrix size n. The blue circles are the full 

simulated data (see text) when 0.1% on average are positive and the orange circles when 1% are 

positive. The grey circles at 0.1% positive were calculated using eqn. 1. Points labelled (a) are 

taken from Ghosh et al. [22], point (b) from Shental et al. [48], and (c) at 1 and 0.1 % positives 

from Figure 3 in Mutesa et al. [16]. The smooth curve is the Dorfman function.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 21, 2025. ; https://doi.org/10.1101/2024.10.21.24315883doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.21.24315883
http://creativecommons.org/licenses/by-nc-nd/4.0/


Conclusion 

We have demonstrated a straightforward approach to pooled testing using Hadamard S 

matrices to design pooling strategies. The efficiency of Hadamard pooling increases with sample 

size making the approach suitable for surveillance testing in low prevalence settings, ideally 

when the positivity rate is ≤ 1%. Hadamard pooling not only provides improvements in 

experimental screening efficiency but also in computational efficiency. A positive sample can be 

identified from a single round of testing by pattern matching, removing the need for 

computationally expensive decoding algorithms. A way of testing for false reading is suggested. 

Our strategy has the potential to contribute to the sustainable and efficient screening programs 

needed to ensure preparedness for the next pandemic. 
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Supporting Information 

Hadamard Matrices 

A conventional Hadamard matrix is square and contains entries of 1 and -1 only, and has the 

property that each row is orthogonal and as such has matching entries in half the rows and half 

not. The first row and column contain only ones. A variation of these matrices is used here and 

are labelled as Hadamard S matrices in which the first row and column of the Hadamard matrix 

are ignored and the changes 1 → 0 and −1 → 1 are made in the rest of the matrix. This is the 

form of the matrix shown in Figure 1. 

 

Only certain integer values are allowed in forming the S matrices, nevertheless they are 

numerous, the first few are  

 

3, 7, 11, 19, 23, 27, 31, 43, 47, 59, · · · 103, · · · , 199, · · ·  

 

and are prime numbers which also satisfy the condition 4n + 3 where n = 0, 1, 2, · · · . Other 

Hadamard matrices can be made with size 2n − 1, n = 2, 3, for example n = 4 produces a 15 × 15 

matrix and 27 × 27 by a similar method.  The n = 32 and 31  S matrices are circulant. Their first 

rows are: 

 

n = 23, 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 

n = 31, 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 

The Hadamard Transform 

If the situation arises that all samples have to be measured, a vector, W,  is constructed out of 

every summed row in a Hadamard matrix, instead of just selected ones. This vector comprises 

the unknown values qk which are multiplied by Sik = 0 or 1 and summed according to the pattern 

of each row into: 
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                                                                                                                            (S1)  𝑊
𝑖

=
𝑘
∑ 𝑞

𝑘
𝑆

𝑖𝑘

 which is the dot product of vectors q and a row of S. The column vector formed is W = [w1, w2, 

... ]T.  The transform to return the original values is   

 

                                                                                                                                 (S2) 𝑄 = 𝑆−1𝑊
 

 The inverse of the S matrix is  

 

                                                                                                (S3) 𝑆−1 = 2 2𝑆𝑇 − 𝐽( )/(𝑛 + 1)
 

where J is the all ones matrix and T indicates the transpose. 

 

Figure S-1. Examples of Hadamard S matrices. Each of the matrices except n = 28 is circulant and 

so can be produced from the first lines alone by rotating by one position. Note that the 15 × 15 

matrix cannot be made by the Quadratic Residue method, however, different but functionally 

equivalent matrices are formed by either the Shift Register method (matrix shown above) or the 

Doubling method, both of these methods are described in [46] and the 28 × 28 Hadamard 

matrix construction, among others in refs [33, 47]. 
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Table SI(1).  

The chance or fraction  of positive, but duplicate, patterns occurring  for each matrix size 

calculated with Type (ii) rows shown in Table 1. The total number of patterns is calculated as the 

number of combinations (Cr,n) using n - 1 for the matrix size n.  

S matrix size → 

Number positive ↓ 

7 11 15 19 23 

2 1/15 0/45 0/91 0/153 0/231 

3 6/20 10/120 0/364 0/816 0/1540 

4 3/15 11/210 4/1001 0/3060 0/7315 

5 0/6 40/252 24/2002 18/8568 0/26334 

6 - 65/120 57/3003 275/18564 - 

 

Table SI(2)  

(a) The patterns formed when a 7 matrix is used with 6 columns A D F G, see  table 1, and with a 

single positive sample. The patterns have been sorted and positives positioned accordingly. 

          Pattern                    positives          position 

  1     [0 0 0 1 1 1]     [0 0 1 0 0 0 0 0 0 0]     3 

   2     [0 0 1 1 0 1]     [1 0 0 0 0 0 0 0 0 0]     1 

   3     [0 1 1 0 1 0]     [0 0 0 0 1 0 0 0 0 0]     5 

   4     [0 1 1 1 0 0]     [0 0 0 1 0 0 0 0 0 0]     4 

   5     [1 0 1 0 1 0]     [0 1 0 0 0 0 0 0 0 0]     2 

   6     [1 1 0 1 0 0]     [0 0 0 0 0 1 0 0 0 0]     6 
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(b) Example of a look-up table for a 11 x 11 matrix of Type (ii) using the 6 rows A C G H I K, 

showing part of the list of results, i.e. pattern (vector) observed, and their corresponding 

position when two positives are present in the ten samples. The patterns have been sorted and 

positives positioned accordingly. 

            Pattern                 positives                position 

    1     [0 0 1 2 1 2]     [1 0 1 0 0 0 0 0 0 0]     1 &  3 

   2     [0 1 0 1 2 2]     [0 0 1 0 0 0 0 0 1 0]     3 &  9 

   3     [0 1 1 1 1 2]     [1 0 0 0 0 0 0 0 1 0]     1 &  9 

   4     [0 1 1 1 2 1]     [0 0 1 0 1 0 0 0 0 0]     3 &  5 

   5     [0 1 1 2 1 1]     [0 0 1 1 0 0 0 0 0 0]     3 &  4 

   6     [0 1 2 1 1 1]     [1 0 0 0 1 0 0 0 0 0]     1 &  5 

   7     [0 1 2 2 0 1]     [1 0 0 1 0 0 0 0 0 0]     1 &  4 

   8     [0 2 1 0 2 1]     [0 0 0 0 1 0 0 0 1 0]     5 &  9 

   9     [0 2 1 1 1 1]     [0 0 0 1 0 0 0 0 1 0]     4 &  9 

  10     [0 2 2 1 1 0]     [0 0 0 1 1 0 0 0 0 0]     4 &  5 

  11     [1 0 0 2 2 1]     [0 0 1 0 0 0 0 0 0 1]     3 &  10 

  12     [1 0 1 1 1 2]     [0 0 1 0 0 0 1 0 0 0]     3 &  7 

  13     [1 0 1 1 2 1]     [0 1 1 0 0 0 0 0 0 0]     2 &  3 

  14     [1 0 1 2 1 1]     [1 0 0 0 0 0 0 0 0 1]     1 &  10 

  15     [1 0 2 1 0 2]     [1 0 0 0 0 0 1 0 0 0]     1 &  7 
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