1	TITLE:
2	Cohort profile of the ICMR-Stillbirth Pooled India Cohort (ICMR-SPIC):
3	Estimating Prevalence, Analyzing Risk Factors, and Developing Prediction
4	Models for Stillbirths in India
5	
6	Authors:
7	ICMR-SPIC Consortium
8	
9	Affiliations: Names and affiliations of consortium members are listed at the end of the
10	manuscript
11	
12	Corresponding author:
13	Dr Reema Mukherjee
14	Affiliation: Scientist E, Division of Reproductive, Child Health and Nutrition,
15	Indian Council of Medical Research (ICMR)
16	Email: rimamukerjee@gmail.com
17	

18 Keywords: maternal health, stillbirth, mortality, gestational Age, preterm birth, LMIC, India

19 ABSTRACT

20 Purpose

Stillbirth is a significant public health problem in India, yet comprehensive epidemiological data on its prevalence and risk factors are lacking. This initiative develops a pooled dataset from 10 well-characterized pregnancy cohorts across urban and rural India to estimate the national prevalence of stillbirths, identify risk factors and their population-attributable fractions, and develop a predictive risk stratification model for evidence-based clinical decision-making and interventions in high-risk pregnancies.

27 Participants

Pregnant women were recruited from the health facilities and community settings during the antenatal period. Recruitment spans four urban, four rural, and two mixed urban-rural sites, ensuring diversity in geographic and demographic representation.

31 Findings to Date

32 The ICMR stillbirth pooled India cohort (ICMR-SPIC) comprises 229,695 pregnant women.

- 33 The mean (standard deviation) maternal Age at recruitment was 23.5(3.3) years. 30.5% were
- 34 underweight (BMI <18.5 kg/m²) and 16.8% were overweight or obese (BMI \ge 23 kg/m²).

35 Short stature (<145 cm) was observed in 6.9% of participants. The mean (SD) gestational Age

36 at birth was 38.7 (2.5) weeks. A third of the participants (33.3%) experienced moderate to

- severe anaemia during pregnancy (Hb<9.5g/dL), 52.8% were multiparous, and 22.5%
 conceived within 18 months of their previous childbirth. Core maternal risk factors such as
 short stature, BMI, parity, prior stillbirths, and anaemia during pregnancy were recorded in all
 cohorts. Additional variables, including gestational weight gain, preeclampsia/eclampsia,
 antepartum hemorrhage, and fetal distress, were available for over 80% of the cohorts,
- 42 ensuring robust data coverage for risk factor analysis and modeling.

43 Future Plans

44 ICMR-SPIC will be used to conduct individual-level pooled data analyses to estimate

45 prevalence, identify key risk factors, and develop predictive models for stillbirths. Findings

46 will inform policies, clinical guidelines, and targeted interventions for high-risk pregnancies.

47 The harmonized ICMR-SPIC dataset is a landmark collaborative effort to advance maternal

48 and newborn health in India.

49

50 STRENGTHS AND LIMITATIONS

• The harmonized **ICMR-SPIC pooled dataset** is the largest and most comprehensive 52 resource for investigating the prevalence and determinants of stillbirths in India. It

represents diverse geographical regions, encompassing both urban and rural recruitment
 sites, and provides a broad demographic spectrum.

- Gestational Age at birth was objectively determined using ultrasound measurements or
 last menstrual period data, enabling accurate categorization of stillbirths.
- The prospective cohort design facilitates identification of at-risk populations by
 providing demographic data across most cohorts and enabling longitudinal tracking of
 some modifiable risk factors.
- Despite rigorous efforts to harmonize data, variations in the measurement methods for
 certain modifiable risk factors (e.g., reproductive tract infections, preeclampsia, and
 haemoglobin concentrations) may result in residual misclassification, potentially
 affecting the precision of some risk analyses.
- A notable limitation of the dataset is the lack of detailed data in several cohorts to
 distinguish between antepartum and intrapartum stillbirths, or assess the quality of
 care during labour and childbirth. This restricts the ability to provide robust prevalence
 estimates or identify specific determinants for the two types of stillbirths.

68 INTRODUCTION

69 The World Health Organization defines stillbirth as a baby born with no signs of life 70 after 28 weeks of gestation or with a birthweight of less than 1000 grams[1]. Stillbirths before 71 the onset of labor are classified as antepartum stillbirths, whereas those during labor and 72 childbirth are grouped as intrapartum stillbirths. The Every Newborn Action Plan endorsed by 73 the World Health Assembly in 2014 set a target of reducing the stillbirth rate to <12/100074 total births by 2030[1]. Furthermore, India pledged to reduce stillbirth and early neonatal 75 mortality rates to <10/1000 births by 2030 through a focused strategy proposed in the 2014 76 India Newborn Action Plan^[2]. Despite notable progress, most low- and middle-income 77 countries (LMICs), including India, remain off track to achieve global targets for stillbirth 78 reduction. The Global Burden of Disease study confirmed that India contributed the highest 79 number (397,300) of stillbirths globally in 2021[3,4]. Over the past two decades, India has 80 achieved an average annual reduction rate (ARR) of 4% in stillbirth rates, culminating in a 81 53% decline in2019 compared to 2000 (29.6 stillbirths per 1,000 total births in 2000 vs. 13.9 82 in 2019). However, the most recent estimates indicate that the burden remains unacceptably 83 high, underscoring the need for intensified efforts to enhance maternal and perinatal 84 healthcare systems to address persistent inequities [5,6].

Several challenges must be addressed to achieve the goal of reducing stillbirths in 85 86 India. Notably, stillbirth targets are absent from global policy agendas, including the 87 Sustainable Development Goals, and the definition of stillbirth varies across healthcare 88 contexts, leading to misclassification and impeding international comparisons (Supplementary 89 Table 1). This variation also contributes to discrepancies in stillbirth prevalence reported in 90 different Indian registries [7,8]. Additionally, mechanisms for documenting stillbirths in 91 LMICs, including India, remain suboptimal. For instance, the National Family Health Survey 92 in India conflates stillbirths, miscarriages, and abortions as it relies on maternal self-93 reports[7], often introducing bias due to low maternal education and knowledge about 94 stillbirths. Furthermore, there is limited epidemiological evidence on the burden and risk 95 factors for stillbirths across India's diverse regions [9,10], which is essential for designing 96 tailored interventions. Generating comprehensive evidence on the prevalence and risk factors 97 forstillbirths at a national scale necessitates coordinated, large-scale efforts that surpass the 98 capacity of individual investigators, requiring multi-institutional collaboration, standardized 99 methodologies, and robust data systems.

100 A collaborative, team-based approach is essential for generating robust evidence on 101 stillbirths in India. The ICMR formed a consortium of pregnancy cohort studies to generate a

102 harmonized dataset to estimate stillbirth prevalence, identify risk factors, and develop models 103 to predict pregnancies at high risk of stillbirths in India. This initiative also aims to 104 standardize the definition of stillbirth, enabling accurate burden estimation and advocacy. By 105 aligning with India's Every Newborn Action Plan, this effort is pivotal in developing 106 evidence-based policies, interventions, and clinical guidelines to reduce preventable 107 stillbirths.

108 Here, we outline the process of harmonizing data from multiple pregnancy cohorts to develop 109 the Indian Council of Medical Research-Stillbirth Pooled India Cohort Dataset (ICMR-SPIC) 110 and provide a concise description of the cohort profile. The ICMR-SPIC aims to estimate the 111 national stillbirth rates in India, assess the associations between specific risk factors and 112 stillbirths to evaluate their relevance for the Indian population and calculate the population 113 attributable fraction for each risk factor to identify those with the most significant impact. 114 Additionally, we will develop a risk prediction model for the early identification of 115 pregnancies at high risk of stillbirth. This comprehensive approach provides a robust 116 framework for generating actionable insights to reduce stillbirth rates in India.

117

118 METHODS

119 Selection of studies

120 In 2023, the ICMR coordinated forming of a consortium of investigators leading pregnancy 121 cohorts in India, with the primary goal of pooling and harmonising data across all existing 122 relevant cohorts. The dataset will be used for estimating the burden and determinants of 123 stillbirths in India at the national level and for developing and validating a risk prediction 124 model for identifying pregnancies at high risk of stillbirths that could benefit from targeted 125 interventions. Ten investigator groups managing pregnancy cohorts joined the ICMR-SPIC 126 consortium; details are provided in Supplementary Table 2. The consortium commenced its 127 work in April 2024 after confirming the involvement of researchers, the availability of ethics 128 and regulatory approvals, and signing agreements for sharing de-identified cohort data with 129 the ICMR.

130

131 For a cohort study to be included in the pooled analysis, the study should have fulfilled the

132 following criteria:

The study must be conducted in either urban or rural India. Pregnant women could be
 recruited in health facilities or community settings.

135	2.	The cohort studies should have appropriate ethics and regulatory approvals, including				
136		participant consent for sharing data with third parties for secondary analysis.				
137	3.	Pregnant women should have been recruited before the birth of their child and				
138		followed longitudinally until a birth outcome (live birth, stillbirth, medical or				
139		spontaneous abortion) was recorded.				
140	4.	The cohort studies must provide detailed descriptions of the study methods, including				
141		recruitment and sampling strategies, inclusion and exclusion criteria, and detailed				
142		definitions for all the variables shared with the consortium, to enable data				
143		harmonisation and accurate interpretation of the results.				
144	5.	The dataset must include a core set of "required" variables, such as gestational Age at				
145		childbirth (GA), along with methods determining GA (Last Menstrual Period or				
146		ultrasonography), and a set of sociodemographic variables, such as maternal Age at				
147		childbirth, education levels, etc.				
148	6.	While desirable, the availability of details of medical conditions, obstetric				
149		complications, and behavioral factors were not considered mandatory.				
150						
151	Data s	ources for ICMR-SPIC				
152	Ten da	tasets were included in the pooled ICMR-SPIC database (see Table 1 for details),				
153	spanni	ng17 sites across nine Indian states representing North, West, Central, South, and				
154	North-	Eastern India. One study (MaatHRI) included study sites in the North, North-East, and				
155	Central Indian regions. Eight out of ten studies followed an observational study design.					
156	Among	g the two intervention studies that were included, the WINGS cohort contributed data				
157	only fr	om the control arm. In contrast, the CalPreg cohort contributed data from both the				
158	contro	and intervention arms, as the intervention differed only in the dose of calcium				
159	admini	stered during pregnancy. Furthermore, four out of ten cohorts recruited participants				
160	from c	ommunity settings and the remaining six were hospital-based . While there was an				
161	equal representation of the <i>number of sites</i> contributing data from urban and rural areas (four					
162	each fr	om urban and rural areas, and two with mixed urban and rural populations, see Table				
163	1), the majority of participants, <i>in absolute numbers</i> (91.8%, Table 3), were from rural areas.					
164						
165						
166						
167						
160						

Sr.	Short title	Key studies	State / Region in	Location	Study	Study design	Sample
1	CalDerra	(FMID) 24910147	Illula V a mastalaa /Caastla	I Labora	2018 2021	Tata manuality a	SIZE
1	CalPreg	34819147 38197817	Karnataka/South	Urban	2018-2021	Intervention	10,544
2	GARBHINI	39021476 30770926 33931016 37492417 39030058	Haryana/North	Mixed	2015-2020	Observational	7,002
3	LIFE	27649805 30400845 31819983 31854166 35923508	Telangana/South	Rural	2010-2018	Observational	1,269
4	MAASTHI	36130760 31828224 31920399 33292687	Karnataka/South	Urban	2016-2019	Observational	3,280
5	MaatHRI	33500775 34607867 34585123 35934263 37651649 38757059 39513665	Assam and Meghalaya/North- East; Chhattisgarh, Uttar Pradesh, Himachal Pradesh/North; Maharashtra/ Central	Mixed	2018-2023	Observational	10,109
6	MNHR- Belagavi	22738806 25177075 26063586 26063292 33334337 33256783 33256770	Karnataka/South	Rural	2010 -2020	Observational	111,645
7	MNHR- Nagpur	35972913 31383691 30093518 33334356 33334337	Maharashtra/ Central	Rural	2010 - 2020	Observational	82,232
8	PMNS	34610922 12586996 11285330	Maharashtra/ West	Rural	1994-1996	Observational	770
9	REVAMP	36275827 38965425 37129568	Maharashtra/ West	Urban	2017-2022	Observational	1,745
10	WINGS	36288808 38165408	New Delhi/North	Urban	2017-2020	Intervention – Control group	1,099

169 **Table 1:** Details of pregnancy cohort studies included in the ICMR-SPIC harmonised dataset

170

¹Number of pregnancies included in the ICMR-SPIC dataset

171

172 Data harmonization and data cleaning

173 A preliminary draft of the data dictionary and codebook that listed the essential and desirable

variables to be included in the ICMR-SPIC dataset was prepared including their tentative

175 definitions and harmonised variable names. This draft was shared with all the consortium

176 partners for review and comments. The consortium members discussed, modified, and

177 mutually agreed on the final list of variables and their definitions. The updated data dictionary

178 and codebook was shared with all the consortium members for mapping and recoding their 179 data into the final data template. Each cohort performed thorough data cleaning to adhere to 180 the definitions and codes, and prepared detailed notes on how data on each variable was 181 collected and categorized to minimise variations in measurement methods that could impact 182 the interpretation of results. If the teams were unable to adhere to the harmonised definitions, 183 they provided a detailed description of the discrepancy compared with the requested format, 184 definition, or assessment method. Each cohort then uploaded the cleaned and final dataset 185 along with the annotated codebook on a secure webserver managed by ICMR. 186 The core statistical analysis team then reviewed each dataset to ensure fidelity to the 187 harmonization template. Data managers of the respective cohorts corrected any errors 188 highlighted by the statistical team. Some cohorts had recruited the same participant across 189 multiple pregnancies. In these cases, a decision was made to represent each row as a unique 190 pregnancy, with one column linking participants across pregnancies whenever possible. 191 Multifetal gestations were reported as individual rows for each fetus, with a column indicating 192 singleton or multiple gestation for each observation. This allowed the team to assess the 193 outcome of each birth from all pregnancies while accounting for the fact that not all 194 participants were independent in the combined dataset, which will be accounted for using 195 appropriate statistical methods during the analysis. Summary statistics and histograms/bar 196 graphs were plotted for each derived variable and their component raw variables to identify 197 outliers and missing data were examined. Codes were written to check for range and logical 198 errors for each variable, and any data or coding errors were corrected with help from the 199 respective cohort's data managers. The final verified datasets were then sequentially appended 200 to the master dataset one at a time using code prepared in STATA version 16 (Stata Corp., 201 College Station, USA) or R version 3.3.3 (R Core Team, 2023; https://www.R-202 project.org/). The only major exclusion was missing outcome data (live/stillbirth) or if the 203 fetus was naturally or medically aborted. The harmonized dataset was accessible to all 204 consortium members through password protected access controls to the secure server. 205

206 **Definitions**

207 The final list of variables and their definitions are presented in Table 2. Gestational Age (GA)

208 calculation was prioritised from ultrasound data when available and from last menstrual

209 period if ultrasound data was not available. GA was used to determine what proportions of

210 births were preterm and to calculate the time-period (or gestational Age) of measurement of

211 each risk factor during the pregnancy. This was done to enable adjustments for time-varying

- 212 exposures in statistical models, as many risk factors are known to have differential effects on
- stillbirth outcome depending on the stage at which they affect pregnancy.
- 214
- 215 *Primary outcome measure: Stillbirth*
- 216 The team made a decision to adopt the WHO definition of stillbirth (birth of a fetus without
- any sign of life at or after 28 weeks of gestation), which is recommended for international
- 218 comparisons.
- 219
- 220 **Table 2:**List of variables and harmonised definitions

Sr.	Variable	Harmonised variable definition			
No.					
Outc	Outcome measure				
1	Stillbirth	categorical; Yes/No/Not collected			
Mate	ernal sociodemographic factors				
1	Maternal Age	continuous; completed years			
2	Location	categorical; urban/rural/Not collected			
3	Maternal education in years	continuous; completed years; level of maternal education			
		(primary, secondary, etc, if completed years not available)			
5	Consanguineous marriage	categorical; Yes/No/Not collected			
6	Fuel type for cooking or heating	categorical;LPG/Natural			
		gas/Kerosene/Coal/Charcoal/Wood/Dung			
		cakes/Straw/Shrub/Grass/Agricultural crop			
		waste/Biogas/Other/Combination of any of the above			
7	Source of drinking water	categorical; Piped water into dwelling/ Public			
		tap/Tubewell, borehole, or hand pump/Open well/Closed			
		well/Tanker truck/Surface water/Bottled water/Rain water/			
35.4		Other/ Combination of any of the above			
Mate	ernal health history				
1	Weight (during pregnancy)	continuous; in kg			
2	Height (during pregnancy)	continuous, in cm			
3	Biceps skinfold thickness	continuous, in cm			
4	Friceps skinfold thickness	continuous, in cm			
5	Subscapular skinfold thickness	continuous, in cm			
0	De vites				
/	Parity	discrete; count			
0	Describes history of stillbirth	continuous; completed months			
9	Previous history of stillbirth	categorical; Yes/No/Not applicable/Not collected			
10	Prior account action	categorical; Yes/No/Not applicable/Not collected			
11	Phor caesarean section	categorical; Yes/No/Not applicable/Not collected			
12	Fre-existing hypertension	categorical; Yes/No/Not collected			
15	cardiovascular disorders	categorical, res/no/not conected			
14	Artificial reproductive techniques	categorical: Yes/No/Not collected			
15	Infertility treatment	categorical: Yes/No/Not collected			
Mate	Maternal health behaviours				
1	Tobacco consumption	categorical; Yes/No/Not collected			
2	Alcohol consumption	categorical; Yes/No/Not collected			
3	Passive smoking	categorical; Yes/No/Not collected			
4	Number of ANC visits	discrete; count			
Mate	rnal health during pregnancy				
1	Stress or depressive symptoms	continuous; raw score from tool of choice (EPDS/PHQ-9)			
2	Overt diabetes	categorical; Yes/No/Not collected			

3	Glycated haemoglobin (HbA1c)	continuous; %		
4	Gestational diabetes (GDM)	categorical; Yes/No/Not collected		
5	GDM time of diagnosis	continuous; completed weeks of gestation		
6	Haemoglobin	continuous; g/dL		
7	Haemoglobin – method of assessment	categorical: Autoanalyser/Point of care		
-		testing/Sahli'smethod/Photometric method/Not collected		
8	Fasting plasma glucose	continuous: mg/dL		
9	1-hr plasma glucose: Oral glucose	continuous: mg/dL		
	tolerance test			
10	2-hr plasma glucose: Oral glucose	continuous: mg/dL		
	tolerance test			
11	Systolic blood pressure	continuous: mmHg		
12	Diastolic blood pressure	continuous: mmHg		
13	Urinary protein	continuous: g/dL		
15	Gestational hypertension (GH)	categorical: Yes/No/Not collected		
16	Time of diagnosis: GH	continuous: completed weeks of gestation		
17	Preeclampsia	categorical: Yes/No/Not collected		
18	Time of diagnosis: Preeclampsia	continuous: completed weeks of gestation		
19	Eclampsia	categorical: Yes/No/Not collected		
20	Time of diagnosis Eclampsia	continuous: completed weeks		
21	Thyroid disorder	categorical:Hypothyroidism/Hyperthyroidism/Euthyroid/N		
21		ot collected		
Mate	rnal infections during pregnancy			
1	Asymptomatic bacteriuria	categorical: Yes/No/Not collected		
2	Reproductive tract infection	categorical: Yes/No/Not collected		
3	Syphilis	categorical: Yes/No/Not collected		
4	Human immunodeficiency virus	categorical: Yes/No/Not collected		
5	Malaria	categorical: Yes/No/Not collected		
6	Rubella	categorical: Yes/No/Not collected		
7	Varicella	categorical: Yes/No/Not collected		
8	Toxonlasma	categorical: Yes/No/Not collected		
9	Henatitis B	categorical: Yes/No/Not collected		
10	Tuberculosis	categorical: Yes/No/Not collected		
11	Cytomegalovirus	categorical: Yes/No/Not collected		
Obst	Obstatric factors at the time of childbirth			
1	Date of childbirth	date variable: DD/MM/YYYY		
2	Mode of childbirth	categorical : vaginal/assisted/caesarean		
3	Place of childbirth	categorical: Institutional/Non-institutional/Not collected		
4	Gestational Age (GA) at childbirth	continuous in weeks		
5	GA at childbirth in days	continuous, in days		
6	Method of dating GA	categorical: Ultrasound sonography (USG)/Last menstrual		
	Section of annual Off	neriod/Others		
7	USG method of dating GA	categorical: Crown-Rump length/Other fetal biometry/Not		
	obe meaned of during off	applicable		
8	GA at dating (weeks)	continuous, in weeks		
9	GA at dating (days)	continuous, in days		
10	Date of dating	date variable: DD/MM/YYYY		
11	Ultrasound evidence of fetal heart	categorical: Yes/No/Not collected		
	activity just before onset of labour or			
	rupture of membranes			
12	Perception of fetal movements just	categorical: Yes/No/Not collected		
	before onset of labour or rupture of			
	membranes			
13	Obstructed or prolonged labour or failure	categorical: Yes/No/Not collected		
	to progress	<i></i>		
14	Mal-presentation at childbirth	categorical: Yes/No/Not collected		
15	Antepartum haemorrhage	categorical; Yes/No/Not collected		
17	Amniotic fluid disorders (AFD)	categorical;		
i				

		Oligohydramnios/Polyhydramnios/Normal/Not collected
18	Time of diagnosis: AFD	continuous; completed weeks of gestation
Mate	rnal blood biomarkers during pregnancy	(available in a subset)
1	Vitamin B12	continuous; pg/mL
2	Folate	continuous;ng/mL
3	Ferritin	continuous;ng/mL
5	Soluble transferrin receptor	continuous;mg/mL
6	Vitamin D	continuous;ng/mL
7	Vitamin B6	continuous;ng/mL
8	Zinc	continuous;ug/dL
9	Selenium	continuous;ug/L
10	C-reactive protein (CRP)	continuous;mg/L
11	hs-CRP	continuous;mg/L
12	Calcium	continuous;mg/dL
13	Magnesium	continuous;mg/dL
14	Methyl malonic acid	continuous;ng/mL
15	Cortisol	continuous;µg/dL
16	Total cholesterol	continuous;mg/dL
17	Low-density lipoprotein (LDL)	continuous;mg/dL
18	High-density lipoprotein (HDL)	continuous;mg/dL
19	Triglycerides (TGL)	continuous;mg/dL
20	Homocysteine	continuous;µmol/L

221

222 **Principles and plans for statistical analysis**

A detailed study flow diagram outlining the analytical decisions that progressed from the total

224 participant pool across all cohorts to the final analytic dataset is presented in Supplementary

Figure 1. For each objective, a comprehensive statistical analysis and reporting plan was

formulated in collaboration with the Technical Advisory Group of the ICMR-SPIC

227 consortium. This plan delineated the statistical techniques, underlying assumptions, and

228 procedural steps, ensuring systematic and transparent analyses (details will be reported in

subsequent papers). The harmonized dataset will be analyzed using two complementary

approaches to generate the most robust evidence: (1) a one-stage meta-analysis, an individual-

231 level pooled analysis of all available data, and (2) a two-stage meta-analysis: a meta-analysis

of cohort-specific summary data to examine and account for between-study heterogeneity

among the cohorts.

Using a weighted sample, the stillbirth rate (SBR) will be calculated as the number of

stillbirths divided by the total number of births expressed per 1,000 total births. To account

236 for differences in sample sizes across cohorts, each cohort will be weighted, with weights

237 computed as the inverse of the ratio of the individual cohort sample size to the overall pooled

cohort sample size. The total number of births will be defined as the sum of live births

239 (regardless of gestational Age) and stillbirths. SBR at the national level will be reported along

240 with the 95% confidence intervals.

241

242 Assessment of Risk factors for stillbirths in India

- To assess the association and estimate the risk ratios of various sociodemographicand antenatal risk factors for stillbirth, a modified mixed-effects model will be utilised with each cohort included as a random effect. Directed acyclic graphs (DAGs) will be drawn to understand the pathways of the known risk factors. To quantify the impact of each risk factor, the population attributable fraction (PAF) will be estimated using Miettinen's formula[11], expressed as: $PAF = P_e(RR - 1)/RR$, where P_e is the proportion of stillbirth cases exposed to
- the risk factor, and RR is the adjusted relative risk for that risk factor.
- 250

Development and internal validation of a risk prediction model to identify pregnancies at high risk of stillbirth.

A clinical prediction model will be developed to predict the risk of stillbirth in pregnant

women visiting healthcare facilities using their baseline (fixed) and modifiable risk factors,

aimed to support clinicians in medical decision-making. The optimal set of predictors that

contribute significantly to predicting stillbirthswill be identified by domain knowledge-basedand data-driven approaches.

258 Using a naive Bayesian framework, a dynamic model [12] will be used to dynamically assess

the personalised risk of stillbirth. The initial baseline probability will be derived from the

260 estimated prevalence of stillbirth for the study population. Thereafter, conditional

261 probabilities will be computed for each new predictor using Bayes Theorem to update the risk

262 of stillbirth for each pregnant woman. The model will be internally validated on the 'left-out'

263 dataset. The model will be evaluated for quantifying the error in prediction (root mean

squared error, mean absolute error, and calibration-in-the-large (CITL), discrimination ability

using the area under the receiver operating characteristics curve and decision curve analysis.

266 PATIENT AND PUBLIC INVOLVEMENT STATEMENT

267 No patients or members of the public were directly involved in the design, conduct, or

analysis of this secondary data analysis. However, the ICMR-SPIC consortium includes

269 representatives from India's research, practice, and policy communities to ensure that the

study aligns with national health priorities and addresses key public health concerns.

271 Dissemination efforts will focus on engaging future mothers and their families, the general

272 public, non-governmental organizations dedicated to preventing stillbirths and improving

- 273 maternal and child health, and other relevant stakeholders. Study findings will be
- 274 communicated through diverse channels, including local audio-visual media, print media, and

275 social media platforms, with messages specifically tailored to inform future mothers and their

- 276 families about stillbirth risk factors and effective strategies for prevention and management.
- 277
- 278

279 **CHARACTERISTICS OF THE COHORT PARTICIPANTS**

280 The harmonized ICMR-SPIC dataset comprises individual-level data from a large sample of

281 2,29,695 pregnant womenon maternal sociodemographic, health, lifestyle, and household

282 factors, as well as characteristics of previous and current pregnancies and objective measures

283 of birth outcomes (Table 3).

284 a) Maternal sociodemographic and anthropometric characteristics

285 The mean (standard deviation or SD) maternal Age at enrolment was 23.5(3.3) years.

286 Education duration varied widely, with a mean (SD) of 7.3 (4.8) years, which is expected for

287 the profile of women visiting public health facilities in India or residing in urban-poor or rural

288 community settings. The mean(SD) maternal height was 152.2(5.6) cm, with 6.9% being of

- 289 short stature (<145 cm), a known risk factor for adverse pregnancy outcomes, including
- 290 stillbirth[13]. Using criteria specified for the South Asian population, 30.5% of women were

291 underweight ($< 18.5 \text{ kg/m}^2$) and 16.8% were overweight ($\ge 23 \text{ kg/m}^2$), highlighting the double

292 burden of malnutrition in India - persistent issues of undernutrition along with an emergent

293 problem of overweight and obesity. The majority of the participants (91.8%) live in rural

- 294 areas.
- 295

b) Maternal household and lifestyle factors

296 Nearly half the cohort (44.4%) used biomass fuels, known to contribute to indoor air pollution

297 and respiratory health issues.22.5% of mothers had an inter-pregnancy interval of <18

298 months, which has been suggested to be associated with a higher risk of adverse maternal and

299 child health outcomes. However, data was available only for a quarter of the total sample for

300 this variable (N=56,822). The distribution of parity was balanced, with 47.2% of women

301 being nulliparous and 52.8% multiparous, the former being reported as a risk factor for

302 stillbirths[14]. 27.8% and 1.6% reported being exposed to passive smoking and consuming

303 alcohol during pregnancy, respectively. However, data for these factors were available in a

- 304 small subset of the total population (Table 3).
- 305 c) Pregnancy characteristics
- 306 Although information about the history of abortion was available only for 12,767 women,
- 307 26.1% of these women reported having experienced a previous abortion. In contrast,
- 308 information about previous stillbirths was available for almost all participants (N=2,24,228),

- 309 with 1.8% reported experiencing at least one previous stillbirth. The mean (SD) gestational
- 310 Age at childbirth was 38.7 (2.5) weeks, and gestational weight gain per weekwas0.4 (0.4) kg
- 311 (N=28,362). The prevalence of pregnancy complications computed from smaller subsets of the
- data was noted as follows: gestational diabetes (5.7%, N=17,265), gestational hypertension
- 313 (2.9%, N=2,19,536), preeclampsia (2.9%, N=30,266), eclampsia (0.2%, N=33,036),
- antepartum hemorrhage (0.5%, N=2,06,152), and fetal malpresentation (2.0%,
- 315 N=2,08,254). The data also revealed substantial and concerning rates of anemia, with 33.3%
- of women having moderate or severe anemia during pregnancy. Additionally, the data
- 317 indicated that 5% of women had thyroid disorders (diagnosed with hypothyroidism).
- 318 Table 3: Sociodemographic and health characteristics of the ICMR-SPIC Cohort

Variable		N(data available)	% (N)	Mean (SD)	
Maternal demographic and anthropometric characteristics					
Maternal Age (years)		2,27,020		23.5 (3.3)	
Maternal Education (years)		2,26,555		7.3 (4.8)	
Maternal Height (cm)		2,23,632		152.2 (5.6)	
Statum	Normal (>145 cm)		93.0 (208,047)		
Stature	Short (<145 cm)		6.9 (15,585)		
BMI (kg/m ²)		2,24,835		20.3 (3.3)	
DMI Cotogorias	Normal		61.4 (138,140)		
(WHO)	Underweight		30.5 (68,508)		
(WHO)	Overweight		8.1 (18,187)		
DMI Coto corrigo	Normal		52.6 (118,318)		
South Asia Specific)	Underweight		30.5 (68,508)		
(South Asia Specific)	Overweight		16.9 (37,009)		
Location/residence		2,19,635			
Cotto e site a	Rural		91.8 (201,635)		
Categories	Urban		8.2 (18,000)		
Household and Lifestyle H	Factors				
Type of Cooking Fuel		1,01,977			
Catagorias	Clean Fuel		55.5 (56,628)		
Categories	Biomass		44.4 (45,349)		
Inter-pregnancy Interval (months)		56,822			
Catagorias	≥ 18 months		77.4(44,017)		
Categories	<18 months		22.5(12,805)		
Parity		2,27,021			
Catagorias	Nulliparous		47.2 (107,153)		
Categories	Multiparous		52.8(119,868)		
Passive Smoking		77,306	27.8 (21,532)		
Alcohol Consumption		23,497	1.6 (389)		
Pregnancy characteristics	1				
Gestational Age at Childbin	th (weeks)	2,27,313		38.7 (2.5)	
Weight Gain per Week (kg)	28,362		0.4 (0.4)	
Maximum HbA1c (%)		9,298		5.4 (0.5)	
Moderate/Severe Anemia d	uring pregnancy	2,19,118	37.6(82,323)		
Gestational Diabetes		17,265	5.7 (1,000)		
Preeclampsia		30,266	2.9 (889)		
Eclampsia		33,036	0.2 (69)		
Gestational Hypertension		2,19,536	2.9 (6,470)		
Antepartum Haemorrhage		2,06,152	0.5 (1,032)		
Malpresentation		2,08,254	2.0 (4,277)		
Previous Abortion		12,767	26.1(3,342)		

Previous Stillbirth		2,24,228	1.8 (4,057)
Moderate or Severe anaemi	a at any time point	175.040	33 3 (58 201)
in pregnancy (<hb 7-9.5="" dl)<="" g="" td=""><td>175,040</td><td>33.3 (38,291)</td></hb>		175,040	33.3 (38,291)
Thyroid Disorders		23,450	
	Euthyroid		94.5 (22,174)
Categories	Hypothyroidism		5.0 (1,179)
	Hyperthyroidism		0.4 (97)

319

320 **DISCUSSION**

321 The ICMR-SPIC dataset represents a landmark collaborative initiative consolidating data 322 from 10 well-characterized pregnancy cohorts spanning diverse regions of India. This 323 harmonized dataset, encompassing 229,695 participants from both urban and rural settings, is 324 the largest of its kind in the country, which will facilitate robust analyses of stillbirth 325 prevalence, associated risk factors, and predictive models for high-risk pregnancies. Using 326 standardized methodologies and harmonized definitions enhances the dataset's reliability, 327 allowing national and regional estimates to support evidence-based policy formulation and 328 targeted intervention design. The findings will underscore critical maternal health challenges 329 leading to a high burden of stillbirth in the country, including a high prevalence of 330 malnutrition, anemia, pregnancy complications such as gestational diabetes and preeclampsia, 331 and significant exposure to passive smoking and biomass fuels. However, the dataset 332 highlights notable gaps in representation, mainly from eastern India and tribal populations, 333 and inconsistencies in data collection methods across cohorts. These factors necessitate 334 careful consideration during data analysis and interpretation to ensure accurate and 335 meaningful insights. Despite limitations, including incomplete data on pre-conception factors, 336 intrapartum care, and variability in measurement methods, the scale and scope of the ICMR-337 SPIC dataset offer an unprecedented opportunity to develop predictive models and design 338 context-specific interventions and is a major step forward in collaborative research within 339 India.

340 CONCLUSION

341 The ICMR-SPIC demonstrates the value of large-scale collaborative data harmonization 342 approaches to address critical public health challenges like stillbirth in India. By pooling data 343 from diverse pregnancy cohorts, this unique effort enables robust, generalizable insights into 344 the prevalence and region-specific risk factors for stillbirths, and facilitates the development 345 of a prediction model to identify pregnancies at high risk of stillbirths. These efforts will 346 inform evidence-based clinical guidelines, interventions, and policymaking, thereby 347 addressing the goal of reducing rates of preventable stillbirths in India, and achieving the 348 national and global targets.

15

349 350 351 **FURTHER DETAILS** 352 Data availability statement 353 All contributing research teams have acknowledged that the pooled data can only be used for 354 collaborative activities within the ICMR-SPIC consortium, with no transfer of ownership. 355 356 Funding 357 This study was funded by the Indian Council of Medical Research to create a harmonised 358 pooled dataset across ten pregnancy cohorts in India and to conduct secondary analysis using 359 this dataset. 360 361 **Contributors** 362 ICMR conceptualized the study. RC, RT, and RM designed the study with input from all 363 members of the ICMR-SPIC consortium and the Technical Advisory Group (TAG). RM, AY, 364 and JM were responsible for data cleaning, data preparation, and statistical analyses, 365 supervised by RC, RT and TAG. All authors contributed to data acquisition and interpretation 366 of results. DM and RC drafted, and MN edited the manuscript; all authors reviewed it and

- 367 provided consent for publication of the final version.
- 368 369

Cohort	Consortium member(s)	Affiliation(s)
Calcium in	Dr Pratibha	Associate Professor, Division of Nutrition, St. John's Research
Pregnancy	Dwarkanath	Institute, Bangalore
(CalPreg)	Mr John Michael	Lecturer, Department of Biostatistics, St. John's Medical College,
	Raj	Bangalore
	Dr Anura V Kurpad	Professor, Department of Physiology, St. John's Medical College, Bangalore
	Dr. Tinku Thomas	Prof and Head, Department of Biostatistics, St. John's Medical
		College, Bangalore
Interdisciplinary	Dr Ramachandran	Assistant Professor, Department of Biochemistry, Pondicherry
Group for	Thiruvengadam	Institute of Medical Sciences, Puducherry, India
Advanced	Ms Ayushi	Biostatistician, Clinical Development Services Agency,
Research on Birth Outcomes		Translational Health Science and Technology Institute, Faridabad, India.
- DBT India	Dr Rahul Jain	Project Research Scientist-I, Translational Health Science and
nitiative		Technology Institute, Faridabad, India
(GARBHINI)	Dr Nitya Wadhwa	Senior Professor, Translational Health Science and Technology Institute, Faridabad, India
	Dr Shinjini	Distinguished Professor, Translational Health Science and
	Bhatnagar	Technology Institute, Faridabad, India
Longitudinal	Dr Kalpana Basany	Professor and Head, Department of Obstetrics and Gynaecology,
ndian Family		MediCiti Institute of Medical Sciences, Hyderabad

hEalth Pilot	Dr Shailendra	Professor and Head, Department of Pharmacology, MediCiti Institute
Study	Dandge	ot Medical Sciences, SHARE INDIA, Hyderabad, India
(LIFE)	Dr Catherine L Haggerty	Professor, Department of Epidemiology, University of Pittsburgh School of Public Health USA
	Late Dr Cleareann	Associate Professor Emerita Department of Epidemiology School
	H Bunker	of Public Health. University of Pittsburgh. USA
	Dr PS Reddy	Professor of Medicine, University of Pittsburgh, USA
Maternal	Dr Giridhara R	Professor. Department of Population Medicine. College of Medicine.
Antecedents of	Babu	Qatar University, Doha, Qatar.
Adiposity and	Dr Debarati	Professor, Centre for Developmental and Lifecourse Research,
Studying	Mukherjee	Indian Institute of Public Health-Bengaluru, Public Health
Hyperglycemia		Foundation of India, Bengaluru
(MAASTHI)	Dr Deepa R	Senior Research Associate, Centre for Developmental and
		Lifecourse Research, Indian Institute of Public Health-Bengaluru, Public Health Foundation of India, Bengaluru
	Yamuna Ana	Research Associate, Indian Institute of Public Health-Bengaluru,
		Public Health Foundation of India, Bengaluru
Maternal and	Dr Manisha Nair	Chief Investigator, MaatHRI; Professor of Epidemiology and
Child Health		Population Health Research (Hon), Srimanta Sankaradeva University
Translational		of Health Sciences, Government of Assam, Guwahati, India; and
Research		Senior Research Fellow and Associate Professor, Nuffield
Initiative		Department of Population Health, University of Oxford, Oxford, UK
(MaatHRI)	Dr Saswati Sanyal Choudhury	Professor of Obstetrics and Gynaecology, Guwahati Medical College, Guwahati, Assam
Maternal	Dr Shivaprasad S	Professor of Physiology, J N Medical College, and Director-
Newborn Health	Goudar	Research, KLE Academy of Higher Education and Research,
Registry		Belagavi, India
(MNHR)-	Dr Manjunath S	Professor of Biochemistry, J N Medical College, KLE Academy of
Belagavi	Somannavar	Higher Education and Research, Belagavi, India
	Dr Sangappa M	Professor and Head, Department of Neonatology, J N Medical
	Dhaded	College, KLE Academy of Higher Education and Research,
		Belagavi, India
	Dr Avinash Kavi	Associate Professor of Community Medicine, J N Medical College, KLE Academy of Higher Education and Research Belagavi India
	Dr Deepthy M	Research Scientist and Biostatistician INMC Women's and
	Sadanandan	Children's Health Research Unit IN Medical College, KLE
	Sudahahdah	Academy of Higher Education and Research, Belagavi, India
Maternal	Dr Archana Patel	Program Director, Lata Medical Research Foundation, Nagpur, India
Newborn Health		Adjunct Faculty-Medical Research, Datta Meghe Institute of Higher
Registry		Education and Research, Sawangi, India
(MNHR)Nagpur	Dr Kunal Kurhe	Coordinator, Lata Medical Research Foundation, Nagpur, India
	Dr Prabir Kumar	Country Coordinator, Lata Medical Research Foundation, Nagpur,
	Das	India
	Dr Vaishali	Country Coordinator, Lata Medical Research Foundation, Nagpur,
	Khedikar	India
	Alka Dafare	Statistician, Lata Medical Research Foundation, Nagpur, India
Pune Maternal	Dr Chittaranjan S	Director, Diabetes Unit, KEM Hospital and Research Centre, Pune,
(DMNS)	I ajnik Dr Urmile	IIIUIA Concultant Dadiatriaian and Naonatala sist. KEM Usarital and
	Di Unillia Deshmukh	Consultant reuramician and neonatologist, KENI Hospital and Research Centre, Pune, India
Research	Dr Sadhana Iochi	Professor and Head Mother and Child Health ICMR Collaborating
Exploring	Di Sudilana JUSIII	Centre of Excellence. Interactive Research School for Health Affairs
Various Aspects		Bharati Vidyapeeth University, Pune, India
and	Dr Girija Wagh	Professor and Head, Department of Obstetrics and Gynaecology.
Mechanisms in		Bharati Hospital and Research Centre, Pune, India
Preeclampsia	Dr Sanjay Lalwani	Medical Director, Professor and Head, Dept of Paediatrics, Bharati
(REVAMP)		Hospital and Research Centre, Pune, India
	Dr Sanjay Gupte	Director, Gupte Hospital and Research Centre, Pune, India
	Dr Juhi Nema	Assistant Professor, Mother and Child Health, ICMR Collaborating

		Centre of Excellence, Interactive Research School for Health Affairs,
		Bharati Vidyapeeth University, Pune, India
Women and	Dr Ranadip	Scientist and Assistant Director, Centre for Health Research and
Infants	Chowdhury	Development, Society for Applied Studies, New Delhi, India
Integrated	Dr Rukman	Scientist, Centre for Health Research and Development, Society for
Interventions	Manapurath	Applied Studies, New Delhi, India
for Growth	Dr Sunita Taneja	Senior Scientist, Society for Applied Studies, New Delhi, India
Study	Dr Neeta Dhabhai	Senior Clinical Researcher, Society for Applied Studies, New Delhi,
(WINGS)		India
	Dr Nita Bhandari	Senior Scientist and Director, Society for Applied Studies, New
		Delhi, India
ICMR, New	Dr RM Pandey	Dr A.S. Paintal Distinguished Scientist Chair, ICMR New Delhi
Delhi	Dr Bharati Kulkarni	Scientist G, Head, Division of Reproductive, Child Health and
		Nutrition, ICMR New Delhi
	Dr Reema	Scientist E, Division of Reproductive, Child Health and Nutrition,
	Mukherjee	ICMR New Delhi

370

371 Acknowledgement

- 372 We sincerely thank the study participants for sharing valuable information and biological
- 373 samples for the conduct of this study. Additionally, each cohort team thanks the following
- 374 research staff for supporting the preparation of the harmonized dataset. We are thankful to the
- 375 primary funding agencies of the cohorts for granting permission to share the data for this
- 376 exercise.

Cohort(in	Acknowledgement
alphabetical order)	, in the second s
CalPreg	Dr. Wafaie W. Fawzi, Department of Global Health and Population, Harvard T.H. Chan School of
	Public Health, Boston, Massachusetts, USA (the primary recipient of the multicentric grant), for
	allowing the use of the India trial data for this analysis.
GARBHINI	Department of Biotechnology, Government of India for permitting to participate in the consortium
	GARBH-Ini study team (Shinjini Bhatnagar, Nitya Wadhwa, Uma Chandra MouliNatchu,
	Bhabatosh Das, Pallavi S Kshetrapal, Shailaja Sopory, Ramachandran Thiruvengadam, Sumit
	Misra, Dharmendra Sharma, Kanika Sachdeva, Amanpreet Singh, Balakrish G Nair, Satyajit Rath,
	and Vineeta Bal (Translational Health Science and Technology Institute, Faridabad, Haryana,
	India); Alka Sharma, Sunita Sharma, Umesh Mehta, and Brahmdeep Sindhu (Gurugram Civil
	Hospital, Gurugram, India); Pratima Mittal, Rekha Bharti, Harish Chellani, Rani Gera, Jyotsna
	Suri, Pradeep Debata, and Sugandha Arya (Vardhman Mahavir Medical College & Safdarjung
	Hospital, New Delhi, India); Arindam Maitra (National Institute of Biomedical Genomics,
	Kalyani, India); Tushar K Malti (Regional Centre for Biotechnology, Faridabad, India); Dinakar M
	Salunke (International Centre for Genetic Engineering and Biotechnology, New Deini, India);
	Nikini Tandon, Tashueep Gupta, Alpesh Goyal, Shiriti Hari, Aparna Sharina K, and Anuonuti Pana (All India Instituta of Modical Sciences, New Dolbi, India): Sidderth Pamii and Aniu Cara
	(Meulene Azed Medical College, New Delhi, India): Achok Khurana (The Ultresound Lab
	(Maulana Azau Medical College, New Dellii, India), Asnok Khurana (The Unrasound Lab, Defence Colony, New Delhi, India): Reva Trinathi (Sitaram Bhartia Institute of Science and
	Research New Delhi, India): Rakesh Gunta and Partha P Majumder (Government of India):
	Himanshu Sinha and Raghunathan Rengasamy (Indian Institute of Technology Madras, Chennai
	India): Vineeta Bal (Indian Institute of Science Education and Research, Pune, India): Pratima
	Mittal (Amrita Institute of Medical Sciences & Research Centre, Faridabad, India): Uma Chandra
	MouliNatchu and Harish Chellani (Center for Health Research and Development, Society for
	Applied Studies, New Delhi, India); and Ramachandran Thiruvengadam (Pondicherry Institute of
	Medical Sciences, Puducherry, India). Members listed in the supplementary)
	Mr Ashu Sharma, Technical officer-II, Translational Health Science and Technology Institute,
	Faridabad, India,
LiFE	Mr Purushotham Reddy R, Head, Information Technology, Mr Narender Konga, Data Assistant,
	and Mrs Deepa V Project Manager, MediCiti Institute of Medical Sciences, SHARE INDIA,
	Hyderabad, India
MAASTHI	Ms Suganya S, Indian Institute of Public Health-Bengaluru, PHFI
MaatHRI	Dr Tuck Seng Cheng, University of Oxford; Ms RupanjaliDeka, Srimanta Sankaradeva University
	of Health Sciences, Guwahati, and all MaatHRI site collaborators, namely; Farzana Zahir, Carolin

	Solomi V, Ashok Verma, Sereesha Rao, SaswatiSanyal Choudhury, GitanjaliDeka, Pranabika		
	Mahanta, Swapna Kakoty, Robin Medhi, Shakuntala Chhabra, Anjali Rani, Amrit Bora, Indrani		
	Roy, Bina Minzand, Omesh Kumar Bharti. Members of MaatHRI study team:		
	Manisha Nair, Farzana Zahir, Carolin Solomi V, Ashok Verma, Sereesha Rao, SaswatiSanyal		
	Choudhury, Gitanjali Deka, Pranabika Mahanta, Swapna Kakoty, Robin Medhi, Shakuntala		
	Chhabra, Anjali Rani, Amrit Bora, Indrani Roy, Bina Minz, Omesh Kumar Bharti, Rupanjali		
	Deka, Tuck Seng Cheng.		
MNHR-Belagavi	Dr N V Honnungar, Field Research Officer, JNMC Women's and Children's Health Research		
	Unit; Dr Richard J Derman, Associate Provost Global Affairs, Director Global Health Research,		
	Professor OBGYN, Thomas Jefferson University, PA USA; Dr. Elizabeth M McClure and Ms.		
	Janet Moore, RTI International, Durham, NC, USA ;Dr. Marion Koso-Thomas, <i>Eunice Kennedy</i>		
	Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA; Dr		
	Ashalata Mallapur and Dr Umesh Ramadurg, S N Medical College, Bagalkot; Medical Officers of		
	Department of Health and Family Welfare, Government of Karnataka: Dr B D Yalgudri, Dr S M		
	Vijapur, Dr Shivanand S Mulakuri, Dr Vrushbendra D Hiremath, Dr Ramkrishna Yadgude, Dr M J		
	Kumbar, Dr B N Kirankumar, Dr Salim Mujawar, Dr S G Shetter, Dr S C Mastiholi, Dr Udaya		
	Kudachi, Dr Shaheed S Gadekai, Dr S M Chavadappanavar, Dr R G Patil, Dr Harsha Patil, Dr S G		
	Kamble, Dr Prashant Gaikwad, Dr R A Makhandar, Dr S S Doddmani, Dr BapusahebPatil, Dr C S		
	Patil, Dr Sukanya Handage, Dr R S Balikai, Dr Rajashekar Mudhkamath, Dr S SSiddannavar, Dr		
	Anil S Salagure, Dr Rajendra K Kilabanur, Dr Arun V Halagatti, Dr Poornima Tallur, Dr Shridh		
	Pattar, Dr (Mrs) Kusuma Magi, Dr Vishwanath M Pattar, Dr Vikas B Parvaikar, Dr Bhagya		
	Kshatri, Dr Ashok Kuntoji; Mr. Nagaraj Khade, Mr. Sachin Mastiholi, Mr. Vinayak Mhetri, Mr.		
	Dayanand Shiroor, Mr. Kadappa Beniwadi		
MNHR Nagpur	Dr. Patricia Hibberd, Department of Global Health, Boston University School of Public		
	Health, Boston, MA, USA; Dr. Elizabeth M McClure and Ms. Janet Moore, RTI International,		
	Durham, NC, USA; Dr. Marion Koso-Thomas, Eunice Kennedy Shriver National Institute of Child		
	Health and Human Development, Bethesda, MD, USA; Officials, Department of Health and		
	Family Welfare, Government of Maharashtra, India; Ms. Smita Puppalwar, Dr. Rakesh Kukde, Dr.		
	Damodar Saliwkar, Dr.Shashank Parankar, Mr. NiteshMeshram, Lata Medical Research		
	Foundation, Nagpur, India.		
PMNS	Dr Prachi Phadke and Onkar Deshmukh, KEM Hospital and Research Centre, Pune, India		
REVAMP	Karuna Randhir, Interactive Research School for Health Affairs, Bharat Vidyapeeth University		
WINGS	Kiran Bhatia, Society for Applied Studies, New Delhi, India		

377

- 378 The ICMR-SPIC consortium would also like to thank the technical advisory group members
- 379 for their support in conceptualizing the specific objectives and statistical analysis plan for this
- 380 study.
- 381

382 Technical Advisory Group of the ICMR-SPIC consortium

Sr. No	Member name	Institution
1	Dr RM Pandey (Chairperson)	Dr A.S. Paintal Distinguished Scientist Chair, ICMR New Delhi
2	Dr Anamika Gambhir	Department of Biotechnology, Govt. of India
3	Dr Shobhna Das	Ministry of Health and Family Welfare, Govt. of India
4	Dr Rakhi Dandona	Public Health Foundation of India, New Delhi, India
5	Dr Pranay Goel	Indian Institute of Science Education and Research, Pune, India
6	Dr Rajiv Sarkar	Indian Institute of Public Health, Shillong, India
7	Col (Dr) Arun Kumar Yadav	Office of Director General of Armed Forces Medical Services in India
8	Dr K Aparna Sharma	All India Institute of Medical Sciences, New Delhi, India

383

384 **Competing interests**

385 All authors declare no conflicts of interest for this study.

386

387 Disclaimer

- 388 The authors alone are responsible for the views expressed in this paper, and they do not
- 389 necessarily represent the views, decisions, or policies of the institutions with which they are
- 390 affiliated.
- 391

392 **References:**

- 393 1 Stillbirth. https://www.who.int/health-topics/stillbirth (accessed 25 October 2024)
- Datta V, Ghosh S, Aquino LD. Progressing towards SDG 2030 goals with system changes: the India
 Newborn Action Plan. *BMJ Open Quality*. 2022;11:e001971. doi: 10.1136/bmjoq-2022-001971
- Comfort H, McHugh TA, Schumacher AE, *et al.* Global, regional, and national stillbirths at 20 weeks' gestation or longer in 204 countries and territories, 1990–2021: findings from the Global Burden of Disease Study 2021. *The Lancet*. 2024;404:1955–88. doi: 10.1016/S0140-6736(24)01925-1
- Dandona R, Kumar GA, Mahapatra T. Turning the tide with better data to address stillbirths in India. *The Lancet Regional Health Southeast Asia*. 2024;0. doi: 10.1016/j.lansea.2024.100509
- 401 5 Dandona R, Kumar GA, Akbar Md, *et al.* Deferred and referred deliveries contribute to stillbirths in the
 402 Indian state of Bihar: results from a population-based survey of all births. *BMC Medicine*. 2019;17:28. doi: 10.1186/s12916-019-1265-1
- 4046McClure EM, Saleem S, Goudar SS, et al. Stillbirth 2010–2018: a prospective, population-based, multi-
country study from the Global Network. Reproductive Health. 2020;17:146. doi: 10.1186/s12978-020-
00991-y
- 407 7 Dandona R, George S, Majumder M, et al. Stillbirth undercount in the sample registration system and national family health survey, India. Bulletin of the World Health Organization. 2023;101:191. doi: 10.2471/BLT.22.288906
- 410 8 Purbey A, Nambiar A, Choudhury DR, *et al.* Stillbirth rates and its spatial patterns in India: an exploration of HMIS data. *The Lancet Regional Health Southeast Asia*. 2023;9. doi: 10.1016/j.lansea.2022.100116
- Dandona R, Kumar GA, Kumar A, *et al.* Identification of factors associated with stillbirth in the Indian state
 of Bihar using verbal autopsy: A population-based study. *PLOS Medicine*. 2017;14:e1002363. doi: 10.1371/journal.pmed.1002363
- Lawn JE, Blencowe H, Pattinson R, *et al.* Stillbirths: Where? When? Why? How to make the data count? *The Lancet.* 2011;377:1448–63. doi: 10.1016/S0140-6736(10)62187-3
- Khosravi A, Mansournia MA. Recommendation on unbiased estimation of population attributable fraction calculated in "prevalence and risk factors of active pulmonary tuberculosis among elderly people in China: a population based cross-sectional study."*Infectious Diseases of Poverty*. 2019;8:75. doi: 10.1186/s40249-019-0587-8
- 421 12 Dandis R, Teerenstra S, Massuger L, *et al.* A tutorial on dynamic risk prediction of a binary outcome based 422 on a longitudinal biomarker. *Biometrical Journal*. 2020;62:398–413. doi: 10.1002/bimj.201900044
- Li Z, Kong Y, Chen S, *et al.* Independent and cumulative effects of risk factors associated with stillbirths in 50 low- and middle-income countries: A multi-country cross-sectional study. *eClinicalMedicine*. 2022;54. doi: 10.1016/j.eclinm.2022.101706
- 426 14 Saleem S, Tikmani SS, McClure EM, *et al.* Trends and determinants of stillbirth in developing countries:
 427 results from the Global Network's Population-Based Birth Registry. *Reproductive Health.* 2018;15:100. doi: 10.1186/s12978-018-0526-3
- 429