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Abstract 1 

Plasma protein levels provide important insights into human disease, yet a 2 

comprehensive assessment of plasma proteomics across organs is lacking. Using large-3 

scale multimodal data from the UK Biobank, we integrated plasma proteomics with organ 4 

imaging to map their phenotypic and genetic links, analyzing 2,923 proteins and 1,051 5 

imaging traits across multiple organs. We uncovered 5,067 phenotypic protein-imaging 6 

associations, identifying both organ-specific and organ-shared proteomic relations, along 7 

with their enriched protein-protein interaction networks and biological pathways. By 8 

integrating external gene expression data, we observed that plasma proteins associated 9 

with the brain, liver, lung, pancreas, and spleen tended to be primarily produced in the 10 

corresponding organs, while proteins associated with the heart, body fat, and skeletal 11 

muscle were predominantly expressed in the liver. We also mapped key protein predictors 12 

of organ structures and showed the effective stratification capability of plasma protein-13 

based prediction models. Furthermore, we identified 8,116 genetic-root putative causal 14 

links between proteins and imaging traits across multiple organs. Our study presents the 15 

most comprehensive pan-organ imaging proteomics map, bridging molecular and 16 

structural biology and offering a valuable resource to contextualize the complex roles of 17 

molecular pathways underlying plasma proteomics in organ systems.    18 
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Introduction 1 

Proteins, as the functional outputs of genes, play essential roles in biological mechanisms. 2 

Advances in high-throughput proteomics technologies, such as the Olink1 and 3 

SomaScan2 platforms now enable the profiling of thousands of plasma proteins in 4 

biobank-scale cohorts3-9, providing unprecedented insights into health4,10, aging11-15, 5 

disease16,17, and drug discovery18. Plasma proteins, originating from tissues across the 6 

body13, perform context-specific molecular roles within each organ19. Mapping the 7 

locations of these proteomic links is essential to understanding the organ-specific 8 

pathways and mechanisms through which plasma proteins relate to health and clinical 9 

outcomes. For example, brain structural phenotypes have been shown to mediate the 10 

effects of plasma levels of BCAN, NCAN, and MOG on cognitive ability20. Infection-related 11 

proteins (such as PIK3CG, PACSIN2, and PRKCB) may contribute to neurodegeneration 12 

and Alzheimer’s disease through region-specific brain volume loss21. However, a 13 

comprehensive, integrated view of plasma protein links across organs is lacking, limiting 14 

our ability to fully contextualize their roles in health and disease.  15 

 16 

Medical imaging, such as magnetic resonance imaging (MRI), provides non-invasive 17 

measures of organ structure and function22-26. Imaging-derived phenotypes (IDPs), which 18 

capture variations in tissue composition, organ morphology, and functional 19 

activity/connectivity, have been extensively linked to physiological and pathological 20 

processes in a wide range of diseases, such as heart failure27, chronic liver diseases28, 21 

Alzheimer’s disease29, and glaucoma30. Integrating IDPs with plasma proteomics holds 22 

significant potential for advancing our understanding of organ-specific proteomic biology31. 23 

However, few large-scale studies have collected both multi-organ imaging and plasma 24 

protein data within the same cohort. Similar to many omics mapping strategies of complex 25 

traits and diseases32-34, such data constraints have led existing studies to rely on separate 26 

cohorts for imaging and (prote)omics data35, limiting analyses solely to genetics-driven 27 

associations36,37. Genetic-based, separate-cohort approaches are known to face 28 

challenges35, including demographic mismatches between cohorts, which can introduce 29 

bias, and limited power to detect proteomic effects influenced by non-genetic factor, which 30 

limits the insight into mechanisms. Moreover, existing separate-cohort studies have 31 
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typically focused on single-organ or single-modality IDPs21,36,37. These limitations 1 

underscore the need for large-scale, single-cohort datasets that directly integrate multi-2 

organ imaging and proteomic data to comprehensively investigate the biological roles of 3 

proteins in each organ31. 4 

 5 

Leveraging multi-organ imaging26 and plasma protein4 data from the UK Biobank (UKB), 6 

we conducted the largest pan-organ imaging proteomics analysis to date. We mapped 7 

proteomic links across 2,923 Olink plasma proteins and 1,051 IDPs, encompassing a 8 

wide range of organs and tissues, including the brain, heart, aorta, liver, kidney, lung, 9 

pancreas, spleen, body fat, and muscle composition (average n = 4,896 participants with 10 

both imaging and protein data). We developed an atlas of phenotypic protein-imaging 11 

associations, revealing organ-specific proteomic networks and enriched biological 12 

pathways. To investigate the origins of these proteomic associations, we integrated 13 

external gene expression data38 to examine whether proteins may be produced in other 14 

organs and act remotely, or originated from the same organ. Additionally, we generated 15 

a chart for the predictive ability of plasma proteins on organ structure and function, 16 

identifying key protein profiles that strongly predict specific IDPs for each organ. Together 17 

with UKB genetic data (average n = 40,682 participants for imaging and 34,566 for protein 18 

after removing overlapping imaging subjects), we further evaluated potential genetic 19 

causal associations across organs. An overview of the study design is presented in 20 

Figure 1. 21 

 22 

RESULTS 23 

Overview of phenotypic protein-imaging associations 24 

We investigated the phenotypic associations between 2,923 plasma proteins from the 25 

UKB pharma proteomics project (UKB-PPP; Table S1) and a diverse set of brain and 26 

body IDPs. These included 258 brain structural MRI (sMRI) traits, 432 diffusion MRI 27 

(dMRI) traits, 82 brain resting-state functional MRI (fMRI) traits, 82 cardiac MRI traits, 41 28 

abdominal MRI traits, as well as 46 optical coherence tomography (OCT) and 110 fundus 29 

imaging traits of the eye (Table S2). For discovery, we used data from unrelated white 30 

British participants (average n = 4,383), with effects of age, sex, age-sex interaction, 31 
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genetic principal components, height, weight, and body mass index removed. 1 

Associations were replicated in an independent hold-out sample of white non-British 2 

individuals (average n = 513; Methods). We identified 5,067 associations that were 3 

significant in the discovery sample after Bonferroni correction (P < 1.63× 10−8 ) and 4 

remained nominally significant (P < 0.05) in the replication sample with concordant effect 5 

signs (Figs. 2A and S1, Table S3). To assess the impact of disease status on protein-6 

imaging associations, we performed sensitivity analyses by additionally adjusting for 7 

organ-related diseases (Methods). The results showed that protein effect sizes remained 8 

highly consistent between models with and without disease status adjustment, with a 9 

correlation exceeding 0.99 (Fig. S2 and Table S4). 10 

 11 

We found that plasma proteins associated with organ structure and function tended to 12 

exhibit high levels of interaction, with significant enrichment observed for all organs using 13 

the STRING protein-protein interaction (PPI) database39 (P < 7.31 × 10−3, Fig. 2B and 14 

Table S5). Since proteins often function collaboratively within biological pathways, these 15 

findings suggest the presence of proteomic modules and associated network biology 16 

within each organ. Further pathway enrichment analysis identified 1,429 enriched 17 

biological pathways40 (Fig. 2C and Table S6) after multiple testing adjustments 18 

(Methods). Some protein clusters and pathways had highly organ-specific associations, 19 

while others suggested cross-organ links. In the following sections, we highlight key 20 

proteins associated with each organ, along with the proteomic interaction networks and 21 

biological pathways they are involved in. 22 

 23 

Plasma proteomic links and enriched biological pathways in the human heart 24 

We observed numerous connections between plasma proteins and body IDPs, spanning    25 

the heart, liver, body fat, and kidney (Fig. S3). Specifically, we identified 208 proteins 26 

associated with cardiac MRI traits of the heart, particularly end-diastolic volume, end-27 

systolic volume, and stroke volume of left/right ventricles (|β| range = (0.07, 0.26), P < 28 

1.52× 10−8 ). Most (over 94%) protein-heart associations were negative, except few 29 

proteins such as IGFBP1, IGFBP2, leptin (LEP), and NTPROBNP. These positively 30 

associated proteins often serve as markers of adverse cardiac conditions. For example, 31 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2025. ; https://doi.org/10.1101/2025.01.14.25320532doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.14.25320532
http://creativecommons.org/licenses/by-nc-nd/4.0/


NTPROBNP is a well-known biomarker associated with increased cardiac filling 1 

pressures, the presence of heart failure as well as outcomes in established heart failure41. 2 

Additionally, LEP promotes oxidative stress, inflammation, and atherogenesis, linking 3 

elevated levels to cardiovascular diseases such as coronary artery disease, stroke, and 4 

diabetes-related complications42,43. Many of the identified heart-associated plasma 5 

proteins have well-known biological functions on the heart. For example, GDF15 may 6 

protect the heart by activating SMAD2/3 signaling to attenuate hypertrophy and preserve 7 

ventricular function under pathological conditions44. Plasma levels of ICAM1 and SELE 8 

were elevated in individuals with coronary heart disease (CHD) and carotid artery 9 

atherosclerosis, independently predicting the risk of both conditions, making them 10 

potential molecular markers for atherosclerosis and CHD development45.  11 

 12 

Moreover, proteins associated with the heart were enriched in various biological pathways. 13 

For example, 19 heart-associated proteins were significantly enriched in regulation of 14 

angiogenesis and vasculature development (multiple testing-adjusted40 P range = 15 

(1.53× 10−7, 1.14× 10−7), Fig. 2D). Many proteins were growth factors (such as PGF, 16 

ADM, ANGPT2) or growth factor receptors (such as KDR, ERBB2, TGFBR2, ACVRL1), 17 

which played key roles in regulating vascular development46-49. There are other heart-18 

associated proteins that were not growth factors but were also critical in angiogenesis. 19 

For example, EPHA1 promotes tumor angiogenesis by regulating endothelial 20 

tubulogenesis and recruiting endothelial progenitor cells, with its inhibition reducing tumor 21 

angiogenesis and growth50. Given the complex and multifaceted role of angiogenesis in 22 

cardiovascular diseases, these identified proteins enriched in the angiogenesis pathways 23 

could serve as biomarkers of disease state or context-specific therapeutic targets51,52. 24 

The associated cardiac MRI traits provide valuable insights into their underlying biologic 25 

pathways and mechanisms. Furthermore, heart-associated proteins were also enriched 26 

in the movement of cells or organisms in response to chemical stimuli, such as taxis, 27 

chemotaxis, and positive regulation of leukocyte migration (adjusted P range = 28 

(5.89 × 10−7 , 3.06 × 10−7 ), Figs. S4-S5). A large proportion of proteins exclusively 29 

enriched in taxis and chemotaxis were chemokines and cytokines, including CXCL10, 30 

CXCL13, CCL22, and CCL27. These proteins recruit immune cells and play critical roles 31 
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in inflammatory, infectious and immune responses53-56 and are promising therapeutic 1 

targets for multiple cancer types.  2 

 3 

We identified 12 proteins associated with cardiac MRI traits of the aorta (|β| range = (0.07, 4 

0.14), P < 1.49× 10−8, Fig. S6), primarily linked to the descending aorta. Of these, nine 5 

proteins overlapped with those associated with the heart, and most of the aorta-protein 6 

associations were also negative. Positive associations were only found with two proteins 7 

IGFBP1 and Renin (REN) (β range = (0.07, 0.08), P < 1.19× 10−8). REN, encoded by 8 

REN, is secreted by the kidney and initiates the renin-angiotensin-aldosterone system 9 

cascade, regulating blood pressure and volume. Dysregulation of this system contributes 10 

to cardiovascular and renal disorders, making renin an important therapeutic target57. 11 

 12 

Shared proteomic associations and systemic processes in abdominal organs  13 

In addition to the heart, we found many associations between plasma proteins and IDPs 14 

of the liver, body fat, and kidney, with these four organs/tissues showing the highest 15 

proportion of overlapping associated proteins among all the organs examined (Fig. 2A). 16 

Plasma proteins shared by these organs widely participate in systemic processes such 17 

as metabolic regulation, inflammation, and vascular health, highlighting potential targets 18 

for understanding systemic diseases and multi-organ interactions.  19 

 20 

We identified 270 proteins associated with the liver (|β| range = (0.08, 0.25), P range = 21 

(1.61× 10−8, 6.62× 10−67)), primarily linked to liver volume, fat fraction, and liver iron-22 

corrected T1 (a marker of inflammation and fibrosis). Proteins associated with liver 23 

volume differed from those linked to fat fraction, inflammation, and fibrosis, with limited 24 

overlap, suggesting that these processes are driven by distinct molecular mechanisms. 25 

Liver-associated proteins enriched in many biological pathways. In addition to those 26 

shared with heart, such as chemotaxis and leukocyte migration, proteins associated with 27 

the liver were also enriched in the regulation of plasma lipoprotein particle levels (adjusted 28 

P = 5.36 × 10−5 , Fig. 2E) and cholesterol/sterol transport (adjusted P = 0.02), 29 

underscoring the liver’s central role in lipid metabolism. Many of the involved proteins, 30 

such as LCAT, FGF21, APOA2, and FURIN, are produced by the liver and are key 31 
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regulators of lipid metabolism. For example, LCAT is essential for cholesterol transport, 1 

promotes the formation of high-density lipoprotein, potentially reducing atherosclerosis58. 2 

Reduced LCAT activity has also been observed in individuals with liver disease59. FGF21 3 

is critical for maintaining energy balance, regulating glucose and lipid metabolism, and 4 

shows promise in treating obesity, type 2 diabetes, and non-alcoholic steatohepatitis60. 5 

Additionally, liver-associated proteins were uniquely enriched in pathways related to viral 6 

processes and the viral life cycle (Fig. S7). Many of these proteins act as viral entry 7 

receptors or facilitate viral invasion, including ICAM1, a receptor for human rhinovirus61; 8 

ACE2 and NRP1, which serve as receptors for SARS-CoV-262,63, and FURIN, which 9 

cleaves the SARS-CoV-2 spike protein to enable host cell entry64. CTSL further supports 10 

viral invasion by activating SARS-CoV spike protein-mediated membrane fusion under 11 

acidic conditions65.  12 

 13 

We identified 214 proteins associated with body fat (|β| range = (0.08, 0.37), P range = 14 

(1.52 × 10−8 , 8.90 × 10−160 )), predominantly linked to visceral adipose tissue (VAT) 15 

volume and total trunk fat volume. Similar with the liver-associated proteins, body fat-16 

associated proteins were also enriched in biological pathways related to lipid metabolism, 17 

including the regulation of plasma lipoprotein particle levels (adjusted P = 3.68× 10−7), 18 

with substantial overlap with liver. Beyond the liver-derived proteins mentioned earlier, 19 

additional examples include adiponectin (ADIPOQ) and LPL. ADIPOQ, primarily 20 

produced by adipocytes, promotes fatty acid oxidation and improves insulin sensitivity66. 21 

LPL hydrolyzes triglycerides in chylomicrons and very low-density lipoprotein into fatty 22 

acids for cellular uptake, with reduced activity observed in poorly controlled diabetes67. 23 

These findings suggest the crucial roles of the liver and body fat in systemic lipid 24 

regulation and their metabolic interactions with other tissues and diseases. Furthermore, 25 

the kidney had the highest number of associations with plasma proteins among all organs, 26 

with 439 proteins linked to kidney parenchyma and kidney volume (|β| range = (0.08, 27 

0.38), P range = (1.57× 10−8, 4.33× 10−167)). Nearly all (98.98%, 1,751 out of 1,769 28 

associated pairs) these associations were negative. In addition, 11 proteins were 29 

associated with the lung (|β| range = (0.08, 0.17), P < 1.53× 10−8), many of which were 30 

shared with the heart, liver, and body fat as well (Fig. 2A).  31 
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 1 

Organ-specific proteomic associations with the pancreas and spleen 2 

In contrast to the abdominal organs and tissues with many shared proteomic links, the 3 

majority of proteins associated with pancreas and spleen were specific to these two 4 

organs (Fig. 2A). We observed 26 proteins associated with pancreas fat fraction and 5 

volume (|β| range = (0.08, 0.34), P range = (8.95× 10−9, 1.35× 10−136), Fig. S8). These 6 

proteins had a high degree of interaction, with a mean PPI score of 0.22 (enrichment P < 7 

2.2 × 10−16 ), and were enriched in digestion-related biological pathways (Fig. 2F). 8 

Enriched proteins include pancreatic amylases AMY2A and AMY2B, which facilitate 9 

carbohydrate breakdown, and lipases such as PNLIP and PNLIPRP1, which digest 10 

triglycerides into free fatty acids and monoglycerides. Additionally, proteins such as 11 

CTRB1, CTRL, and CPA1 were proteases involved in protein digestion. In addition to 12 

digestion, pancreas-associated proteins also enriched in biological pathways related to 13 

insulin response. Proteins such as IGFBP2, GHR, and PLA2G1B have been linked to 14 

insulin sensitivity and implicated in the regulation of insulin signaling in preclinical studies 15 

and animal models68-70. These findings highlight the critical roles of pancreas in producing 16 

enzymes required for nutrient breakdown and regulating systemic insulin sensitivity and 17 

metabolic responses through these pancreas-associated proteins.  18 

 19 

Moreover, 113 proteins associated with spleen volume (|β| range = (0.08, 0.39), P range 20 

= (1.61× 10−8, 4.64× 10−145)). These proteins had enriched interaction (mean PPI score 21 

= 0.12, enrichment P < 2.2× 10−16) and pathway enrichment analysis underscored the 22 

spleen’s role in modulating both innate and adaptive immunity. Spleen-associated 23 

proteins were significantly enriched in the regulation of leukocyte-mediated immunity 24 

(adjusted P = 1.43 × 10−16 ) and lymphocyte-mediated immunity (adjusted P = 25 

6.67× 10−15, Fig. 2G). These proteins play diverse roles in immune activation, migration, 26 

and function, particularly involving T cells, B cells, and natural killer (NK) cells. For 27 

example, LAG3 functions as an immune checkpoint to prevent T cell overactivation and 28 

maintain immune homeostasis71. IL12B and TNF were pro-inflammatory cytokines that 29 

regulate T cell and NK cell activity72,73, while ICAM1 mediate leukocyte adhesion to 30 

endothelial cells74. In addition, CR1 and CR2 modulate B cell activation and are implicated 31 
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in autoimmune diseases such as systemic lupus erythematosus and rheumatoid 1 

arthritis75,76.  2 

 3 

Plasma proteomic insights into the brain and eye 4 

We identified 33 plasma proteins that were associated with global and regional brain 5 

volumes measured by brain sMRI. These proteins were widely enriched in biological 6 

pathways that were crucial to neural development and nervous system function, such as 7 

axonogenesis, axon guidance, synapse maturation, and neuron projection guidance 8 

(adjusted P < 0.046). Most of these proteins were linked to total brain volume, white 9 

matter volume, and gray matter volume (|β| range = (0.08, 0.24), P < 1.55× 10−8). Some 10 

of them were also linked to volumes of localized regions. For example, increased level of 11 

NCAN and BCAN were associated with increased volumes of the limbic regions, such as 12 

frontal pole, insular cortex, hippocampus, and amygdala (β range = (0.11, 0.19), P range 13 

= (1.27× 10−14, 6.75× 10−40)). NCAN and BCAN were highly interacted proteins (PPI 14 

score = 0.96, Fig. S9). They are both chondroitin sulfate proteoglycans, key components 15 

of the extracellular matrix and are enriched in critical pathways such as the perineuronal 16 

net, perisynaptic extracellular matrix, and synapse-associated extracellular matrix 17 

(adjusted P < 0.03). The links between NCAN and BCAN and brain volumes were 18 

reported before and were associated with cognitive ability20. Additionally, elevated level 19 

of MOG and SLITRK1 were also associated with higher volumes of limbic system for 20 

emotion regulation, such as the frontal pole, thalamus, insular cortex, hippocampus, and 21 

amygdala (β range = (0.11, 0.18), P range = (4.55× 10−10, 4.18× 10−32)). SLITRK1 is 22 

highly expressed in the brain and regulates excitatory synapse formation and neural 23 

connectivity, particularly in hippocampal neurons77. It was also implicated in the 24 

pathogenesis of Tourette syndrome78,79 and has been found in schizophrenia patients80. 25 

MOG was expressed exclusively in central nervous system (CNS) myelin81 and can cause 26 

myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) when it was 27 

attacked by the immune system. Brain structural and functional changes have been 28 

reported in individuals with MOGAD, including gray matter atrophy of frontal and temporal 29 

lobe, insula, thalamus, and hippocampus82. Most of the observed associations between 30 

brain volumes and plasma proteins were positive, with only few exceptions such as SOST, 31 
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FABP3, GDF15, and LEP, whose increased levels in plasma associated with decreased 1 

volume of certain brain regions.  2 

 3 

Six proteins were associated with white matter microstructural measures of brain dMRI, 4 

with two (BACN and NCAN) demonstrating overlap with sMRI. Additional proteins include 5 

AHSP, GFAP, OMG, and TF (|β| range = (0.08, 0.13), P < 1.45× 10−8, Fig. S10). Notably, 6 

over 70% of the dMRI-protein associations (26 out of 37) involved GFAP, which showed 7 

broad associations with multiple white matter tracts (|β| range = (0.08, 0.13), P < 8 

1.37× 10−8). GFAP, a key astrocyte protein, regulates CNS homeostasis and astrocyte 9 

responses to stress and neurological disease83. Blood GFAP levels serve as a sensitive 10 

biomarker for CNS injuries and diseases, aiding in diagnosis, severity assessment, and 11 

prognostication in conditions such as traumatic brain injury and multiple sclerosis84. 12 

These dMRI-associated proteins were enriched in pathways that were critical for the 13 

formation, maintenance, and functional integrity of brain white matter, including glial cell 14 

differentiation, positive regulation of neurogenesis, nervous system development, and 15 

neuroblast proliferation (adjusted P < 0.046, Fig. S11). No significant associations were 16 

found between plasma proteins and brain resting state fMRI traits with the conservative 17 

Bonferroni correction. With a less stringent false discovery rate correction (P < 18 

9.33× 10−4), several plasma proteins were identified as likely being associated with fMRI 19 

functional activity traits (|β| range = (0.04, 0.07), P < 9.11× 10−4, Fig. S12), with IGFBP2 20 

emerging as a key protein linked to multiple networks (|β| range = (0.04, 0.06), P < 21 

5.89× 10−4). 22 

 23 

Eye OCT measures of the retina, a component of the CNS closely connected to the 24 

brain85, showed substantial associations with plasma proteins. Specifically, 93 plasma 25 

proteins linked to the average thickness of ganglion cell-inner plexiform layer (GCIPL, |β| 26 

range = (0.08, 0.12), P < 1.52× 10−8) and the retinal nerve fiber layer (RNFL, |β| range = 27 

(0.08, 0.13), P < 1.54× 10−8). Some of these proteins have been highlighted in previous 28 

eye research. For example, SOD1 deficiency leads to oxidative stress, resulting in retinal 29 

pigment epithelial damage and features of age-related macular degeneration86. Similarly, 30 

CA1 regulates intraocular pressure by influencing aqueous humor production and has 31 
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been implicated in glaucoma87. Most of the eye OCT-associated proteins (87 of 93, over 1 

94%) were specific to the eye, with minimal overlap observed with other organs. Most 2 

proteins were positively associated with GCIPL thickness and negatively associated with 3 

RNFL thickness, except for OMG, which showed the opposite effect and was also the 4 

only plasma protein shared between eye OCT traits and brain IDPs. In addition, 39 5 

proteins are associated with eye fundus images features (|β| range = (0.07, 0.10), P < 6 

1.62× 10−8 , Fig. S13). The majority (27/39) of these proteins overlapped with those 7 

associated with eye OCT measures, emphasizing the shared proteomic links of these 8 

ocular imaging traits. 9 

 10 

Tracing the putative origins of proteomic effects on imaging traits 11 

Plasma proteins are produced by various organs and tissues throughout the body. 12 

Understanding the origins of the identified proteomic effects on IDPs can provide deeper 13 

insights into their biological roles and cross-organ interactions, particularly when proteins 14 

related to one organ imaging trait may originate from another. The putative origins and 15 

organ-specific plasma proteins can be inferred using external organ/tissue-specific RNA 16 

sequencing data38. Specifically, plasma proteins can be considered organ-specific13-15 if 17 

their gene expression in a particular organ is at least four times higher than in any other 18 

organ19. Following this definition, 19% of plasma proteins (557 out of 2,923) could be 19 

traced back to a single organ, accounting for 28% of the identified phenotypic protein-20 

imaging associations (1,415 out of 5,067). For each organ, we evaluated whether the 21 

identified imaging-associated proteins were enriched among these organ-specific plasma 22 

proteins (Table S7). We found that, in some organs, proteins linked to imaging traits were 23 

enriched in the set of highly expressed genes from the same organ. Conversely, in other 24 

cases, imaging-associated proteins in one organ were enriched in genes highly 25 

expressed in a different organ (Figs. 3A-3B). This raises the possibility of distant biologic 26 

effects, although alternative explanations exist. For example, these relationships may 27 

result from organ cross-talk through other mechanisms (neurogenic) or reflect 28 

overarching causative factors affecting imaging traits in one organ and protein expression 29 

in a different organ without a direct biologic effect the identified proteins across organs. 30 

The overall enrichment patterns are detailed below. 31 
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 1 

Proteins associated with IDPs of the brain (both sMRI and dMRI), liver, pancreas, spleen, 2 

body fat, and lung were significantly enriched among genes highly expressed in the same 3 

organ (enrichment P < 6.95× 10−4). For example, 4 of the 6 dMRI-associated proteins 4 

(BCAN, NCAN, GFAP, and OMG) had high gene expression in the brain (enrichment P 5 

= 4.40× 10−7), and 10 of the 33 sMRI-associated proteins were also defined to be brain-6 

specific (enrichment P = 1.52× 10−8, Fig. 3C). These plasma proteins, likely originating 7 

from brain tissues, play specialized roles in brain structure and function83,88. Similarly, 25 8 

of the 271 liver-associated proteins were highly expressed in the liver (enrichment P = 9 

2.54× 10−9, Fig. 3D), almost all of which are known to be primarily produced in the liver 10 

(such as LCAT58 and FGF2160) and involved in key liver functions such as detoxification, 11 

metabolism, lipid transport, and blood coagulation. Among pancreas-associated proteins, 12 

15 of the 26 were pancreas-specific (such as AMY2A, AMY2B, PNLIP, and PNLIPRP1, 13 

enrichment P = 0, Fig. 3E), reflecting the pancreas’s specialized role in digestion. Similar 14 

enrichment patterns were also observed on spleen, body fat, and lung (enrichment P < 15 

6.95 × 10−4 , Figs. 3F-H and Supplementary Note). Together, these findings 16 

demonstrate that proteins phenotypically associated with specific organs often have high 17 

organ-specific gene expression, highlighting their specialized roles in maintaining organ 18 

structure and function. 19 

 20 

While many proteins associated with imaging data of specific organs are highly expressed 21 

in those same organs, some are predominantly expressed in other organs. Specifically, 22 

significant enrichments were observed among proteins produced in the liver, adipose 23 

tissue, and kidney (Figs. 3A), reflecting more interconnected, multi-organ regulatory 24 

mechanisms. Specifically, 19 heart-associated proteins (enrichment P = 2.80× 10−7) and 25 

33 body fat-associated proteins (enrichment P = 0) were highly expressed in the liver, 26 

reflecting its systemic regulatory role across multiple physiological processes (Figs. 3I-27 

3J). Many of these liver-produced heart-associated proteins (such as F7, F9, FGA, 28 

SERPIND1, and CFB) are crucial to thrombosis and maintaining heart health. For 29 

example, F7 is a coagulation factor that promotes thrombosis. It is also associated with 30 

coronary artery disease, which is strongly influenced by cholesterol and triglyceride 31 
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levels89. Specific genetic variants of F7 were associated with lower F7 levels and lower 1 

risk of myocardial infarction90. Another coagulation factor, F9, was a risk factor of deep 2 

venous thrombosis91, and F9 activation was showed in patients with acute coronary 3 

syndromes92. Higher levels of F9 have been observed in obese individuals93. SERPIND1 4 

has protective effect on atherosclerosis and restenosis94. Additionally, liver-produced 5 

body fat-associated proteins, such as FGF21 and IGFBP2, are involved in energy balance, 6 

and lipid and glucose metabolism60,95. These findings suggest the connection between 7 

liver-produced proteins and their links to cardiovascular and metabolic regulation, 8 

highlighting the liver’s pivotal role in heart health and systemic metabolism. 9 

 10 

Moreover, many proteins associated with body muscle, liver, and heart were produced in 11 

the adipose tissue, such as CD300LG, FABP4, LEP, and ADIPOQ (enrichment P < 12 

1.18× 10−4, Figs. 3K-3L). These proteins tend to have pleiotropic roles across various 13 

biological processes. FABP4, secreted by adipocytes, is implicated in cardiometabolic 14 

risk, atherosclerosis, coronary artery disease, and cardiac dysfunction, serving as both a 15 

potential biomarker and a contributor to cardiac metabolism96. It also serves as a 16 

predictive marker for the progression of nonalcoholic fatty liver disease to nonalcoholic 17 

steatohepatitis, indicating patients at higher risk of liver disease complications97. LEP, 18 

primarily produced by adipose tissue, plays a key role in regulating cardiac metabolism, 19 

preventing cardiac lipotoxicity, and is associated with various cardiovascular 20 

complications. Furthermore, it plays a crucial role in liver health by preventing lipid 21 

accumulation and facilitating lipid mobilization98. These findings highlight the systemic 22 

influence of adipose-derived proteins in coordinating metabolic and physiological 23 

processes across organs, emphasizing the interconnected roles of adipose tissue in 24 

maintaining whole-body homeostasis. Additionally, one aorta-associated protein, REN, 25 

was produced by the kidney. REN activates the renin-angiotensin system, with 26 

angiotensin II causing blood vessel constriction and increasing blood pressure, which 27 

places additional strain on the aorta. This highlights the kidney's indirect yet critical 28 

influence on aortic health via protein regulation99. 29 

 30 

Organ-wise chart of proteomic prediction accuracy and key predictors 31 
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Given the strong associations between plasma proteins and whole-body IDPs, we 1 

assessed their combined predictive power for organ structure and function and identified 2 

the top-ranked proteins for IDP prediction. Using an elastic-net model, we resampled half 3 

of the subjects for training and testing, repeated this process 200 times, evaluated the 4 

mean prediction R-squared (𝑟2) of plasma proteins for IDPs, and selected the top robust 5 

predictors16 (Methods). Abdominal MRI traits showed the highest predictive power, 6 

particularly for body fat IDPs (median 𝑟2 range = (0.45, 0.55), Fig. 4A). The full set of 7 

2,923 proteins generally outperformed the subset of 557 organ-specific proteins (i.e., 8 

proteins whose genes are highly expressed in a specific organ) in predicting IDPs across 9 

all organs (Fig. S14). Nevertheless, we observed that the top-ranked predictors for IDPs 10 

of the brain, body fat, liver, pancreas, and lungs were predominantly organ-specific 11 

proteins corresponding to those respective organs. Below we highlight the IDPs for which 12 

plasma proteins demonstrated high predictive power. Complete results, including 13 

prediction performance and top five predictors for each IDP, are provided in Table S8. 14 

 15 

The highest predictive power was observed for abdominal MRI traits (median 𝑟2 range = 16 

(0.10, 0.55), Fig. S15). For some organs and tissues, including body fat, liver, pancreas, 17 

and lung, top protein predictors for related IDPs were primarily organ-specific. This makes 18 

the prediction power of the full set of plasma proteins similar to that of the subset primarily 19 

expressed in these organs. Among these, body fat traits showed the highest prediction 20 

accuracy, particularly for total trunk fat volume, total abdominal adipose tissue index, and 21 

abdominal fat ratio (𝑟2 range = (0.57, 0.61), Figs. 4B and S16-S17). Key predictors, such 22 

as FABP4 and LEP, which are primarily secreted by adipose tissue, consistently and 23 

strongly predicted all body fat imaging traits with high power. CLMP and CFH also 24 

demonstrated strong predictive power for body fat. CLMP is involved in adipocyte 25 

differentiation and linked to the progression of obesity100. Plasma proteins also showed 26 

strong prediction performance for liver IDPs. Among these, liver volume had the highest 27 

prediction power (𝑟2 = 0.34), with top predictors, such as SEZ6L and VWC2L, primarily 28 

expressed in the brain (Fig. S18). Additionally, plasma proteins effectively predicted liver 29 

inflammation and fibrosis (𝑟2 = 0.20, Fig. S19), with key predictors, such as APOF and 30 

SERPINA6, predominantly expressed in the liver. APOF regulates hepatic lipoprotein 31 
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metabolism by enhancing low-density lipoprotein triglyceride release and promoting the 1 

clearance of lipoprotein remnants and is associated with hepatic steatosis101. For 2 

pancreas IDPs, plasma proteins predicted pancreas volume and pancreas fat fraction 3 

with moderate power (𝑟2  range = (0.15, 0.17)). Top predictors for pancreas volume 4 

included PLA2G1B, CELA2A, and KIRREL2 (Fig. 4C), all primarily produced in the 5 

pancreas. PLA2G1B and CELA2A, produced by pancreatic acinar cells, are involved in 6 

digesting dietary proteins and phospholipids and are linked to insulin sensitivity70,102. 7 

KIRREL2, primarily expressed in pancreatic beta cells, may play a role in beta cell 8 

function and pancreas development103. For pancreas fat fraction, PLA2G1B was also the 9 

strongest predictor. Additionally, LEP and FABP4, which were key predictors for body and 10 

visceral fat, showed strong predictive power for pancreas fat fraction as well (Fig. S20). 11 

In the lung, the strongest predictor of lung volume was AGER, which is highly expressed 12 

in lung tissue. Together with other key proteins such as NCAN, LEP, ENG, and CD93, 13 

plasma proteins predicted lung volume with a prediction 𝑟2 of 0.19 (Fig. S21). 14 

 15 

Plasma proteins also show strong predictive power for IDPs of body muscle, spleen, and 16 

kidney, despite the genes of top predictors not being highly expressed in these 17 

corresponding organs. Among these, spleen volume showed the highest predictive power 18 

( 𝑟2  = 0.45), with top predictors including VCAM1, CRLF1, SEMA7A, PTPRH, and 19 

WFIKKN1 (Fig. S22). Many of these proteins are key players in inflammation and immune 20 

responses. For example, VCAM1 regulates leukocyte adhesion to blood vessel walls and 21 

their passage through the endothelial layer104, while SEMA7A, expressed on activated T 22 

cells, stimulates macrophages to produce proinflammatory cytokines, driving 23 

inflammatory immune responses105. For body muscle, weight-to-muscle ratio and muscle 24 

fat infiltration had the highest predictive power (𝑟2 range = (0.35, 0.44), Figs. S23-S25). 25 

Key proteins such as CLMP, ART3, and RGMA consistently predicted multiple muscle-26 

related traits. Notably, CLMP also demonstrated strong predictive power for body fat traits, 27 

highlighting its dual role in muscle and fat-related processes. Similarly, LEP and FABP4, 28 

both key predictors of body fat traits, also strongly predicted muscle traits like muscle fat 29 

infiltration in the posterior thigh and weight-to-muscle ratio, further emphasizing the 30 

overlap in proteins driving fat and muscle composition. Additionally, plasma proteins also 31 
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showed robust predictive ability for kidney IDPs, particularly kidney parenchyma volume 1 

and kidney volume (𝑟2 range = (0.24, 0.35), Figs. S26-S27). Top predictors for kidney 2 

traits included SPOCK1, VWC2L, and LRTM2, which are highly expressed in the brain, 3 

and CYTL1, which is highly expressed in the aorta. 4 

 5 

Similar to the kidney, specific proteins highly expressed in the brain also dominate the 6 

prediction of MRI traits of the heart and aorta. Heart IDPs with the highest predictive 7 

performance include myocardial mass and ventricular end-diastolic volumes (both left and 8 

right) as well as global left ventricular myocardial-wall thickness at end-diastole (𝑟2 range 9 

= (0.18, 0.24), Fig. S28). For the aorta, IDPs with high predictive power were related to 10 

the descending aorta, particularly descending aorta minimum and maximum areas (𝑟2 = 11 

0.11). SEZ6L and VWC2L, highly expressed in the brain, consistently predicted IDPs of 12 

multiple organs, including left ventricular myocardial mass and end-diastolic volumes, as 13 

well as liver volume, emphasizing their significance across multiple systems (Figs. 4D 14 

and S29-S32). Notably, predictors for left ventricular myocardial-wall thickness differed 15 

from those of other IDPs. Top predictors for left ventricular myocardial-wall thickness 16 

include CCN3, REN, and CHGB (Fig. S33), many of which are involved in cardiac 17 

remodeling and hypertrophy. For example, REN activates the renin-angiotensin system 18 

and contributes to left ventricular hypertrophy99. Similarly, CCN3-deficient mice exhibit 19 

septal thickening, hypertrophic cardiomyopathy, and ventricular dilation, highlighting 20 

CCN3's role in regulating myocardial-wall thickness and maintaining overall heart 21 

health106. Additionally, CHGB plays a critical role in catecholamine secretion, and genetic 22 

variations in CHGB have been associated with increased risks of hypertension107, which 23 

likely contribute to the relationship between CHGB and left ventricular myocardial-wall 24 

thickness. 25 

 26 

Among brain IDPs, relatively high predictive performance was observed for global 27 

measures, including total brain volume, white matter volume, and grey matter volume (𝑟2 28 

range = (0.08, 0.10)). Many top predictors (such as MOG, PTPRR, and NCAN) were 29 

highly expressed in the brain (Figs. 4E and S34-S36). These proteins, along with other 30 

strong predictors such as KLK6, GFRA3, and SLITRK1, were associated with structural 31 
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brain IDPs and contributed to brain structure, function, or development. Regional brain 1 

volumes generally had smaller prediction power than global ones. For example, plasma 2 

proteins predicted volumes of the cerebellum VIIIa/VIIIb, insular cortex, thalamus, 3 

amygdala, and hippocampus with moderate accuracy (𝑟2 range = (0.03, 0.05)). NCAN, 4 

MOG, and BCAN, highly expressed in the brain, were the strongest predictors for these 5 

regions, except for the cerebellum (Figs. 4F and S37-S39). In contrast, protein predictors 6 

for cerebellum volumes differed and varied slightly across subregions. GDF15 and LEP 7 

consistently predicted the volumes of both left and right cerebellum VIIIa/VIIIb (Fig. S40). 8 

LEP influences neural activity in the posterior cerebellum, modulating brain responses to 9 

food-related stimuli and food intake-related plasticity108. More results for brain dMRI and 10 

eye are summarized in the Supplementary Note and Figures S41-S47. For example, 11 

one of the top predictors of brain dMRI was APCS (Fig. S46), which produced exclusively 12 

in the liver and has been linked to neurodegenerative diseases (such as Alzheimer's 13 

disease) when it appears in the brain due to compromised blood-brain barrier integrity. 14 

APCS is cytotoxic to cerebral neurons, promotes Aβ amyloid formation, highlighting an 15 

inter-organ proteomic relationship in disease pathology109,110. 16 

 17 

Stratification capability of plasma protein prediction models 18 

The developed plasma protein-based prediction models for IDPs can be used to stratify 19 

individuals with abnormal organ structure and function without requiring actual imaging 20 

data. Such applications take advantage of the greater accessibility of blood-based 21 

measurements compared to imaging modalities like whole-body MRIs. In this section, we 22 

evaluated the stratification capability by calculating the ratio of true IDP values between 23 

the top and bottom 10% of protein-predicted IDP deciles111. Consistent with the cohort-24 

level prediction accuracy, IDPs related to body organ fat and visceral fat exhibited the 25 

highest individual-level stratification ratios. The largest difference was observed for VAT, 26 

where the true VAT volume in the top 10% of protein-predicted VAT was over four times 27 

higher than in the bottom 10% (Fig. 4G). This demonstrates that plasma proteins-trained 28 

computational models can effectively stratify individuals with high VAT volumes. Other 29 

body fat traits, such as total trunk fat volume and total abdominal adipose tissue index, 30 

also showed substantial stratification (median ratio > 3.5, Fig. S48). Stratifications were 31 
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similarly effective for organ-associated fat volumes, such as liver fat fraction and pancreas 1 

fat fraction (median ratio > 2.8, Fig. S49).  2 

 3 

Plasma protein prediction models also effectively stratify volumetric traits of multiple 4 

organs, with spleen volume exhibiting the highest stratification ratio (median ratio > 2.6, 5 

Fig. S50). Stratification for other organ volumes, including the kidney, liver, lung, and 6 

pancreas, showed consistent patterns (median ratio > 1.4, Fig. S51). For cardiac MRI 7 

traits, left ventricle end-diastolic volume, left ventricular myocardial mass, and right 8 

ventricle end-systolic volume had modest stratification (median ratio > 1.3, Fig. S52). For 9 

brain IDPs, both global volumes such as cerebral white matter (median ratio > 1.12, Fig. 10 

S53) and regional volumes such as the amygdala and insular cortex (median ratio > 1.07, 11 

Fig. S54) demonstrated stratification capability. Importantly, we found that the 12 

stratification performance is generally robust over time. Due to the UKB data collection 13 

procedures, plasma samples and imaging scans were collected at different visits, with a 14 

gap of 3 to 17 years between collections depending on the individual. We found that this 15 

time gap has only a minor impact on stratification performance, as illustrated by body and 16 

visceral fat traits (Fig. S55) and kidney and lung volumes (Fig. S56). Overall, plasma 17 

protein-based stratification is particularly valuable for whole body images that are not 18 

routinely accessible in healthy large-scale cohorts. Computational models with plasma 19 

protein levels from blood samples provide a promising tool for evaluating the health of 20 

organs and their specific regions.  21 

 22 

Genetic-root putative causal links between plasma proteins and imaging traits  23 

Mendelian randomization (MR) analysis was performed to identify plasma proteins with 24 

genetic-driven putative causal links to IDPs (Methods). We tested 2,856 proteins using 25 

their cis-protein quantitative trait loci (pQTL) variants with inverse variance weighted112 26 

and Wald-ratio methods113,114 (Table S9). To ensure robustness, several sensitivity 27 

tests115 were performed to validate the MR assumptions, and colocalization analysis33 28 

were further conducted to identify protein-imaging pairs sharing causal variants (Table 29 

S10). After Bonferroni correction (P < 2.98× 10−8) and excluding results that did not pass 30 

sensitivity tests, we identified 8,116 significant protein-IDP genetic causal pairs involving 31 
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318 proteins and 1,041 IDPs, with 448 of these pairs (98 proteins and 334 IDPs) showing 1 

PPH4 > 80% in the colocalization analysis (Fig. 5A). The MR associations of these 318 2 

proteins were broadly shared across organs, with 250 influencing more than one IDP (Fig. 3 

5B). These findings indicate that genetic-driven proteomic links are often pleiotropic, 4 

affecting multiple organs. Below we report the overall patterns and highlight key 5 

genetically causal plasma proteins for each organ. 6 

 7 

Plasma proteins demonstrated extensive MR associations with brain IDPs, including 8 

regional brain volumes, white matter microstructure, and fMRI traits. Such strong MR 9 

association power resulted in the identification of numerous enriched biological 10 

pathways40 in the brain (Fig. 5C and Table S11). Approximately 60% of the identified 11 

proteins (over 190) exhibited genetic causal links to brain sMRI and dMRI IDPs (|β| range 12 

= (0.01, 0.67), P < 2.98× 10−8), with 140 proteins affecting both modalities. Two examples 13 

of overlapping proteins are GRN and CTSB. Elevated GRN level was linked to increased 14 

thalamus volumes (β range = (0.12, 0.13), P < 3.12× 10−10, PPH4 range = (98.52%, 15 

99.21%), Fig. S57) and reduced mean orientation dispersion index in the fornix cres and 16 

stria terminalis (β = -0.15, P = 6.32× 10−12, PPH4 = 97.53%, Fig. S58). Elevated CTSB 17 

level was associated with reduced grey matter volume in the left inferior frontal gyrus pars 18 

opercularis (β = -0.09, P = 3.70× 10−39, PPH4 = 80.00%, Fig. S59) and impaired white 19 

matter integrity in uncinate fasciculus, anterior corona radiata, and cingulum 20 

hippocampus tracks (β range = (-0.10, -0.08), P range = (3.09× 10−32, 1.20× 10−37)). 21 

Both GRN and CTSB are known therapeutic targets for neurodegenerative diseases such 22 

as Alzheimer’s disease and frontotemporal dementia116,117. We provide more examples 23 

regarding BCAN, OMG, FOXO1, PCDH7 in the Supplementary Note and Figures 6A 24 

and S60-S66. In addition, although plasma proteins showed no phenotypic associations 25 

with fMRI traits, genetic causal relationships were observed for both functional activity (94 26 

proteins, |β| range = (0.01, 0.57), P < 2.95× 10−8) and functional connectivity measures 27 

(38 proteins, |β| range = (0.02, 0.60), P < 2.73× 10−8). For example, APOE had a genetic 28 

causal link with functional activity (amplitude) in the default mode and central executive 29 

networks (β = 0.06, P = 5.40 × 10−9 , PPH4 = 99.71%, Fig. 6B). APOE is a well-30 
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documented genetic risk factor for Alzheimer's disease, with the ε4 allele increasing risk 1 

by impairing Aβ clearance and promoting aggregation, contributing to Aβ pathology118. 2 

 3 

Among non-brain organs, plasma proteins had the strongest causal relationships with the 4 

heart and aorta (|β| range = (0.01, 0.59), P < 2.94× 10−8). A total of 114 plasma proteins 5 

(104 for heart and 37 for aorta) were identified to have MR associations with cardiac MRI 6 

traits, primarily involving end-diastolic/systolic volumes and ascending/descending aorta 7 

features. For example, increased level of FGF5 was causally associated with larger 8 

ascending aorta maximum area and minimum area (β = 0.05, P < 3.81× 10−11, PPH4 9 

range = (98.72%, 99.26%), Figs. 6C and S67). FGF5 promotes angiogenesis in human 10 

aortic endothelial cells by enhancing vascular sprouting119 and has been linked to 11 

hypertension risk across multiple ethnicities in genetic studies120,121. Elevated levels of 12 

CILP were causally linked to a reduced left atrium ejection fraction (β = -0.11, P = 13 

9.10× 10−10, PPH4 = 98.26%, Fig. 6D). CILP plays a key role in extracellular matrix 14 

remodeling and serves as a marker for cardiac fibrosis122,123. EFEMP1, another protein 15 

critical for maintaining ECM structure, was positively associated with right atrium stroke 16 

volume (β = 0.14, P = 2.41× 10−10, PPH4 = 93.57%, Fig. S68). EFEMP1 promotes proper 17 

scar formation after myocardial infarction, preventing cardiac rupture124. Additionally, 18 

elevated level of PDE5A was causally associated with increased right ventricular end-19 

diastolic volume and stroke volume (β range = (0.12, 0.15), P range = (1.84× 10−33, 20 

2.83× 10−74 ), PPH4 range = (89.37%, 92.62%), Fig. S69). PDE5A is an approved 21 

therapeutic target for hypertension125, and its inhibition provides protective effects against 22 

cardiac stresses such as ischemia-reperfusion injury, drug toxicity, pressure-induced 23 

hypertrophy, and acute stress responses in the heart muscle126. 24 

 25 

Genetic causal links were identified between plasma proteins and eye IDPs, including 26 

both OCT measures (84 proteins, |β| range = (0.01, 0.69), P < 2.79× 10−8) and fundus 27 

images (93 proteins, |β| range = (0.01, 0.48), P < 2.87× 10−8). Many of these linked 28 

proteins play critical roles in eye health, and some also have causal relationships with 29 

other organs, particularly the brain and heart. For example, GRN was causally associated 30 

with the average thickness between the external limiting membrane and the inner and 31 
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outer photoreceptor segments layers (β = -0.11, P = 5.28× 10−9, PPH4 = 99.89%, Fig. 1 

6E). GRN promotes the differentiation of retinal precursor cells into photoreceptor cells127 2 

and supports retinal ganglion cell survival during development by regulating astrocyte 3 

activation128, highlighting its essential role in retinal regeneration and development. 4 

Similarly, EFEMP1 was causally linked to the vertical cup-to-disc ratio (β = -0.25, P = 5 

5.00 × 10−19 , Fig. S70), a trait associated with primary open-angle glaucoma. The 6 

Arg345Trp mutation in EFEMP1 has been linked to drusen formation in Malattia 7 

Leventinese, closely resembling age-related macular degeneration pathology129,130. 8 

Moreover, CFH had a MR association with increased thickness between the inner nuclear 9 

layer and retinal pigment epithelium (β = 0.10, P = 1.10× 10−54, PPH4 = 93.71%). CFH 10 

plays a protective role in the eye by regulating complement activation and preventing 11 

inflammatory damage. Notably, the Y402H variant in CFH has been linked to increased 12 

risk of age-related macular degeneration131,132.  13 

 14 

A total of 79 proteins showed MR associations with abdominal MRI IDPs, with the 15 

strongest relationships observed in the liver, spleen, and pancreas. Specifically, in the 16 

liver, elevated levels of RNF43 and APOH were causally associated with lower liver iron-17 

corrected T1 (β range = (-0.06, -0.31), P range = (3.46× 10−10, 3.84× 10−32), PPH4 range 18 

= (98.87%, 99.84%), Figs. S71-S72), a measure of liver inflammation and fibrosis. RNF43 19 

regulates WNT signaling, maintaining hepatocyte proliferation and differentiation balance, 20 

ensuring liver homeostasis and preventing liver cancer133,134. APOH, predominantly 21 

expressed in the liver135, has been linked to nonalcoholic fatty liver disease in genetic 22 

studies136. Elevated level of ADH4 was causally associated with increased liver volume 23 

(β = 0.25, P = 4.81× 10−12, PPH4 = 95.08%, Fig. S73). ADH4, which plays a role in 24 

alcohol metabolism, is downregulated in hepatocellular carcinoma and serves as a 25 

potential prognostic biomarker and therapeutic target137,138. Additionally, strong MR 26 

relationships were identified for spleen volume, with 114 plasma proteins showing 27 

significant associations (|β| range = (0.03, 0.42), P < 1.90 × 10−9 )). Among these, 28 

TNFSF13B and EGF demonstrated the strongest links, with increased levels of both 29 

proteins linked to spleen enlargement (β range = (0.26, 0.42), P range = (7.70× 10−18, 30 

3.99× 10−23), PPH4 range = (94.52%, 99.90%), Figs. 6F and S74). TNFSF13B, primarily 31 
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expressed in the spleen, regulates B-cell survival, proliferation, and differentiation139, 1 

highlighting the spleen as a key site for its immune-regulatory function. EGF is essential 2 

for suppressing cellular senescence and sustaining growth in mammals, and inhibition of 3 

its receptor has been shown to cause spleen atrophy in mice140. MR associations were 4 

also observed for pancreas IDPs. For example, ADAM15 was linked to pancreatic iron 5 

levels (β = 0.03, P = 1.62× 10−26, PPH4 = 81.22%, Fig. S75). ADAM15 is overexpressed 6 

in pancreatic cancer cells, suggesting its role in tumor progression141. For the lung, IL4R 7 

was causally associated with lung volume (β = -0.05, P = 3.52× 10−11) and is a known 8 

drug target for chronic lung diseases such as asthma and pulmonary fibrosis. IL4R is 9 

critical for airway inflammation142, and polymorphisms in the IL4 promoter (C-589T) are 10 

associated with asthma143. 11 

 12 

Discussion 13 

This study represents the largest imaging proteomics analysis to date. Using plasma 14 

protein and multi-organ imaging data from the UKB study, we identified novel phenotypic 15 

protein-imaging associations, shedding light on the roles plasma proteins play in organ-16 

specific mechanisms and related biological pathways. These associations were largely 17 

robust to disease status, with a correlation over 99.8%, which is likely due to the 18 

predominantly healthy composition of the UKB cohort. Integration with external gene 19 

expression data revealed that some proteins associated with specific organs were 20 

secreted or highly expressed in the same organ, while others exhibited cross-organ 21 

relationships, notably involving proteins derived from adipose tissue and the liver. This 22 

finding underscores the liver's central role in regulating systemic and metabolic processes. 23 

The predictive power of plasma proteins varied across organs, with abdominal tissues 24 

and organs showing the highest predictive accuracy. Genetic causal associations 25 

between plasma proteins and IDPs were identified using genetic instrumental variables, 26 

with approximately 5.5% further passing colocalization tests, indicating strong evidence 27 

of shared causal variant. As the most comprehensive pan-organ imaging proteomics 28 

analysis conducted within a single large-scale cohort, this study offers novel insights into 29 

the interplay between plasma proteins and organ-specific biology. 30 

 31 
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Building on these novel findings, our study bridges molecular-level biological processes 1 

with structural biology observed through whole-body imaging, revealing mechanisms 2 

underlying structural and functional changes in organs. For example, in the brain, 3 

consistent links were identified between specific proteins, such as BCAN, NCAN, MOG, 4 

and SLITRK1 and key brain regions, including the frontal pole, hippocampus, and 5 

amygdala, which are critical hubs of the limbic system involved in emotion regulation and 6 

the fight-or-flight response. The thalamus also emerged consistently, indicating the 7 

involvement in the reward systems. These proteins not only associate with these brain 8 

regions but also demonstrate strong predictive abilities, highlighting their potential to 9 

reveal molecular pathways underlying emotion regulation and motivational behavior. 10 

Furthermore, our results suggest that plasma proteins serve as robust non-invasive 11 

biomarkers for the heart and various abnormal organs, enabling early detection of organ 12 

dysfunction, large-cohort subject stratification, and the development of protein-targeted 13 

therapies for organ-specific and systemic diseases. Together, these findings enhance our 14 

understanding of molecular and structural biology and provide a foundation for future 15 

proteomic applications in precision medicine. 16 

 17 

The phenotypic and genetic associations between proteins and imaging traits reveal 18 

distinct yet complementary patterns across different organs. Phenotypic association 19 

analysis identified more signals in non-brain organs, with particularly strong and extensive 20 

associations observed between plasma proteins and abdominal MRI traits. Notably, the 21 

set of proteins identified through phenotypic associations displayed higher levels of 22 

interaction (Table S5), greater enrichment in biological pathways (Table S6), and 23 

elevated gene expression within the same or other specific organs (Table S7). These 24 

findings provide deep insights into the proteomic networks and mechanisms underlying 25 

protein-imaging associations, highlighting how phenotypic analyses capture both organ-26 

specific and organ-shared biological influences, potentially driven by environmental and 27 

non-genetic factors. These findings are consistent with previous phenotypic analyses of 28 

omics data, which have identified co-regulated clusters and protein modules enriched in 29 

network biology7,144.  30 

 31 
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In contrast, genetic causal proteins identified through the MR approach showed minimal 1 

overlap with phenotypically associated proteins. Notably, MR demonstrated greater 2 

power in the brain, identifying more putative causal proteins for brain IDPs, including fMRI 3 

traits that lacked power of identifying phenotypic associations. Of note, the set of proteins 4 

identified by MR consistently exhibited lower protein interaction scores (Table S12) 5 

compared to phenotypically associated proteins across most organs (Fig. 5D). Similarly, 6 

except for the brain and eye, MR-identified proteins had lower number of enriched 7 

biological pathways than phenotypically associated proteins (Fig. 5E). Specifically, there 8 

was minimal overlap between pathways linked to phenotypic and MR associations, 9 

except for the heart, body fat, liver, and kidney, where pathways enriched by 10 

phenotypically associated proteins largely encompassed those enriched by MR-11 

associated proteins. Moreover, MR-identified proteins in most organs did not show 12 

significant enrichment in organ-specific gene expression, with the only exception of the 13 

lung (Table S13). These findings suggest that, compared to phenotypic analyses, MR-14 

based genetic mapping may prioritize isolated proteins rather than interconnected protein 15 

co-regulated clusters and may be less connected to organ-specific biological mechanisms 16 

reflected in gene expression. 17 

 18 

Notably, on the other hand, many MR-identified proteins are either approved or in-19 

development drug targets145, with the associated diseases aligning with the organ of the 20 

imaging data. For example, APOE, GRN, BCHE, CTSB, and APCS, which have genetic 21 

causal associations with brain imaging traits, are drug targets for neurodegenerative 22 

diseases such as Alzheimer's disease, dementia, cognitive impairment, and Parkinson's 23 

disease. Similarly, proteins genetically linked to heart imaging traits serve as drug targets 24 

for cardiovascular diseases, including PLAU for myocardial infarction, AOC3, PDE5A, 25 

and SELE for hypertension, and LCAT for coronary artery disease. It is well established 26 

that genetic evidence is valuable for drug development and clinical trial success146. Our 27 

MR analysis provides key genetic insights into potential drug targets and highlights 28 

opportunities for leveraging imaging data in therapeutic target discovery process. 29 

Together, the differences between phenotypic and genetic results underscore the unique 30 

strengths of each approach, which may be helpful in different downstream applications. 31 
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By combining phenotypic and genetic analyses, the present study provides a more 1 

comprehensive resource for understanding protein-imaging relationships. 2 
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 1 

Methods 2 

Image-derived phenotypes of the brain and body. 3 

Image-derived phenotypes (IDPs) used in our study were based on data from the UKB 4 

study, which recruited approximately half a million participants aged 40 to 69 between 5 

2006 and 2010147. The ethics approval of the UKB study was from the North West 6 

Multicentre Research Ethics Committee (approval number: 11/NW/0382) and informed 7 

consent was obtained by participants. Overall, we used 258 structural MRI (sMRI) traits 8 

capturing regional and total brain volumes derived from T1-weighted structural images, 9 

432 diffusion MRI (dMRI) traits capturing white matter integrity through microstructural 10 

and tract-specific measures derived using tract-based spatial statistics (TBSS), 76 resting 11 

functional MRI (fMRI)-derived node amplitude traits and 6 global functional connectivity 12 

traits summarizing the pairwise coactivity of nodes, 82 cardiac and aortic MRI traits 13 

capturing global and regional metrics of four heart chambers and two aortic sections, and 14 

46 derived OCT measures of retinal structure and 110 fundus image features extracted 15 

using transfer learning models, as well as 41 abdominal MRI traits capturing body fat and 16 

muscle composition, along with kidney, liver, lung, spleen, and pancreas characteristics. 17 

These IDPs captured the structural and functional characteristics of multiple human 18 

organs and tissues, including the brain, eye, heart, aorta, body fat, body muscle, liver, 19 

kidney, lung, pancreas, and spleen. 20 

 21 

Brain IDPs used in this study were processed and generated by Alfaro-Almagro, et al. 148. 22 

Briefly, we used sMRI traits extracted by three pipelines, FMRIB’s automated 23 

segmentation tool149 (FAST), FMRIB’s integrated registration and segmentation tool150 24 

(FIRST), and FreeSurfer’s aseg tool151. The FAST pipeline generates 139 regional grey 25 

matter volumes by segmenting T1-weighted brain images and combining these results 26 

with predefined regions of interest that cover both cortical and subcortical regions. The 27 

FIRST pipeline models and measures the shape and volume of 15 subcortical structures 28 

and outputs volumes of 15 subcortical structures. The aseg tool segments and measures 29 

the volumes of subcortical structures using T1-weighted images. In total, we used 248 30 

sMRI traits generated from the three pipelines, including 139 IDPs processed by the 31 
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FAST pipeline, 14 IDPs processed by the FIRST pipeline, and 95 IDPs processed by the 1 

aseg pipeline. We additionally included 10 global brain volume measures, both 2 

normalized for head size and non-normalized, including combined grey and white matter 3 

volume, total white matter volume, total grey matter volume, peripheral cortical grey 4 

matter volume, and ventricular cerebrospinal fluid volume. For brain dMRI, diffusion-5 

tensor imaging (DTI) fitting was performed using the DTIFIT tool, generating DTI outputs 6 

including fractional anisotropy (FA), mean diffusivity (MD), mode of anisotropy (MO), axial 7 

diffusivity (L1), and radial diffusivities (L2 and L3). In addition to DTIFIT, voxelwise 8 

microstructural parameters, such as intra-cellular volume fraction (ICVF), isotropic 9 

volume fraction (ISOVF), and orientation dispersion index (OD), were derived using 10 

Neurite Orientation Dispersion and Density Imaging (NODDI) modelling with the AMICO 11 

tool152,153. These DTI and NODDI outputs were then processed using TBSS154, which 12 

aligns and skeletonizes the data to generate measures for 48 different white matter tracts 13 

for each DTI/NODDI output, resulting in 432 dMRI IDPs. For fMRI traits, we used 76 node 14 

amplitude traits reflecting neuronal activity and 6 global functional connectivity measures 15 

summarizing the coactivity between node pairs. These global measures were derived 16 

using a combined principal component analysis and independent component analysis 17 

approach applied to all pairwise functional connectivity traits of the 76 nodes22,155,156. 18 

 19 

We analyzed three main categories of non-brain IDPs: heart and aorta, eye, and 20 

abdominal organs/tissues. For the heart and aorta, we used 76 cardiac and 6 aortic MRI 21 

traits derived from short-axis, long-axis, and aortic cine images24,157. The heart IDPs 22 

include global and regional metrics for four cardiac chambers: 64 traits for the left ventricle, 23 

4 for the right ventricle, 4 for the left atrium, and 4 for the right atrium. The aortic traits 24 

consist of 3 traits for the ascending aorta and 3 for the descending aorta. For the eye, we 25 

analyzed 156 retinal imaging traits85, comprising 46 measures derived from optical 26 

coherence tomography (OCT) images and 110 features from fundus photographs. The 27 

derived OCT measures include retinal thickness across specific layers, vertical cup-to-28 

disc ratio, and disc diameter. The fundus image traits were generated using 11 pre-trained 29 

transfer learning models built on ImageNet, extracting the top 10 principal components 30 

(PCs) from each model’s final layer, resulting in 110 fundus image features. Abdominal 31 
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IDPs comprised 41 MRI measures, covering body fat, body muscle, and organ-specific 1 

features. These included 8 body fat traits assessing abdominal fat distribution and 2 

visceral/subcutaneous fat volumes, and 12 body muscle traits measuring lean tissue 3 

volumes, fat-free muscle volumes in the thighs, and muscle fat infiltration as an indicator 4 

of muscle quality. Organ-specific measures included 6 kidney traits (volume and 5 

parenchyma), 10 liver traits (fat and iron content, with liver iron corrected T1 reflecting 6 

inflammation and fibrosis), 1 lung volume trait, 1 spleen volume trait, and 3 pancreas traits 7 

(volume, fat, and iron content). In total, there were 1051 IDPs across 8 imaging modalities 8 

(Table S2). 9 

 10 

UK Biobank pharma proteomics project. 11 

UK Biobank pharma proteomics project (UKB-PPP) profiled the plasma proteomes of 12 

54,219 UKB participants using Olink Explore 3072, measuring 2,941 protein analytes 13 

representing 2,923 unique proteins across eight panels focused on inflammation, 14 

cardiometabolic health, neurology, and oncology. The project included 46,595 randomly 15 

selected participants at baseline, 6,376 consortium-selected participants, and 1,268 from 16 

the COVID-19 repeat imaging study. Protein signals were quantified as normalized 17 

protein expression values, processed using Olink’s MyData Cloud Software. Details on 18 

data collection, processing, and quality control are documented in previous study4.  19 

 20 

Phenotypic plasma protein-imaging associations. 21 

To examine the phenotypic associations between plasma proteins and IDPs, we fitted 22 

linear regression models using unrelated white British subjects158 as discovery samples 23 

(average n = 4,383). The analysis was adjusted for covariates including age (at protein 24 

assessment and imaging visit), age squared, sex, age-sex interaction, age-squared-sex 25 

interaction, top ten genetic PCs, height, weight, and body mass index. For fMRI IDPs, we 26 

additionally adjusted for volumetric scaling, head motion, and brain position22,155. For 27 

regional brain volumes, we additionally adjusted for total brain volume to account for 28 

global effects. P-values were derived from two-sided t-tests (R version 4.1.0) and multiple 29 

testing was corrected using Bonferroni adjustment. The analysis was replicated in an 30 

independent hold-out set of white non-British subjects (average n = 513). Associations 31 
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were considered significant if they passed the Bonferroni threshold in the discovery 1 

sample (P < 1.63× 10−8), had a P-value < 0.05 in the replication sample, and exhibited 2 

concordant effect directions between the two models. 3 

 4 

Protein-protein interaction enrichment analysis. 5 

Protein-protein interaction (PPI) was obtained from the STRING database39, which 6 

integrates evidence from various interaction sources, including textmining, experiments, 7 

databases, co-expression, neighborhood, gene fusion, co-occurrence, to assign 8 

interaction scores. For a given list of proteins, the mean PPI score was calculated by 9 

averaging the pairwise PPI scores between all protein pairs. Additionally, to assess 10 

whether the observed interactions among the proteins in the list were significantly 11 

enriched, a statistical test was performed using a one-sided Wilcoxon rank-sum test. The 12 

test compared the PPI scores of the proteins in the query list against the PPI scores of all 13 

2,923 proteins in our study, serving as the background. This analysis determined whether 14 

the query protein set exhibited significantly higher interaction compared to the overall 15 

background set of proteins. 16 

 17 

Pathway enrichment analysis. 18 

To identify biological pathways and functional annotations enriched among the identified 19 

proteins, we performed a pathway enrichment analysis using g:Profiler159. The protein list 20 

was uploaded to the g:Profiler web tool, which applies its built-in multiple testing 21 

correction method ‘g:SCS threshold’, ensuring rigorous control of false discovery rates. 22 

We selected data resources including Gene Ontology molecular function, cellular 23 

component, and biological process, as well as KEGG and Reactome pathways, to 24 

evaluate potential functional enrichment. To focus on biologically relevant terms, we 25 

restricted enriched terms to a size range of 10 to 500, ensuring that the enriched terms 26 

were neither too broad nor too narrow. This approach allowed us to identify meaningful 27 

biological pathways and processes in which the associated proteins with each organ were 28 

involved, offering deeper insights into the molecular mechanisms underlying the protein-29 

imaging trait associations. 30 

 31 
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Sensitivity analysis. 1 

To evaluate the potential impact of disease status on the associations between plasma 2 

proteins and IDPs, we performed a sensitivity analysis by including relevant disease 3 

statuses as covariates in the regression models. Diseases for each organ were defined 4 

based on the following ICD-10 categories: brain-related diseases (F and G), including 5 

mental and behavioral disorders, as well as diseases of the nervous system; heart and 6 

aorta-related diseases (I), encompassing ischemic heart disease, heart failure, and 7 

arrhythmias; body fat-related disorders (E65-E78), covering obesity, hyperlipidemia, and 8 

metabolic syndromes; kidney-related diseases (N00-N29), including nephrotic 9 

syndromes and chronic kidney diseases; liver-related diseases (K70-K77), such as 10 

alcoholic liver disease, nonalcoholic fatty liver disease, and cirrhosis; pancreas-related 11 

diseases (K85-K87), including acute and chronic pancreatitis; eye-related diseases (H00-12 

H59), such as glaucoma, cataracts, and retinal disorders; spleen-related diseases (D73), 13 

including splenomegaly and other splenic disorders; and muscle-related diseases (M60-14 

M62 and M79), including myopathies, muscle inflammation, and fibromyalgia. To ensure 15 

robust statistical power, diseases with fewer than 500 cases were excluded from the 16 

analysis. Beta coefficients and P-values for the associations were reported after adjusting 17 

for disease status. 18 

 19 

Organ-specific plasma proteins. 20 

We assigned organ-specific labels to plasma proteins following the approach described 21 

by Oh, et al. 13. Briefly, gene expression data were obtained from the GTEx38, and tissue 22 

gene expression levels were normalized. A gene was defined as organ-specific, which 23 

served as the organ label of the corresponding protein, if its expression level in one organ 24 

was at least four times higher than in any other organ, consistent with the definition 25 

proposed by the Human Protein Atlas19. To ensure consistency, tissues from the same 26 

organ were grouped, and the maximum expression level among sub tissues was used to 27 

represent the expression level for that organ. Following Oh, et al. 13, the immune organ 28 

was defined as combined gene expression in blood and spleen tissues. Using this 29 

approach, 557 out of 2,923 proteins were assigned organ-specific labels based on their 30 

gene expression profiles. To evaluate whether a list of proteins was enriched for proteins 31 
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labeled with that organ based on gene expression, we performed a hypergeometric test 1 

across all organs. The test compared the number of proteins in the list with matching 2 

organ labels to the total proteins in the list, the total proteins labeled with that organ, and 3 

the total proteins analyzed, using the hypergeometric distribution to calculate the 4 

significance of enrichment. 5 

 6 

Prediction model using proteomic data. 7 

To predict IDPs using plasma proteins, we used an elastic-net regression model for each 8 

imaging trait. Following Carrasco-Zanini et al.16, we randomly sampled half of the data for 9 

training and testing, repeating this process across 200 iterations to ensure robust results. 10 

Before analysis, IDPs were normalized to allow comparability across different traits, while 11 

protein predictors data were also standardized within the elastic-net model. During each 12 

iteration, elastic-net regression was performed, and coefficients for each protein were 13 

estimated using the optimal lambda determined through cross-validation. Predicted IDP 14 

values for the testing data were then calculated based on these estimated coefficients, 15 

and prediction performance was assessed using the R-squared metric. After the 200 16 

repetitions, absolute values of coefficients across the 200 repetitions were summed up, 17 

as an importance measure of each protein for IDPs. GLIPR1 was excluded from the 18 

prediction model due to its low data quality as described in Sun, et al. 4. To determine the 19 

top five predictors for each IDP, we calculated a combined score for each protein by 20 

integrating the absolute sum of coefficients and the frequency of selection across 21 

iterations. Both metrics were first normalized to a [0, 1] scale by dividing each value by 22 

the maximum value in its respective column. A weighted sum of the normalized metrics 23 

was then computed for each protein, with equal weights (0.5) assigned to the normalized 24 

coefficient sum and frequency. Proteins were ranked in descending order of their 25 

combined scores, and the top five with the highest scores were selected as the strongest 26 

predictors for the IDP. 27 

 28 

Mendelian randomization and colocalization. 29 

We conducted Mendelian randomization (MR) analysis to investigate the genetic causal 30 

links between plasma proteins and IDPs. The list of proteins and IDPs used in the MR 31 
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analysis was largely the same as in previous sections, with minor adjustments due to data 1 

availability or data filtering criteria. For IDPs, genome-wide association study (GWAS) 2 

summary statistics were obtained from previous studies85,111,157,160. Ten global brain 3 

volume measures were excluded due to data unavailability, while the remaining 1,041 4 

IDPs were included in the MR analysis (average n = 40,682 participants). Detailed 5 

information on these GWAS, including data preprocessing and quality control procedures, 6 

is available in the respective studies. For plasma proteins, 67 out of the 2,923 plasma 7 

proteins were excluded based on the following three criteria: First, fusion proteins which 8 

represent combined entities or closely related paralogs rather than distinct proteins, were 9 

excluded to avoid ambiguity in biological interpretation. Second, proteins encoded by 10 

genes located on the sex chromosomes were removed to account for sex-specific 11 

differences in expression. Finally, proteins that could not be mapped to genomic locations 12 

in the GRCh37/hg19 genome build were excluded. Detailed description of these 13 

exclusions is available in the previous study32. Additionally, 36 proteins located within the 14 

MHC region were excluded to minimize bias from high linkage disequilibrium (LD) in this 15 

genomic region, leaving 2,820 proteins for the MR analysis. To prevent overlap with 16 

subjects in the imaging GWAS, we generated protein quantitative trait loci (pQTL) 17 

specifically for this MR analysis, ensuring that participants (and their relatives158) from the 18 

imaging GWAS were excluded from the pQTL analysis (average n = 34,566 participants). 19 

We removed the effects of the same set of covariates as in the previous study32. In 20 

addition, only cis-pQTLs, defined as genetic variants located within a gene’s region and 21 

extending one megabase on both sides, were used in the MR analysis. To generate 22 

independent instrumental variables, cis-pQTLs were clumped using PLINK 2.0161, with a 23 

P-value threshold of 5× 10−8, a window size of 250 kb, and an r² threshold of 0.001 for 24 

LD. Additionally, variants with an F-statistic less than 10 were excluded to avoid weak 25 

instrument bias.  26 

 27 

The MR methods used in the study were the inverse variance weighted (IVW) and the 28 

Wald-ratio (for single instrument variant). The Wald-ratio was conducted with the 29 

TwoSampleMR113,114 package, while the IVW method was implemented with the 30 

MendelianRandomization112 package. Following the pipeline described by Zheng, et al. 31 
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115, we used a range of sensitivity tests to ensure the robustness of our results. 1 

Specifically, the Steiger P-value evaluated whether the genetic instruments explained 2 

more variance in the exposure (plasma proteins) than in the outcome (IDPs), confirming 3 

the correct causal direction. Additionally, the heterogeneity P-value assessed the 4 

consistency of causal estimates across genetic instruments, with significant 5 

heterogeneity indicating potential violations of MR assumptions. To account for multiple 6 

testing, a Bonferroni correction was applied after filtering out results that failed sensitivity 7 

tests, resulting in an adjusted P-value threshold of P < 2.98× 10−8 and 8,116 significant 8 

causal protein-imaging trait associations. 9 

 10 

To further assess whether the significant MR pairs shared a causal variant, we performed 11 

colocalization analysis on the 8,116 pairs with significant causal relationships. We applied 12 

the coloc.abf() method from the coloc package33, a Bayesian framework that calculates 13 

five posterior probabilities: PPH0 (no association), PPH1 (association with the protein 14 

only), PPH2 (association with the imaging trait only), PPH3 (independent associations 15 

with both traits), and PPH4 (a shared causal variant). Pairs with PPH4 > 80% were 16 

considered colocalized, providing strong evidence for a shared genetic basis between the 17 

plasma protein and IDP. 18 

 19 

Code availability  20 

We made use of publicly available software and tools. The code used in this study will be 21 

deposited in Zenodo upon publication.  22 

 23 

Data availability  24 

The individual-level data used in this study can be obtained from UK Biobank 25 

(https://www.ukbiobank.ac.uk/). The GWAS summary statistics for imaging phenotypes 26 

across different organs are available from previous studies85,111,157,160. The GWAS 27 

summary statistics of Olink plasma proteins (removing imaging subjects) produced in this 28 

study will be deposited in Zenodo upon publication. Other datasets in this paper include: 29 

the STRING database (https://string-db.org/), the Therapeutic Target Database 30 

(https://idrblab.net/ttd/), and the GTEx dataset v8 (https://gtexportal.org/).   31 
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Figure legends  1 

Fig. 1 Study overview. 2 

(A) Our study aimed to explore the phenotypic and genetic connections between plasma 3 

proteome and organ structure and function, using 2,923 proteins and 1,051 imaging traits 4 

spanning multiple organs from the UK Biobank study. Building on a diverse range of 5 

imaging modalities, the study included brain imaging traits such as structural MRI, 6 

diffusion MRI, and functional MRI; cardiac MRI traits derived from short-axis, long-axis, 7 

and aortic cine images; abdominal MRI traits capturing measurements related to the liver, 8 

kidney, lung, pancreas, spleen, and body fat and muscle composition; and eye imaging 9 

traits such as derived retinal optical coherence tomography and fundus photography 10 

images. (B)-(E) Overview of the major analyses, data resources, and key scientific 11 

questions addressed in this study.  12 

 13 

Fig. 2 Phenotypic protein-imaging associations and selected enriched pathways. 14 

(A) The number of significant proteins associated with each organ after the Bonferroni 15 

correction (P < 1.63× 10−8) and the overlapping pattern across organs. (B) Enrichment 16 

of protein-protein interaction (PPI) scores using the STRING database was assessed. 17 

Enrichment scores were calculated for the set of associated proteins for each organ, and 18 

statistical significance was tested using a one-sided Wilcoxon rank-sum test. (C) 19 

Overview of the number of enriched biological pathways in each organ. (D) Selected 20 

biological pathways enriched among proteins associated with heart imaging traits, 21 

including the regulation of angiogenesis and vasculature development (multiple testing-22 

adjusted P < 1.53× 10−7). (E) Selected biological pathway enriched among proteins 23 

associated with liver imaging traits, highlighting the regulation of plasma lipoprotein 24 

particle levels pathway (adjusted P = 5.36× 10−5 ). (F) Selected biological pathways 25 

enriched among proteins associated with pancreas imaging traits, including digestion and 26 

protein digestion and absorption (adjusted P < 1.03× 10−7 ). (G) Selected biological 27 

pathways enriched among proteins associated with spleen volume, including lymphocyte 28 

mediated immunity and regulation of leukocyte mediated immunity (adjusted P < 29 

6.67× 10−15).  30 

 31 
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Fig. 3 Tracing putative origins of proteomic effects on imaging traits. 1 

(A) Bubble plot that highlights whether proteins associated with imaging traits of an organ 2 

(y-axis) were significantly enriched among genes highly expressed in the same or another 3 

organ (x-axis). Bubble size reflects the enrichment significance level and bubble colors 4 

differentiate between within-organ or cross-organ enrichments. Only significant 5 

enrichments were highlighted in colors. For example, proteins associated with imaging 6 

data from four organs/tissues were significantly enriched among those with high gene 7 

expression in the liver. This included the liver itself (within-organ) as well as adipose tissue, 8 

muscle, and heart (cross-organ). (B) Overview of putative origins of proteomic effects on 9 

imaging traits. The left axis represents the organs where proteins exhibit phenotypic 10 

associations with imaging traits, while the right axis indicates the proteins’ original organs 11 

mapped by gene expression data. The thickness of the connections between the axes 12 

reflects the relative number of proteins contributing to each connection. For example, 13 

proteins with high gene expression in the liver (right axis) were associated with IDPs of 14 

the liver, heart, body muscle, and body fat (left axis). (C)-(H) Example proteins 15 

demonstrating putative within-organ proteomic associations in each of the six 16 

organs/tissues showing significant within-organ enrichment in (A).  For example, in (C), 17 

BCAN, NCAN, OMG, and GFAP were associated with brain sMRI and dMRI traits and 18 

exhibited high gene expression in the brain. (I)-(J) Example of putative cross-organ 19 

associations. In (I), we show correlation coefficients between plasma proteins highly 20 

expressed in the liver (x-axis) and imaging traits of the heart, liver, body muscle, and body 21 

fat with which these proteins were phenotypically associated (y-axis). The color 22 

represents correlation estimates. Coefficients that passed Bonferroni correction (P < 23 

1.63× 10−8) and replicated were marked with asterisk, while those that passed Bonferroni 24 

correction but not replicated were marked with a plus sign. In (J), we illustrate example 25 

proteins (F9, SERPIND1, and FGF21) that showed significant associations with the heart, 26 

body fat, body muscle, and liver and were highly expressed in the liver. (K)-(L) Example 27 

of putative cross-organ associations. In (K), we show correlation coefficients between 28 

plasma proteins highly expressed in the body fat (x-axis) and imaging traits of the lung, 29 

liver, body fat, body muscle, and heart with which these proteins were phenotypically 30 

associated (y-axis). The color represents correlation estimates. Coefficients that passed 31 
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Bonferroni correction (P < 1.63× 10−8) and replicated were marked with asterisk, while 1 

those that passed Bonferroni correction but not replicated were marked with a plus sign. 2 

In (L), we illustrate example proteins (FABP4 and LEP) that showed significant 3 

associations with the heart, body muscle, lung, liver, and body fat and were highly 4 

expressed in body fat.  5 

 6 

Fig. 4 Predictive power of plasma proteins on organ structure and function. 7 

(A) Predictive accuracy of selected imaging traits across all organs, including the brain, 8 

eye, heart, spleen, lung, liver, kidney, pancreas, and body fat, along with the top three 9 

plasma protein predictors for each trait. ICVF refers to the intra-cellular volume fraction 10 

and RNFL refers to retinal nerve fiber layer. LVM stands for left ventricular myocardial 11 

mass, while LVEDV and RVEDV represent left and right ventricular end-diastolic volumes, 12 

respectively. (B)-(F) Top-ranked plasma proteins for selected imaging traits. The x-axis 13 

represents the frequency of proteins appearing across 200 resampling iterations, while 14 

the y-axis represents the average absolute value of coefficients across the 200 15 

resampling iterations. Top proteins are labeled with their names and are further 16 

highlighted in color if this protein is highly expressed in certain specific organ (at least 4 17 

times higher than any other organs). We illustrate the results for total trunk fat volume (B),  18 

pancreas volume (C), left ventricular end-diastolic volume (LVEDV, D), volume of cerebral 19 

white matter (E), and volume of the insular cortex (F). (G) The top-to-bottom ratios of 20 

average visceral fat volume for percentile groups representing the top and bottom 10%, 21 

20%, and 30% of predicted imaging traits based on plasma protein-based prediction 22 

model. The x-axis represents the percentile groups, and the y-axis represents the top-to-23 

bottom ratios. Sex groups, including all individuals, females, and males, are distinguished 24 

by color. 25 

 26 

Fig. 5 Genetic-root putative causal protein-imaging links. 27 

(A) Putative Causal associations between plasma proteins and imaging traits identified 28 

by Mendelian randomization (MR). The x-axis represents the chromosomes where the 29 

proteins are located, the y-axis represents the -log10(P-value) of protein-imaging 30 

associations. Only protein-imaging pairs significant under Bonferroni correction from the 31 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2025. ; https://doi.org/10.1101/2025.01.14.25320532doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.14.25320532
http://creativecommons.org/licenses/by-nc-nd/4.0/


MR analysis were plotted (P < 2.98× 10−8). Pairs with strong evidence of sharing causal 1 

variants in Bayesian colocalization analysis (PPH4 > 80%) were highlighted in organ-2 

specific colors. Brain sMRI stands for brain structural MRI, brain dMRI stands for brain 3 

diffusion MRI, ICA edge and ICA nodes are brain functional MRI traits generated by 4 

independent component analysis, OCT stands for optical coherence tomography. (B) The 5 

number of significant proteins associated with each organ after the Bonferroni correction 6 

(P < 2.98× 10−8) in MR analysis and the overlapping pattern across organs. (C) Overview 7 

of the number of MR-enriched biological pathways in each organ. (D) Comparison of 8 

protein-protein interaction (PPI) enrichment scores between phenotypically and causally 9 

associated proteins across organs. PPI scores were calculated using the STRING 10 

database for proteins associated with each organ. The x-axis shows PPI enrichment 11 

scores for phenotypically associated proteins, while the y-axis shows scores for MR-12 

associated proteins. Points are colored by organ. Dashed lines mark an enrichment score 13 

of one, representing the baseline level of including all proteins. (E) Number of enriched 14 

pathways for phenotypically associated and MR-associated proteins, as well as the 15 

number of pathways shared between the two approaches. 16 

 17 

Fig. 6 Selected associations identified by Mendelian randomization (MR) with 18 

shared causal variants.  19 

(A) In MR analysis, BCAN was causally associated with mean intracellular volume 20 

fraction (ICVF) in the genu of the corpus callosum. The posterior probability of Bayesian 21 

colocalization analysis for the shared causal variant hypothesis (PPH4) is 100.00%. (B) 22 

APOE was causally associated with functional activity (amplitude) trait in the default mode 23 

and central executive networks. The PPH4 of Bayesian colocalization analysis is 99.71%.  24 

(C) FGF5 was causally associated with ascending aorta maximum area (AAo max area). 25 

The PPH4 of Bayesian colocalization analysis is 98.72%. (D) CILP was causally 26 

associated with left atrium ejection fraction (LAEF). The PPH4 of Bayesian colocalization 27 

analysis is 98.26%. (E) GRN was causally associated with the average thickness between 28 

the external limiting membrane (ELM) and the inner and outer photoreceptor segments 29 

(ISOS) layers. The PPH4 of Bayesian colocalization analysis is 99.89%. (F) TNFSF13B 30 
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was causally associated with spleen volume. The PPH4 of Bayesian colocalization 1 

analysis is 99.90%. 2 
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