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Abstract

Vascular properties of the retina are not only indicative of ocular but also systemic cardio- and cere-

brovascular health. Yet, the extent to which retinal vascular morphology reflects that in other organs

is not well understood. We used morphological vascular phenotypes derived from the brain, the carotid

artery, the aorta, and the retina from the UK Biobank, with sample sizes between 18,808 and 68,000

subjects per phenotype. We examined the cross-organ phenotypic and genetic correlations, as well as

common associated genes and pathways. White matter hyperintensities positively correlated with carotid

intima-media thickness, lumen diameter, and aortic cross-sectional areas but negatively correlated with

aortic distensibility. Retinal vascular density showed negative correlations with white matter hyperin-

tensities, intima-media thickness, lumen diameter, and aortic areas, while positively correlating with

aortic distensibility. Significant correlations were also observed between other retinal phenotypes and

white matter hyperintensities, as well as with aortic phenotypes. Correcting for hypertension reduced

the magnitude of these correlations, but the overall correlation structure largely persisted. Genetic cor-

relations and gene enrichment analyses identified potential regulators of these phenotypes, with some

shared genetic influence between retinal and non-retinal phenotypes. Our study sheds light on the com-

plex interplay between vascular morphology across different organs, revealing both shared and distinct

genetic underpinnings. This highlights the potential of retinal imaging as a non-invasive prognostic tool

for systemic vascular health.
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Nonstandard Abbreviations and Acronyms

ASEG: Automatic subcortical segmentation

ASL: Arterial spin labeling

ATT: Arterial transit time

CBF: Cerebral blood flow

CFIs: Color fundus images

DBP: Diastolic blood pressure

FLAIR: Fluid-attenuated inversion recovery

IDP: Image-derived phenotype

IMT: Intima-media thickness

LD: Lumen diameter

LDSR: Linkage disequilibrium score regression

MRA: Magnetic resonance angiography

MRI: Magnetic resonance imaging

PC: Principal component

SBP: Systolic blood pressure

UKB: UK Biobank

WMH: White matter hyperintensities
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1 Introduction

The vascular system is a complex network of blood vessels, including arteries, veins, and capillaries, essential

for circulating blood throughout the body. This system plays a crucial role in delivering oxygen and nutrients

to various tissues, removing waste products, and maintaining overall health. Blood flows from the heart

through arteries, arterioles, and capillaries, then returns through venules and veins. Smaller arterioles

branch out from the arteries and lead to the capillaries. Venules and veins return blood to the heart, acting

as volume reservoirs and maintaining a pressure gradient crucial for blood circulation.

Simple physiological measures such as arterial blood pressure and blood oxygen saturation provide valuable

insights into the functionality of the vascular system. However, medical imaging offers more detailed infor-

mation specific to different vascular structures. Angiography, for example, provides high-resolution images

of blood vessels, detecting occlusions or poorly perfused regions, but is typically used only when disease risk

is suspected due to its invasive nature [1]. Non-invasive techniques like non-contrast magnetic resonance

angiography (MRA) offer lower spatial resolution but are suitable for studies involving healthy subjects.

Despite their non-invasive nature, these imaging modalities remain expensive [2]. In contrast, imaging of

the retina vasculature is an inexpensive, non-invasive routine examination that can provide valuable insights

into systemic vascular health [3].

Various studies have explored the associations between altered vascular morphology and vascular problems

across different parts of the body. Increased arterial stiffness and greater carotid intima-media thickness

(IMT) are known to elevate the risk of future hypertension and cardiovascular diseases [4]. Higher carotid

IMT also correlates with atherosclerosis [4]. Increased carotid lumen diameter (LD) is independently associ-

ated with a higher risk of cardiovascular events [5, 6]. Abdominal aortic aneurysms, intracranial aneurysms,

and coronary artery ectasia or aneurysms share similar pathophysiological mechanisms involving vascular

dilation and remodeling [7]. The presence of arterial aneurysms across different vascular territories suggests

a common underlying vascular wall pathology [7]. Aortic dimensions and distensibilities are critical risk

factors for aortic aneurysms, and other cardio- and cerebrovascular diseases [8]. Also, changes in the retinal

vasculature have been linked to vascular issues in distant organs, including stroke [9–11], coronary heart

disease [12, 13], or hypertension [14, 15], indicating systemic associations.

Despite the ample evidence for associations of systemic vascular disease with single-organ vasculature mor-

phology, the relationship between similar vascular morphological properties across different organs remains

poorly understood. Although some studies have analyzed the phenotypic and genetic correlations between

image-derived phenotypes (IDPs) of different organs such as the heart, brain, retina, and liver [16–19], they

have not focused on the morphology of the vasculature itself. This study aims to shed light on these as-

sociations using data from the UK Biobank (UKB) [20, 21], which includes multiple vascular IDPs from

the brain, carotid [22], heart [23–28], and retina [29, 30]. We investigated both phenotypic and genetic

correlations between these IDPs, highlighting shared associated genes and pathways. Our approach reveals

several relationships between vascular morphology across different organs, including the retina, emphasizing
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its potential as a prognostic proxy for non-retinal vascular diseases.

2 Results

The UKB includes nearly 186,000 retinal color fundus images (CFIs) collected from approximately 90,000

subjects. We recently measured 17 different IDPs for 71,000 subjects whose CFIs passed quality control

(QC) [30], utilizing some of these within this investigation. Additionally, we measured the carotid lumen

diameter (LD) for 18,808 subjects (after QC) using ultrasound images of the UKB [22] and incorporated

these measurements into our study. We searched for other reliable non-retinal vascular IDPs available for

a substantial number of subjects (at least 1,000) and identified the following IDPs: white matter hyperin-

tensities (WMH) from T2-weighted brain magnetic resonance imaging (MRI), measurements of carotid IMT

from ultrasound images, and assessments of the cross-sectional area and distensibility of the ascending and

descending aorta from cardiac MRI. After filtering, these measurements were available for approximately

40,000, 49,000, and 36,000 subjects, respectively (see Figure 1).

Common 
carotid arteries

Retina

WMH

IMT

Desc aorta

Asc aorta

LD

Figure 1: Visualization of the human vascular system and the imaging modalities available in the UKB. The
modalities include CFIs for examining the retina’s vasculature, ultrasound for assessing the common carotid
arteries (in particular, the IMT and the LD), transverse cardiac MRI for evaluating the aorta, and structural
brain MRI for detecting WMH.

For retinal IDPs, we selected tortuosity, vascular density, and vessel diameter, which are relatable to non-

retinal IDPs used. Although retinal IDPs include both arteriolar and venular measurements, non-retinal

IDPs focus mainly on arterial characteristics (see Supplementary Data ‘IDPs information’ for details).

2.1 Phenotypic and genetic correlations between vascular IDPs

We first adjusted all vascular IDPs by regressing out common covariates, including sex, age, age-squared,

assessment center, standing height, and the first 20 genetic principal components (PCs). We then calculated

pairwise correlations between the corrected IDPs. The left panel of Figure 2a shows the phenotypic cor-

relations among vascular IDPs of the brain, carotid, and aorta. The total volume of WMH was positively

correlated with the carotid IMT, the LD, and the aortic areas, but negatively correlated with the aortic
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distensibilities. IDPs related to aortic areas and distensibilities showed strong positive correlations between

the ascending and descending aorta, respectively, but were negatively correlated with each other. These

measures were at best weakly correlated with the carotid IMT. However, a similar pattern was observed

when correlating with carotid LD, with stronger signals compared to those seen with IMT, despite having a

much smaller sample size (see Suppl. Figure 3).

The right panel of Figure 2a displays correlations between these IDPs and selected retinal vascular IDPs. The

strongest positive correlations were found between the distensibility of both the ascending and descending

aorta and the arteriolar retinal vessel diameter measurements (both the median across all segments and

the retinal equivalent, which is specific to the largest retinal blood vessels). In contrast, the aortic areas

were negatively correlated with these retinal IDPs and, to a lesser extent, with retinal arteriolar vascular

density. Notably, retinal arteriolar vascular density was the only retinal IDP significantly correlated with

the carotid IMT and LD. We also observed significant correlations between WMH and several retinal IDPs,

with the strongest negative correlation seen with arteriolar median diameter and, somewhat weaker but still

significant, with arteriolar retinal equivalent. Additionally, arteriolar tortuosity was negatively correlated

with the area of the descending aorta. For more details, see Supplementary Text “Main vascular IDPs

selection”, and Supplementary Figure 3, which shows the number of subjects available for each IDP pair.

Since blood pressure is a critical factor influencing vascular properties globally [31, 32], we recomputed the

pairwise correlations after also adjusting for hypertension (see Figure 2b). This additional adjustment re-

duced the magnitude of inter-IDP correlations overall, but did not affect the sign of any sizable correlation,

apart from the IMT. Despite this reduction, the retinal arteriolar vessel diameter measures remained sig-

nificantly positively correlated with the aortic distensibility and negatively with the area of the ascending

aorta. Similarly, the negative correlation between the area of the descending aorta and arteriolar tortuosity

persisted. However, the small but highly significant correlation between carotid IMT and aortic IDPs became

insignificant. For further details, see Supplementary Data ‘Phenotypic correlation’.
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(a)

(b)

(c)

Figure 2: a) Phenotypic correlation of non-retinal IDPs with non-retinal IDPs (left) and retinal IDPs (right).
b) Phenotypic correlation of non-retinal IDPs with non-retinal IDPs (left) and retinal IDPs (right) adjusted
for hypertension in addition to the previous covariates. Hypertension was defined as having a systolic blood
pressure (SBP) ≥ 140 mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg. c) Genetic correlation of
non-retinal IDPs with non-retinal IDPs (left) and retinal IDPs (right), computed using LDSR [33]. The
diagonal of the left figure shows the heritability values of the non-retinal IDPs (values can be found in
Supplementary Data ‘Heritabilities’). GWAS summary statistics from previous studies were used to conduct
this analysis (see section 4), for the brain IDPs, the GWAS sample size used was around ∼33,000 participants,
for IMT around ∼44,000, for aortic IDPs ∈ (33,000-38,000), and retinal IDPs ∈ (54,000-69,000). For all
the images, the x-axis shows non-retinal IDPs (left) and retinal IDPs (right) and the y-axis shows non-
retinal IDPs. Colors indicate standardized effect sizes for linear regressions (a, b) or the genetic correlation
coefficient (c), while asterisks indicate the level of statistical significance (except for the diagonal of Figure
c). These p-values were corrected for multiple testing (∗ : p < 0.05/Ntest, ∗∗ : p < 0.001/Ntest, where
Ntest = NIDPs×(NIDPs/2+Nretina)). All IDPs were adjusted for covariates (see section 4). For more
details, see Supplementary Data ‘Main IDPs information’.

Next, we computed cross-IDP genetic correlations and SNP-heritabilities (h2) using Linkage Disequilibrium

Score Regression (LDSR) [33, 34], leveraging GWAS summary statistics from previous studies (see section 4).

We observed significant genetic correlations exclusively between IDPs of the same organ (see left panel of

Figure 2c, where h2 are displayed on the diagonal). Specifically, the cross-sectional areas of the ascending

and descending aorta were positively correlated with each other and negatively with the distensibilities.
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Furthermore, carotid LD was possitively correlated with IMT, as well as with the ascending and descending

cross-sectional areas of the aorta. Correcting for multiple hypotheses testing, no significant genetic correlation

was found between these IDPs and retinal vascular IDPs (see right panel of Figure 2c). For more details

on summary statistics, refer to the methods section 4.4, and Supplementary Data ‘Main IDPs information’,

‘Genetic correlation’, ‘Heritabilities’ for the values.

2.2 Genes and pathways associated with vascular IDPs

To identify genes associated with the IDPs, we used the PascalX analysis tool [35, 36]. The number of genes

associated with non-retinal IDPs tended to be larger for IDPs with higher h2 (see Figure 3a, left, diagonal).

The IDPs with the most associated genes were the area of the ascending aorta (h2 = 0.36, 157 genes) and

the carotid IMT (h2 = 0.21, 97 genes). The descending aorta (h2 = 0.28, 90 genes) had fewer associated

genes than its ascending counterpart. Distensibilities had much less associated genes, yet again more for the

ascending (h2 = 0.09, 12 genes) than the descending aorta (h2 = 0.08, 7 genes). We also observed a large

number of associated genes for WMH (h2 = 0.26, 85 genes). The off-diagonal elements show the number

of common genes for each pair of non-retinal IDPs. No single gene was shared among all non-retinal IDPs.

WMH shared 22 genes with IMT, 18 with LD, and 11 with the ascending aorta area. IMT shared 32 genes

with LD, 27 genes with the area of the ascending and 6 with the area of the descending aorta. Additionally,

the respective genes associated with identical IDPs for the descending and ascending aorta displayed some

overlap. The venular central retinal equivalent shared genes with WMH, IMT, LD, and the areas of the

ascending and descending aorta (Figure 3a, right), including genes like FBN1, CAPN12, EIF3K and SH2B3.

Retinal vascular densities shared genes with the descending aorta area, while tortuosities shared genes with

WMH, IMT, LD, and the areas of the ascending and descending aorta, including genes like SMAD3, COL4A1,

and COL4A2. For more details, see Supplementary Data ‘Shared genes’, and ‘Heritabilities’.

We also used PascalX to identify annotated gene-sets (aka “pathways”) enriched with high-scoring genes [35,

36]. The number of pathways associated with each IDP is shown in Figure 3b, left, diagonal. Specifically,

ascending (36) and descending aorta minimum area (18) had the most associated pathways, and were the

only IDPs with shared pathways (4), including the ‘GO HEART DEVELOPMENT ’ pathway. These IDPs

also had the largest pathway overlap with retinal IDPs (Figure 3b, right), primarily with the tortuosity-

related IDPs. The venular central retinal equivalent shared one gene set with IMT and LD, specifically

a gene cluster on ‘chr8p23 ’. Vascular density shared one pathway with the ascending aorta minimum

area, while tortuosities shared pathways with WMH and the areas of the aorta, including pathways like

‘MANNO MIDBRAIN NEUROTYPES HENDO ’, ‘HP ABNORMAL VASCULAR MORPHOLOGY ’, and

actin-related ones, like ‘GO ACTIN FILAMENT BUNDLE ’, and ‘GO ACTIN BINDING ’. For more details,

see Supplementary Data ‘Shared pathways’.
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(a)

(b)

Figure 3: a) Gene-scoring intersection showing genes in common between non-retinal IDPs and non-retinal
IDPs (left), and between non-retinal IDPs and retinal-IDPs (right). The diagonal (left) shows the number
of genes significantly associated with each IDP. While the other cells show the number of intersected genes
in IDP pairs. b) Pathway-scoring intersection showing pathways in common between non-retinal IDPs and
non-retinal IDPs (left), and between non-retinal IDPs and retinal-IDPs (right). The diagonal (left) shows
the number of pathways significantly associated with each IDP. While the other cells show the number
of pathways in the intersection between pairs of IDPs. Genes and pathways results were obtained using
PascalX [36].

3 Discussion and conclusions

In this study, we aimed to explore the associations between morphological vascular phenotypes within and

across different organs. By leveraging the extensive imaging data from the UKB, we conducted an analysis

that included IDPs from the brain, carotid, aortic arteries, and the retina. This comprehensive approach

enabled us to discover numerous significant correlations both at the phenotypic and genotypic level.

From our previous work with IDPs measured from retinal CFIs [30], we observed that morphological IDPs

in the retina were often correlated. In this study, we found that distensibility and cross-sectional area,

measured in both the ascending and descending aorta, were negatively correlated. This negative correlation

was observed both within the same anatomical region (e.g., ascending aorta) and across different regions

(between the ascending and descending aorta). This can be attributed to the definition of distensibility,

which is defined as the difference between the maximum and minimum cross-sectional areas divided by the

product of the minimum area and the difference between the maximum and minimum pressures [23]. So,
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this observed anti-correlation between distensibility and cross-sectional area is likely because, for a saturated

difference, distensibility scales inversely to the area.

We observed multiple significant cross-organ correlations between vascular IDPs. For instance, the positive

association between WMH and IMT (and LD), which aligns with previous studies that found an association

between increased carotid IMT and a greater burden of cerebral WM lesions [37, 38]. Additionally, the

negative correlations between carotid IMT (and LD) and lower aortic distensibilities are consistent with

prior research, as both IDPs have been associated with a higher risk of heart failure [39, 40]. Our findings

also confirmed previous observations that a greater WMH volume is associated with larger aortas (both

descending and ascending) [41] and reduced aortic distensibility [16]. Conversely, WMH is associated with

smaller diameters and reduced vascular density in the retinal arterioles. It is important to note that in the

UKB, carotid ultrasound and brain and heart MRIs were typically conducted much later than retinal CFIs

(median delay is about 9 years), suggesting that increased WMH volume arose subsequently to a reduction in

the retinal microvasculature. However, to establish causality, longitudinal data from both imaging modalities

would be necessary.

The associations of retinal vascular IDPs with those of the carotid, aorta, and WMH, highlight the potential

of the retina as a non-invasive window into systemic vascular health. The negative association between

retinal arteriolar vascular density and IMT, LD, and aortic areas, along with positive associations with aortic

distensibility, emphasizes the complex interplay between retinal and other systemic vascular properties. This

suggests that lower vascular density in the retina might reflect systemic vascular changes, such as increased

IMT and larger aortic areas, which are indicative of vascular aging or pathology [42–45]. Conversely, higher

aortic distensibility, which reflects healthier and more elastic arteries [46, 47], is associated with higher retinal

vascular density. The retina, being a microvascular bed, might thus mirror microvascular health throughout

the body, which is impacted by changes in large vessels like the aorta, or responds to microvascular disease.

It is noteworthy that, despite the much smaller sample size, the phenotypic and genetic correlations of IMT

and LD with the other IDPs followed similar patterns, but the correlations for LD were considerably stronger.

The fact that many significant cross-organ phenotypic correlations were either absent or much weaker at the

genetic level suggests that they are likely driven by environmental factors, including lifestyle. In contrast,

within a single organ, there was mostly a strong alignment between phenotypic and genotypic correlations,

indicating that the environmental impact is less pronounced in this case. Nevertheless, the shared associated

genes between WMH, IMT, the aorta, and the retinal vascular IDPs indicate some common genetic under-

pinnings, with genes like EIF3K, COL4A2, and SMAD3 [Gene Card] making them interesting candidates for

modulators of systemic vascular health. Furthermore, the identification of shared pathways among retinal

and aortic IDPs underscores the interconnected genetic mechanisms influencing vascular conditions across

different organs.

The generalisability of our findings is limited by the specificity of the IDPs studied and the population

characteristics of the UKB cohort. While compelling, these results may not fully translate to diverse popu-

lations or those with different health profiles. Practical limitations also include the resolution constraints of
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non-invasive imaging modalities and the potential for selection bias in the UKB cohort. Our study primarily

focused on genetic and phenotypic correlations, which can only serve as a starting point to elucidate the

mechanistic pathways driving them. Future research should aim to validate our findings in more diverse

populations and explore the mechanistic pathways underlying the observed associations.

Our study provides initial insight into the relationships between vascular morphology at different scales,

from the microvasculature (as reflected in retinal IDPs and WMH as a marker of small vessel health) to the

macrovasculature (properties of the aorta and carotid). This understanding can enhance our knowledge of

systemic connections between various vasculatures and aid in the development of better prognostic tools for

non-retinal vascular diseases using non-invasive, cost-effective retinal imaging.

4 Methods

4.1 The UKB Imaging Study

The UKB is a large-scale biomedical database and research resource containing anonymized genetic, lifestyle,

and health information from half a million UK participants. The UKB’s database, which includes blood

samples, heart and brain scans, and genetic data of the volunteer participants, is globally accessible to ap-

proved researchers who are undertaking health-related research that’s in the public interest. UKB recruited

500,000 people aged between 40-69 years in 2006-2010 from across the UK. With their consent, they pro-

vided detailed information about their lifestyle, physical measures and had blood, urine, and saliva samples

collected and stored for future analysis. It includes multi-organ imaging for many participants, such as MRI

scans of the brain, heart, and liver, carotid ultrasounds, and retinal CFIs [48].

The brain imaging data, covers six modalities: T1-weighted structural MRI, T2 FLAIR (fluid-attenuated

inversion recovery), susceptibility-weighted MRI, resting-state functional MRI, task functional MRI, and

diffusion MRI. These modalities yield various [49], including: a) Mean cerebral blood flow (CBF) maps,

derived from arterial spin labeling (ASL) perfusion MRI, they provide insights into resting cerebral blood

flow across the brain. b) Mean arterial transit time (ATT) maps, also from ASL data, and they indicate the

time it takes for blood to travel from the neck to a given region of interest, potentially revealing vascular

issues. Measures of mean CBF and ATT are available for each brain region. c) WMH volumes, obtained

from T2 FLAIR structural MRI scans, they serve as markers for cerebral small vessel disease. The mean

intensity and the volume of vessels are obtained from T1-weighted brain MRI using the Freesurfer automatic

subcortical segmentation (ASEG) tool, for the right and left hemispheres (‘Brain Imaging Documentation’∗).

Carotid ultrasound data, available for around 20,000 participants, was collected to measure carotid IMT, a

marker for subclinical atherosclerosis and cardiovascular disease risk. Images were acquired from both left

and right carotid arteries using standardized protocols across all assessment centers. Measurements were

taken at four angles (120°, 150°, 210°, and 240°) around the carotid bulb. For each angle, the maximum,

∗chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/

brain_mri.pdf
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mean, and minimum IMT values were computed (‘Carotid Ultrasound Documentation’†). It is important to

note that IMT values were available for more subjects than the carotid images themselves.

Cardiovascular MRIs were acquired on 1.5T Siemens MAGNETOM Aera scanners. The imaging protocol

included several sequences: Bright blood anatomical imaging in sagittal, coronal, and transverse planes; cine

imaging of the left and right ventricles in both long-axis and short-axis views; myocardial tagging for strain

analysis; native T1 mapping; aortic flow quantification; and imaging of the thoracic aorta [50]. This com-

prehensive protocol allows for detailed evaluation of aortic structure and function, providing (among others)

IDPs related to aortic distensibility and dimensions. Aortic distensibility, which reflects aortic stiffness, was

measured directly by the relative change in aortic cross-sectional area per unit change in pressure (lower

distensibility signifies increased stiffness). Additionally, a variety of aortic dimension measures, including

maximum and minimum areas, mean and standard deviation areas during diastole and systole, and mean

absolute deviation, capture the dynamic changes in the cross-sectional areas of the ascending and descending

aorta throughout the cardiac cycle [23–26].

Retinal CFIs, available for around 90,000 participants, were acquired from both eyes using a Topcon 3D

OCT 1000 Mark II camera, with images centered to include both the optic disc and macula within a 45°

field-of-view.

4.2 Main IDPs selection

We identified imaging modalities capable of capturing vascular morphology and determining relevant vascular

IDPs. This process involved a thorough search across the UKB database, Google Scholar, and the GWAS

catalog, using general vasculature-related keywords (e.g., ‘vessel’, ‘vascular’, ‘vasculature’, ‘blood’, ‘artery’,

‘arterial’, ‘arterioral’, ‘vein’, ‘venular’) and specific vessel names (e.g., ‘carotid’, ‘aorta’). While our search

aimed to capture all morphological vascular IDPs within the UKB dataset, we also found additional vascular

IDPs in external sources that, despite being measured on the UKB dataset, were not yet available in the

dataset (see Supplementary Data ‘IDPs information’ for details).

In the initial selection, we focused on organ-specific geometric and functional images without simplification.

For the brain, IDPs such as CBF and ATT were available for all brain parts. To manage the high correlation

among these measures, we calculated the average of CBF and ATT across the brain. We also considered

total/deep/and peri-ventricular WMH volumes, as well as the mean intensity and volume of vessels in the

brain, for both hemispheres (see Supplementary Figures 1 and 2). As explained before, carotid IMT IDPs

were measured at four different angles, and for each, the main, minimum, and maximum values were available.

These values were averaged across angles for consistency with previous studies. For heart vascular IDPs, we

included various measures of ascending and descending areas, systolic and diastolic parameters, standard

deviation, mean absolute deviation, stroke, and ejection fraction (see Supplementary Figure 2).

Further simplification was applied while ensuring the comprehensive representation of all organ images

†chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/carult_

explan_doc.pdf

11

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 13, 2025. ; https://doi.org/10.1101/2024.08.09.24311731doi: medRxiv preprint 

https://docs.google.com/spreadsheets/d/1zX7WXg7ioAj2Z0iEbhTrRIMnYWuylARDSMebdV-Rh7o/edit?pli=1&gid=0#gid=0
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/carult_explan_doc.pdf
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/carult_explan_doc.pdf
https://doi.org/10.1101/2024.08.09.24311731
http://creativecommons.org/licenses/by/4.0/


vascular morphology. For the brain, although CBF and ATT are valuable for understanding associations

among brain IDPs, they were not used as main IDPs due to their limited sample size and their potentially

functional nature. Among the three WMH IDPs, only the total WMH was selected because of its strong

correlations with other IDPs. We only considered WMH as a main vascular IDP for the brain, although

data for total volume and intensity of a brain region annotated as ‘vessels’ (from FreeSurfer automatic

segmentation of T1 images) were available. However, the number of voxels typically attributed to these

regions was extremely small, and the corresponding IDPs did not correlate significantly with any of the other

IDPs we studied (see Supplementary Figure 2). This suggests they may, at best, be very noisy representations

of vascular entities. In contrast, WMH is a well-established marker of vascular lesions associated with small

vessel disease [51].

For the carotid artery, only the minimum IMT was chosen due to its strong correlation with other measures.

For the heart, we selected the minimum areas and distensibilities of the ascending and descending aorta

because of their relevance and high correlations with other IDPs.

Finally, for retinal vascular IDPs, we aimed to ensure consistency with other morphological vascular IDPs,

selecting only vascular density, tortuosity, and vessel diameters to comprehensively represent vascular mor-

phology across different organs and systems.

4.3 Phenotypic correlation

For retinal IDPs, we used data from instance 0, which corresponds to the initial assessment visit (2006-

2010) when participants were recruited and consent given, and instance 1, which corresponds to the first

repeat assessment visit (2012-13). These IDPs were z-scored and adjusted for various covariates, including

sex, age, age-squared, sex-by-age, sex-by-age-squared, spherical power, spherical power-squared, cylindrical

power, cylindrical power-squared, instance, assessment center, genotype measurement batch, and genetic

PCs 1-20 [30].

For the non-retinal vascular IDPs, only instances 2 (imaging visit, 2014+) and 3 (first repeat imaging visit,

2019+) were available. We used instance 2 due to its larger sample size, as fewer than 300 individuals

per IDP were added if we included instance 3. Outliers in the retinal IDPs were already removed using

a threshold of 10std [30]. The same criterion was applied to the non-retinal IDPs. These IDPs were also

z-scored and adjusted for covariates, including age attended (‘21003-2’), age attended squared, sex (‘31’),

UKB assessment center (‘54’), standing height (‘50-2’), and genetic PCs 1-20 (‘22009-0.1’ to ‘22009-0.20’).

Similarly for LD [22].

We then reduced the selected non-retinal IDPs as detailed in section 4.2. After obtaining the residuals

for all IDPs, we performed phenotypic correlation analysis using Pearson’s correlation coefficient. Multi-

ple testing correction was applied using the formulas: ∗ : p < 0.05/Ntest, ∗∗ : p < 0.001/Ntest, where

Ntest = NIDPs×(NIDPs/2+Nretina).

For the main non-retinal IDPs, the sample sizes and demographics were as follows:

12

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 13, 2025. ; https://doi.org/10.1101/2024.08.09.24311731doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.09.24311731
http://creativecommons.org/licenses/by/4.0/


IDP Sample Size Mean Age (y) Std Age (y) Female/Male

WMH total volume 40,302 64.0 7.7 1.11

Min carotid IMT 49,282 64.5 7.8 1.07

Carotid LD 18,808 64.0 7.6 1.03

Asc aorta distensibility 32,962 63.6 7.5 1.05

Asc aorta min area 36,120 63.6 7.6 1.06

Desc aorta distensibility 32,970 63.6 7.5 1.05

Desc aorta min area 36,121 63.6 7.6 1.06

Table 1: Demographic details and sample sizes for main non-retinal IDPs: Sample size (number of partici-
pants), mean age (in years), standard deviation of age (in years), and the female-to-male ratio for the main
non-retinal IDPs.

4.4 Genetic correlation

To analyze genetic correlations for the main vascular IDPs, we accessed published GWAS summary statistics

from the UKB. For the brain, we used summary statistics for the total volume of WMH, adjusted for

covariates such as age, age-squared, sex, sex-by-age, sex-by-age-squared, 10 genetic PCs, head size, head

position in the scanner, scanner table position, assessment center location, and date of attending assessment

center. The sample size for these statistics was approximately 33,000 participants [52], ‘Brain summary

statistics’.

For the carotid minimum IMT, summary statistics were adjusted for the covariates: age at the time of the

imaging visit, sex, genotyping array, and 30 genetic PCs, with a sample size of around 44,000 participants [53].

Summary statistics for the ascending and descending aorta distensibility and minimum areas were available

in [23], ‘Aorta summary statistics’, using bolt P BOLT LMM INF. Retina summary statistics used the same

covariates as those applied in the phenotypic analysis [30], ‘Retina summary statistics’. And similarly for

the carotid LDLD [22]. More information about the main IDPs can be found in Supplementary Data ‘Main

IDPs information’.

Genetic correlations and h2 were computed using LDSR. Detailed results for h2 can be found in Supplemen-

tary Data ‘Heritabilities’). LDSR was also used to derive the genetic correlations between IDPs [33, 34].

4.5 Genes and pathways

Gene and pathway scores were computed using PascalX [36, 54]. Both protein-coding genes and lincRNAs

were scored using the novel, approximate “saddle” method, taking into account all SNPs within a 50kb

window around each gene. All pathways available in MSigDB v7.2 were scored using PascalX’ ranking

mode, fusing and rescoring any co-occurring genes less than 100kb apart. PascalX requires LD structure

to accurately compute gene scores, which in our analyses was provided with the UK10K (hg19) reference
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panel. Correction for bias due to sample overlap was done using the intercept from pairwise LDSR genetic

correlation. The significance threshold was set at 0.05 divided by the number of tested genes (RANKING).

Data and code availability

Phenotypic data from the UKB are available upon application through the UKB website: https://www.

ukbiobank.ac.uk. GWAS summary statistics can be accessed via the links provided in the document.

The code for this study is available on the public GitHub repository: https://github.com/BergmannLab/

multiorgan_vascular_IDPs.
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