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Abstract

Carotid ultrasound is routinely used in clinical practice for non-invasive vascular
anatomical and functional assessment, such as measuring carotid Intima-Media
Thickness (cIMT), an important marker for quantifying atherosclerotic burden in the
common carotid arteries (CCAs). Recent research suggests that several risk factors
associated with higher cIMT, such as high blood pressure, can induce a
compensatory increase in the carotid Lumen Diameter (cLD) of the CCAs. However,
the genetic architecture of cLD and its association with other cardiovascular traits are
still poorly understood. To investigate these questions, we trained a Deep Learning
model to segment the carotid artery from ultrasound images and developed an
algorithm to measure the cLD. We compared multiple measures of cLD corresponding
to lateral and central views of the left and right carotid arteries. By applying
genome-wide association studies (GWAS), we investigated the genetic architecture of
cLD and the relationship between cLD and cIMT in a cohort of 18 804 individuals
imaged with carotid ultrasound from the UK Biobank. We found that cLD has an
estimated heritability of 31%, substantially higher than that of cIMT (23%).
Furthermore, these phenotypes only have a mild phenotypic (37%) but much higher
genotypic (58%) correlation.
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Introduction
The right and left common carotid arteries (CCAs) supply the head, face, and neck with

oxygenated blood (Fig. 1a). Atherosclerosis causes plaque to form within the carotid artery

walls, narrowing the carotid lumen diameter (cLD), a condition called stenosis, which

presents a serious risk for ischemic stroke [1]. According to Glagov’s hypothesis, the CCAs

adapt to atherosclerotic plaque buildup by expanding their luminal diameter. This serves as a

compensatory mechanism to maintain blood flow despite structural changes and increased

stiffness within the artery walls [2,3].

Carotid ultrasound imaging is a standard tool for evaluating cardiovascular health, offering a

non-invasive approach to characterise carotid anatomy and function [4]. One of the primary

measurements in clinical settings is the carotid intima-media thickness (cIMT), widely

recognised as a significant marker for atherosclerotic burden [5,6]. In contrast, the

assessment of cLD has not been implemented as a standard of care, also because its

diagnostic utility has not been fully demonstrated, despite its known implication in

compensatory vascular remodelling. Indeed, a recent study suggested that cLD is

associated with all‐cause mortality in the general population [7], and other studies [8,9] have

explored the clinical significance of cLD for cardiovascular events. Two publications studied

the genetic architecture of cLD: using genome-wide linkage analysis with data from 3 300

American Indian participants in the Strong Heart Family Study, Bella et al. [10] identified a

locus influencing cLD on chromosome (Chr) 7 and suggested that cLD has a distinct genetic

makeup from cIMT. Another study from Proust et al. [11], performed a GWAS involving a

sample of 3 681 participants, on the right carotid diameter, finding a significant association

between cLD (and a trend for the external diameter) and the single nucleotide

polymorphisms (SNP) rs2903692 mapping to the CLEC16A gene on 16p13.

To investigate the genetic architecture of cLD and to evaluate its relationship with cIMT, we

developed a fully automated analysis pipeline enabling high-throughput assessment of this

feature. Specifically, we leveraged a deep convolutional neural network (CNN) trained on a

dataset annotated by a clinical expert to segment a section of the carotid artery from

ultrasound images and devised a method to measure the median cLD on such

segmentations. Our tool allowed us to measure cLDs phenotypes of 18 808 participants of

the UK Biobank (UKB), establishing the largest dataset to date. This enabled us to

investigate the correlations between cLD measures from the left and right carotid, as well as

their lateral and central view. We then explored the genetic architecture of these measures

through genome-wide association analyses (GWAS) and subsequent post-processing

analysis, pointing to overall mean cLD as the most robust measure. Comparing the latter
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with mean cIMT revealed that these two ultrasound-derived phenotypes have a higher

genetic than phenotypic correlation, with some distinct genetic associations, supporting the

notion of complementary genetic mechanisms modulating these phenotypes. Building on the

complementary nature of these two phenotypes, we propose the ratio cIMT/cLD as an

additional, normalised phenotype to capture distinct aspects of the CCAs characteristics that

may not be fully represented by the two phenotypes individually.

a

b

Figure 1 | Study Overview. a) Anatomy of the carotid artery. The left and right carotid arteries bifurcate to

internal and external carotid arteries. The carotid intima-media thickness (cIMT) and the carotid lumen diameter

(cLD) are measured before this bifurcation. b) We first trained a convolutional neural network (CNN) to segment

the carotid from ultrasound still images automatically, using ground truth provided by a human annotator (N = 79

manual segmentations, shown in red). We then used this CNN to process 43 678 ultrasound images of the left

and right carotid, including central and lateral views, from the UK Biobank. Each segmentation was

post-processed for quality control (QC) and then underwent classical image processing to estimate the cLD for

each image by computing the median of multiple diameter measurements (green) perpendicular to the central

axis of the segmentation mask.
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Results
The UKB dataset includes 21 838 left and 21 840 right carotid ultrasound DICOM image

series, derived from 20 031 and 20 033 subjects, respectively. Each series includes several

still images captured from ultrasound movies during diastole. These images include views of

the central and lateral regions of the right and left CCAs from which we extracted the right

lateral, right central, left lateral, and left central cLD. From these four primary cLD

measurements, we also computed five additional derived cLD phenotypes, namely the left,

right, central, lateral, and (overall) mean cLD by averaging across the relevant primary cLD

measurements. Furthermore, we computed the mean cIMT and the mean cIMT over mean

cLD. An overview of our study design is presented in Fig. 1b and detailed in the Methods

section.

Correlations and Heritabilities of different Carotid Lumen Diameter measures

All nine cLD measures were first adjusted by regressing out the effects of common

covariates (see Methods). We then computed pairwise phenotypic correlations between the

corrected phenotypes (Fig. 2a, lower triangle). We observed high phenotypic correlations

across the different cLD phenotypes (r ∈ [0.69, 0.98]), with central and lateral cLD

phenotypes showing the strongest correlations. In contrast, weaker correlations were noted

between the left and right cLDs (r ∈ [0.69, 0.75]), particularly when comparing lateral with

central views (r ∈ [0.70, 0.90]) (Suppl. Data 1).

To investigate the genetic basis of cLD, we performed GWAS for each measure and

analysed the resulting summary statistics using Linkage Disequilibrium Score Regression

(LDSR) [12,13] to estimate cross-phenotype genetic correlations (Fig. 2a, upper triangle)

and heritabilities (h²; Fig. 2b). Genetic correlations followed similar patterns to their

phenotypic counterparts but were generally higher (r ∈ [0.92,1]) (Suppl. Data 1). Manhattan

plots summarising significant genetic loci are shown in Suppl. Fig. 4.

Heritability estimates were similar for the nine cLD measures (Fig. 2b), with mean cLD and

lateral cLD showing the highest values (h² = 0.31 ± 0.06). The smallest h² was observed for

the left central cLD (h² = 0.22 ± 0.04) (Suppl. Data 2).
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a b

Figure 2 | Correlation and heritability analysis. a) Phenotypic (lower-left triangle) and genetic (upper-right

triangle) correlations of cLDs. Phenotypes were corrected for covariates and z-scored before phenotypic

correlation, while for the GWAS phenotypes were rank-normalised and regressed on genotypes and covariates

(see Methods). b) Heritability (h²) estimates. The corresponding phenotype h² were estimated using LDSR. The

sample sizes are as follows: Right lateral cLD (N = 17 951), right central cLD (N = 17 839), left central cLD (N =

17 758), left lateral cLD (N = 17 680), right cLD (N = 18 634), left cLD (N = 18 584), lateral cLD (N = 18 686),

central cLD (N = 18 689), and mean cLD (N = 18 808).

Genes and Pathways influencing different Carotid Lumen Diameter measures

To identify genes associated with each phenotype, we used our PascalX analysis

tool [14,15]. The number of genes associated with cLD varied across phenotypes, ranging

from 6 to 47 (Fig. 3a diagonal and Suppl. Data 3). Notably, the left central cLD showed the

fewest associated genes, consistent with its lower h² estimate (Fig. 2b). Similarly, left lateral

cLD and left cLD had fewer associated genes, consistent with their smaller h² values. While

lateral cLD and mean cLD obtained both the highest h² values, lateral cLD had slightly more

associated genes.

Five genes were significantly associated with all cLD phenotypes, TAGLN, SIDT2,

PAFAH1B2, PCSK7, and SIK3 (Fig. 3b). Other genes, such as C8orf12, and RP11-10A14.5

were associated with all the cLD phenotypes except the left cLD and left central cLD (Suppl.

Data 3).

Using PascalX, we identified annotated gene sets (i.e., “pathways”) enriched with

high-scoring genes (Fig. 3c, d). Three phenotypes were associated with more than one

pathway: Left (4), lateral (2), and mean (2) cLD. Notably, the gene set ‘chr8p23’ was

associated with all phenotypes except the left central cLD (Suppl. Data 4).
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Figure 3 | Gene and pathways analyses. a) Gene-scoring intersection showing genes in common

between cLD phenotypes. b) Name of the most frequent genes across the cLD phenotypes. c)
Pathway-scoring intersection showing gene sets in common between cLD phenotypes. d) Name of

the most frequent gene sets across the cLD phenotypes.

Comparison of Carotid Lumen Diameter and Carotid Intima-Media Thickness
To compare cLD phenotypes with cIMT, we focused on mean cLD as the representative for

all cLD phenotypes due to its comprehensive nature, being the average of all cLD

measurements, and its high heritability. Additionally, we also considered the ratio of mean

cIMT over mean cLD as a composite phenotype presenting a "normalised” cIMT.

The covariate-adjusted phenotypic correlation between mean cLD and mean cIMT was

moderate (0.37) (Fig. 4a). In contrast, the genetic correlation was substantially higher (0.58

± 0.10). For the ratio cIMT/cLD, the phenotypic correlations were -0.23 with mean cLD and

0.81 with mean cIMT. The corresponding genetic correlations were -0.11 ± 0.11 and

0.74 ± 0.05, respectively (Suppl. Data 1).
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Manhattan plots revealed heterogeneity in genetic signals among the phenotypes (Fig. 4b).

Despite identical sample sizes, mean cLD exhibited stronger association signals than mean

cIMT or cIMT/cLD. For mean cLD, the most significant SNPs were located at the start of

Chr 7 (rs343029; p = 2.73E-26), with additional associations on other chromosomes,

including Chr 8 (rs7838131; p = 3.20E-08, among others) and 11 (rs111677878;

p = 8.62E-12). Mean cIMT showed its strongest associations at the start of Chr 7 (rs342988;

p = 4.25E-10) and at the end of Chr 19 (rs1065853; p = 8.99E-11), while cIMT/cLD had key

signals on Chr 7 (rs7792074; p = 5.21E-09, mid-region), 15 (rs625034; p = 8.16E-11) and 19

(rs111688353; p = 3.11E-08, rs1065853; p = 2.10E-10), among others. For more details, see

Suppl. Table 2.

Heritability estimates confirmed mean cLD (h² = 0.31 ± 0.06) as the most heritable, followed

by mean cIMT (0.23 ± 0.04) and cIMT/cLD (0.14 ± 0.03) (Table 1a; Suppl. Data 2). Mean

cLD was also associated with the highest number of genes (44), compared to mean cIMT

(14) and their ratio (2). 11 genes were significantly associated with both mean cLD and

mean cIMT, including XKR6, LINC00529, MTMR9, FAM167A, C8orf12, LINC00208, BLK,

and MFHAS1 (Suppl. Data 3). The PascalX cross-GWAS coherence test [15] resulted in

more coherent than anti-coherent signals between the three phenotypes (Table 1b;

Suppl. Data 3). In particular, cLD and cIMT shared 47 coherent genes, which included the 11

genes from the intersection of their individual gene scores and 36 other genes, such as

RP1L1, GMDS, ERI1, SGK223, MSRA, SOX7, GATA4, and TMEM170A. Of note, 43 of the

47 coherent genes are located on 8p23.1. Anti-coherent signals were ELN and

RP11-731K22.1. The ratio between cIMT and cLD shared coherent signals with cIMT

(LINC00670) and cLD (8 genes, including LINC00670, TMEM170A, and CBFA2T3). The six

anti-coherent signals included ELN and PAFAH1B2.

For cIMT, we identified a single gene set, 'chr8p23’, while two gene sets were found for

mean cLD, namely 'chr8p23' and 'GO HEART GROWTH' (Table 1a; Suppl. Data 4).
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a b

Figure 4 | Mean cLD, mean cIMT, and ratio comparison. a) Scatter-plot of mean cIMT against

mean cLD after regressing out covariates effects and z-scoring. b) Manhattan plots of mean cLD,

mean cIMT and mean cIMT over mean cIMT. The sample sizes for each analysis are reported in the

title of each figure and are identical for the phenotypes shown in panel a (after filtering and subtracting

covariates) and the GWAS summary statistics used for the genetic correlation analysis.

a b

Phenotype h² (std) Number of
genes

Number of
pathways

Mean
cLD

Mean

cIMT

Mean
cIMT over

mean
cLD

Mean cLD 0.31 (0.06) 44 2 Mean cLD 47 8

Mean
cIMT 0.23 (0.04) 14 1 Mean

cIMT
2 1

Mean cIMT
over mean

cLD
0.14 (0.03) 2 0

Mean cIMT
over mean

cLD
2 4

Table 1 | Genetic mean cLD, mean cIMT, and ratio comparison. a) The heritability estimate (h²)

was obtained using LDSR, and the number of genes and pathways was obtained using PascalX. b)
Number of genes showing coherent (top right) or anti-coherent (bottom left) signals between pairs of

phenotypes, obtained using PascalX cross-scoring.
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Discussion
This study aimed to measure the carotid lumen diameter (cLD) in a large population with the

following three goals: (i) elucidate the relationships between the left and right cLD, as well as

the potential impact of the ultrasound orientation, (ii) compare cLD to the well-established

carotid intima-media thickness (cIMT) phenotype, and (iii) unravel their common and distinct

genetic architectures. By employing a convolutional neural network to segment carotid

ultrasound images and incorporating image processing techniques, we automated the

extraction of the cLD phenotypes, overcoming limitations in prior studies such as small

sample sizes and labour-intensive methodologies. The resulting dataset, the largest of its

kind, enabled a robust investigation of the genetic and phenotypic relationships of the cLD,

revealing that the cLD provides complementary information to cIMT, with distinct genetic

architectures and phenotypic patterns.

The results underline the distinct yet interconnected roles of the cLD and cIMT in vascular

health, with a relatively high phenotypic correlation (37%). The even higher genetic

correlation we observed (58%) suggests substantial but not entirely overlapping genetic

influences. Furthermore, the lower heritability and weaker genetic signals of the ratio

cIMT/cLD in comparison to the two original phenotypes may reflect a larger contribution of

environmental factors to its variability.

This study significantly advances our understanding of cLD genetics, which, to the best of

our knowledge, has only been explored in two previous studies. The linkage study by Bella

et al. [10] found a significant SNP influencing cLD on Chr 7 at 120 centimorgans (cM), as

well as a suggestive linkage on Chr 12 at 153 cM and 9 at 154 cM. Notably, while we found

significant signals for rs343029 and rs11108966 on Chr 7 and 12, respectively, as plausible

candidates for the respective linkage regions, we did not observe any significant

associations on Chr 9. The GWAS by Proust et al. [11] found a marginally significant

association (p = 4E-7) for the right internal carotid diameter (rs2903692, Chr 16) mapping to

the gene CLEC16A, which we did not replicate for our right or mean cLD.

In our study, with a significantly larger sample size, we uncovered several novel loci for cLD,

among those our strongest association, rs343029 (Chr 7). This SNP is close to the long

non-coding RNA AC007652.1 (i.e., ENSG00000235464) located between the protein-coding

genes TBX20, associated with heart-related diseases [16–20], and HERPUD2, which has

been linked with TBX20 to electrocardiogram signals [21]. These genes were not detected

using PascalX, because they are outside of its default 50kb window around rs343029.

Nevertheless, a regulatory effect by AC007652.1 seems plausible. Furthermore, this SNP

has previously been associated with cIMT [22]. Other new loci uncovered are rs7838131
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(Chr 8), which has been associated with body mass index [23], systolic blood pressure [23],

hypertension [23], as well as coronary artery disease [24], and rs111677878 (Chr 11).

In contrast to cLD, the genetic architecture of cIMT has been extensively studied with

high-powered GWAS [22,25]. Consistent with prior cIMT research [22,26], SNPs rs342988

(Chr 7) and rs1065853 (Chr 19) were also found to be significant in our analysis. These

SNPs have further been associated with lipoprotein levels [27,28] and myocardial

infarction [29], emphasising their importance for cardiovascular disease risk. Additionally,

rs974819 (Chr 11), which was significantly associated with mean cIMT in this study, has

previously been linked to coronary heart disease and was found to exhibit a sex-dependent

effect [30]. To our knowledge, however, several loci identified in this study have not been

reported previously in relation to cIMT. Importantly, one of the lead SNPs for cIMT

(rs342988) on Chr 7 is in strong linkage disequilibrium with the nearby lead SNP for cLD

(rs343029) with R2 = 0.77 (see Suppl. Section Genetic Variants) [31].

For the cIMT/cLD), this is the first GWAS to explore its genetic basis, motivated by the

potential biological significance of the ratio in reflecting the relationship between arterial wall

thickening and cLD, which may inform mechanisms such as arterial distensibility and

remodelling. SNP rs1065853 (Chr 19) was the only one significantly associated with the

cIMT/cLD and mean cIMT, while all other significant hits were distinct. Among those were

rs625034 (Chr 15,) which has previously been associated with thoracic aortic aneurysm [32].

These findings suggest that the cIMT/cLD captures aspects of vascular health that are not

fully represented by either the cLD or cIMT alone.

Comparative analyses of Manhattan plots revealed notable differences, with mean cLD

showing a stronger genetic signal compared to mean cIMT or cIMT/cLD. This highlights the

distinct genetic architecture of the cLD compared to cIMT and emphasises its substantial

signal strength, despite both phenotypes not being highly polygenic.

Our gene-wise analysis highlighted several genes associated with cLD, such as PCSK7,

associated with blood lipids [33], SIK3, associated with high-density lipoprotein [34], TAGLN,

associated with triglycerides [35], and APOA1 associated with blood pressure [36] and

lipoproteins [37]. Furthermore, genes in the ‘chr8p23’ gene set, implicated in embryonic

development [38–40], metabolism [41–43], and inflammation [44–46], shared coherent

signals with both cLD and cIMT. These associations emphasise the metabolic and

inflammatory pathways underlying vascular health. Interestingly, ELN, a gene involved in

tissue elasticity and associated with heart diseases [47–49], exhibited an anti-coherent

association between cLD and cIMT. This aligns with studies showing that reduced elastin
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levels result in a narrowed arterial lumen and increased arterial stiffness in both humans and

mice [47,48].

Despite its promise, the study has practical limitations that warrant consideration. First, while

the cLD and cIMT were evaluated in a large, population-based cohort, the UKB is not fully

representative of the general population, which may limit the generalisability of these

findings. Additionally, the prognostic utility of the cLD needs further validation in diverse

demographic and clinical populations to establish its role in routine cardiovascular screening.

In conclusion, this study explored the genetic architecture of the cLD and showed that this is

distinct from the more commonly assessed phenotype of cIMT. By automating the extraction

of the cLD from carotid ultrasound images and investigating its genetic determinants, we

have established a foundation for incorporating the cLD as a routine measure in

cardiovascular screenings. Our findings underline the importance of both cIMT and the cLD

as complementary markers.
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Methods
UK Biobank and Carotid Ultrasound Images

The UKB is a large-scale biomedical database and research resource containing

anonymised genetic, lifestyle, and health information from half a million UK participants. The

UKB’s database, which includes blood samples, heart and brain scans, and genetic data of

the volunteer participants, is globally accessible to approved researchers who are

undertaking health-related research that is in public interest. UKB recruited 500 000 people

between the ages of 40-69 years in 2006-2010 from across the UK. With their consent, they

provided detailed information about their lifestyle, and physical measures and had blood,

urine, and saliva samples collected and stored for future analysis. It includes multi-organ

imaging for many participants, such as magnetic resonance image scans of the brain, heart,

and liver, carotid ultrasounds, and retinal colour fundus images [50].

Carotid ultrasound data, available for around 20 000 participants, was collected to measure

cIMT, a marker for subclinical atherosclerosis and cardiovascular disease risk. Images were

acquired from both left and right carotid arteries using standardised protocols across all

assessment centres. Images were taken at four angles (120°, 150°, 210°, and 240°) below

and near to the carotid bifurcation. The angle of acquisition for each still image did not

always align exactly with the target reference angles, often resulting in multiple images

attempting to capture the same reference angle. For such cases, in our study, we averaged

cLD to yield a single cLD value per reference angle per subject during each medical visit.

Only some of the images, among all the ones captured for each subject, show the CCA and

are correctly locked on the diastole, featuring a small bounding box marking the cIMT. For

these images, maximum, mean, and minimum cIMT values are available [Carotid Ultrasound

Documentation] as part of the UKB. To ensure uniformity in the measurements, we used

these images for our analyses. It is important to note that cIMT values were available for

more subjects than the carotid images themselves.

Lumen Diameter Segmentation

To automate the carotid artery segmentation from ultrasound images, we trained a Deep

Learning CNN using N = 79 randomly sampled images labelled by an expert radiologist with

more than six years of experience using itk-snap [51]. During the manual segmentation

process, we only selected images showing clear interfaces for blood/intima and

media/adventitia. We carefully segmented the anechoic portion of the CCAs, avoiding the

inclusion of the intima, to ensure accurate delineation of the lumen. Additionally, to prevent

overestimation of cLD, we systematically excluded the carotid bulb. Then, we cropped the
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labelled ultrasound stills to the image area and converted them to grayscale. For the training,

we used the PyTorch-based nnU-Net deep framework [52], which implements a heuristic that

enables data-driven hyperparameters search. The nnU-Net framework has been shown in

numerous studies to be very data-efficient as it only needs small training sample sizes to

show substantial generalisability. Given the nature of our images, we limited the training to a

2D patch-based model only. We first trained five different 2D models using nnU-Net's default

5-fold cross-validation to assess the models’ performance on previously unseen data. After

observing a high enough Dice Coefficient on all the folds (Dice Coefficient > 0.95), we

trained a model using all the human-labelled data. All the training runs minimised a

composite loss of Dice Coefficient and Cross-Entropy and consisted of up to 1000 epochs.

Only the best model checkpoint was saved.

Using this model, we segmented all the carotid images in the UKB dataset with an

associated cIMT measurement (i.e., correctly locked on diastole, as explained in the

previous section). We used an out-of-the-box optical character recognition model

(PyTesseract) to identify such images.

Lumen Median Diameter Measurement Per Image

The QC began with evaluating the number of segmented objects in each image. If more than

one object was identified, their areas were compared, and objects with an area smaller than

half the maximum object area were excluded. If no object met this criterion, the image was

discarded (Suppl. Fig. 1a). Next, the shape and regularity of the remaining segmented

object were assessed. Segmented objects were required to resemble rectangles or squares

and to have fewer than a defined number of contour points. This threshold was set at 215

based on an initial analysis of a subset of our dataset. While a perfect rectangle or square

would have four points, minor pixel-level irregularities justified a higher threshold (Suppl.
Fig. 1b).

After QC, the median cLD for each image in pixels was measured using the segmented cLD

(described in the previous section), for that purpose, the centre of gravity of the

segmentation was calculated using the central moments (Equation 1) along with the major

axis angle (Θ) (Equation 2). To ensure consistent alignment of the major axis with the cLD,

the angle was adjusted when |Θ| exceeded π/4 by applying the transformation Θ = |Θ| - π/2.

Transverse lines were then plotted across the length of the major axis at intervals of two

pixels. For each line, the distance between the upper and lower segmented boundaries was

measured (Suppl. Fig. 2; green lines in Fig. 1b). To mitigate irregularities, lines with
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distances less than half the median line length were excluded. The median of the remaining

line distances was calculated to represent the median cLD for the image (ϕ).

This approach assumes that defining the cLD linearly is a reasonable approximation for this

dataset. If this assumption does not hold for other datasets, alternative methods

incorporating higher-order approximations may be required.
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Lumen Diameter Phenotypes Measurement Per Subject

After obtaining the median cLD (ϕ) for each image, cLD phenotypes were calculated for each

participant. At least four carotid images were measured per participant during the same

session, corresponding to four reference angles (⍺ = 120º, 150º, 210º, and 240º). The first

two represented the right carotid, and the latter two represented the left carotid (Fig. 1a).

In some cases, multiple images were taken for the same reference angle for a single

participant. Analysis revealed that measurements for images targeting the same angle were

nearly identical, with only minimal variations. Therefore, for participants with multiple images

per angle, the median cLD values were averaged to generate a single value per angle.

Sometimes there were multiple instances per subject; however, we only included the first

instance, since not many subjects would have been added by using different instances

(Suppl. Table 3; Suppl. Fig. 5).
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Lumen Diameter Phenotypes Definition

For each participant, a maximum of one median cLD (ϕ) measurement per reference angle

was retained. From these, four initial cLD phenotypes were defined: median(ϕ) for ⍺=120º,

150º, 210º, and 240º named as right lateral cLD, right central cLD, left central cLD, and left

lateral cLD.

To incorporate combinations of individual angles, we computed additional phenotypes:

● Right and left cLD:

○ mean(median(ϕ for ⍺=120º), median(ϕ for ⍺=150º)),

○ mean(median(ϕ for ⍺=210º), median(ϕ for ⍺=240º)).

● Lateral and central cLD:

○ mean(median(ϕ for ⍺=120º), median(ϕ for ⍺=240º)),

○ mean(median(ϕ for ⍺=150º), median(ϕ for ⍺=210º)).

● Mean cLD: mean(median(ϕ for ⍺=120º), median(ϕ for ⍺=150º), median(ϕ for ⍺=210º),

median(ϕ for ⍺=240º)).

We computed the mean for all available angles, ensuring that if one or more angle-specific

cLD measurements were missing, the mean was calculated from the remaining available

values. This approach allowed for the inclusion of as much data as possible while

maintaining consistency across participants.

Additionally, carotid ultrasound images displayed data on the mean, minimum, and

maximum cIMT. Using an optical character recognition model, we extracted this information

from each image and applied the same preprocessing pipeline applied to the cLD

measurements, we calculated the mean cIMT across the four reference angles. This

resulted in a single measure of mean cIMT for each participant.

To examine the relationship between cIMT and cLD, we derived a normalised phenotype as

the ratio of mean cIMT over mean cLD. The distributions of all phenotypes can be found in

the Suppl. Fig. 3, and baseline data can be found in Suppl. Table 1.

The resulting dataset comprised nine cLD phenotypes per participant, along with the mean

cIMT and the normalised phenotype.

Genome-wide association analysis (GWAS)

The GWAS for all phenotypes was performed using regenie [53]. Prior to the analysis, the

genotype data underwent QC as recommended for UKB genotype data [54] using PLINK2
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[55] (MAF = 0.01, MAC = 100, SNP genotype missingness = 0.1, individual genotype

missingness = 0.1, HWE = 1E-15). Phenotypes were rank-inverse normal transformed prior

to analysis. The covariates included in the GWAS were sex, age, age-squared, assessment

centre, standing height, and the first 20 genetic principal components (PCs).

Genetic Correlations and SNP-Heritabilities

Summary statistics were used as input to compute the genetic correlations and h², which

were computed using LDSR [12,13].

Genes and Pathways

Gene and pathway scores were computed using PascalX [14,15]. Both protein-coding genes

and lincRNAs were scored using the approximate “saddle" method, taking into account all

SNPs with a minor allele frequency > 0.05 within a 50 kb window around each gene. All

pathways available in MSigDB v7.2 were scored using PascalX’s ranking mode, fusing and

rescoring any co-occurring genes less than 100kb apart. PascalX requires linkage

disequilibrium structure to accurately compute gene scores, which in our analyses was

provided with the UK10K (hg19) reference panel. Correction for bias due to sample overlap

was done using the intercept from pairwise LDSR genetic correlation. The significance

threshold was set at 0.05 divided by the number of tested genes.
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Data and Code Availability

GWAS summary statistics will be available on Zenodo after the peer-reviewed publication.

Image-derived phenotypic data is under restricted access and will only be available through

the UKB cohort platform (https://www.ukbiobank.ac.uk/) after peer-reviewed publication. The

raw UKB data are protected and not open access; however, they can be obtained upon

project creation and acceptance. The code will be available on GitHub after the

peer-reviewed publication of the manuscript.
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