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Abstract 
Youth who experience concussions may be at greater risk for subsequent mental health challenges, making early 
detection crucial for timely intervention. This study utilized Bidirectional Long Short-Term Memory (BiLSTM) 
networks to predict mental health outcomes following concussion in youth and compared its performance to 
traditional models. We also examined whether incorporating social determinants of health (SDoH) improved 
predictive power, given the disproportionate impact of concussions and mental health issues on disadvantaged 
populations. We evaluated the models using accuracy, area under the curve (AUC) of the receiver operating 
characteristic (ROC), and other performance metrics. Our BiLSTM model with SDoH data achieved the highest 
accuracy (0.883) and AUC-ROC score (0.892). Unlike traditional models, our approach provided real-time 
predictions at each visit within 12 months of the index concussion, aiding clinicians in making timely, visit-specific 
referrals for further treatment and interventions. 
 
Introduction 
Concussion and mental health (MH) are significant public health issues that disproportionately affect youth1-4. Each 
year, approximately 2 million youths under 18 experience a concussion, a  form of mild traumatic brain injury that can 
severely impact developing brains and negatively affect functional, cognitive, emotional, and sleep health5-10. 
Evidence suggests that concussion is likely associated with mental health conditions such as anxiety 11-13, depression 
14,15, distress 16,17, and suicidality 18,19. If untreated or unmanaged, these mental health conditions can adversely affect 
concussion recovery and potentially lead to long-term health consequences. Therefore, early identification of youth at 
heightened risk for poor mental health outcomes following a concussion is crucial for effective prevention and 
treatment of these sequelae.  
 
Machine learning (ML)20,22 has been shown to improve outcome prediction in traumatic brain injury (TBI) patients 
compared to classical regression approaches 23,24, offering advances in prediction methods 25,26, and accuracy 21, 27-30. 
However, existing ML models are primarily based on more severe TBIs, small sample sizes, and adult patients 26,28,29. 
To date, no study has utilized ML to derive a risk-prediction tool for mental health sequelae specifically in youth with 
concussion 31-34. 
 
Youth from disadvantaged populations, including racial/ethnic minoritized groups, lower socioeconomic status (SES) 
households, rural areas, and those with limited access to care 35-37, are at a higher risk for both concussion and mental 
health conditions compared to their more socially advantaged peers 38,39. However, social determinants of health 
(SDoH) information is often missing from electronic medical records (EMRs), hindering our understanding of the 
predictors of mental health sequelae following concussion in youth with known health disparities. To address this gap, 
researchers at The Ohio State University developed the Ohio Children’s Opportunity Index (OCOI)40, which 
synthesizes over 34 variables related to neighborhood conditions and opportunities into a single index score, allowing 
for the assessment of a child’s SDoH at the census-tract level. Additionally, an increasing number of pediatric hospitals 
in the United States are screening children for Social Determinants of Health (SDoH) to capture unmet social and 
economic needs at a  more individual level41. However, no prior study has leveraged both area-level and individual-
level SDoH data to explore their role in predicting mental health sequelae following concussion in youth.  
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In this study, we employed a novel approach of Bidirectional Long Short-Term Memory (BiLSTM) networks for 
predicting MH sequelae following concussion in youth and compared its performance with traditional logistic 
regression and other machine learning models. We chose a bidirectional LSTM (BiLSTM) for our study because 
BiLSTMs are particularly effective at handling sequential data and tasks that require context from both the past and 
future. This is especially valuable in our research because: 1) some of our data are inherently sequential, such as injury 
and clinical symptom measures, and 2) understanding a patient's mental health history prior to the index concussion, 
along with future outcomes (e.g., subsequent concussions or changes in clinical symptoms), is essential for accurately 
predicting mental health sequelae following the initial concussion. Given that concussion and MH problems 
disproportionately affect youth from disadvantaged populations, we also investigated whether incorporating both area-
level and individual-level SDoH data in our models enhanced predictive power.  
 
Methods 
Data 
This was a single-center retrospective study. This study was approved by Nationwide Children’s Hospital (NCH) 
Institutional Review Board (# 2030585). Data on youth ages 11 to 17 years with concussion from 1/1/2013 to 
12/31/2022 were obtained from three databases: 1) Electronic medical records (EMR) at NCH, 2) Area-level SDoH 
data from the Ohio State University (OSU), and 3) Individual-level SDoH data collected at NCH since 2018.  
 
EMR at NCH. NCH uses a comprehensive and integrated set of clinical software systems developed by EPIC, a 
leading EMR vendor, to record and manage patient care interactively for NCH patients. Patient medical records, 
including demographics, encounters, orders, results, providers, care facility, and billing data, are extracted daily into 
EPIC’s proprietary backend Clarity Database. For the purpose of this study, we requested the following EMR data 
elements: patient demographics (i.e., age, gender, race), diagnosis codes, injury, and clinical characteristics, etc. The 
full list of EMR variables can be found in Table 1. 
 
Area-level SDoH Data. The OCOI 2.040, developed by researchers at OSU, is a  publicly available composite 
“opportunity” index that captures neighborhood resources influencing children's healthy development at the census-
tract level. The OCOI is based on 53 indicators across 8 domains—family stability, infant health, child health, health 
access, education, housing, environment, and criminal justice. These indicators were used to measure area-level SDoH 
(social determinants of health) and can be linked to the NCH EMR data, as all NCH patient records have been 
geocoded at the census-tract level and labeled with census tract IDs. 
 
Individual-level SDoH Data. Since 2018, NCH has implemented a SDoH screening survey of four health-related 
social needs (housing, food, transportation, utilities) that can impact patient health, with response categories of “YES”, 
“NO”, or “Declined to Answer”. Patients who responded “YES” are considered as having the need(s). 
 
Study Population 
Our study population consisted of a  retrospective cohort of patients aged 11 to 17 with a confirmed concussion 
diagnosis, each having at least one concussion-related medical encounter at NCH between January 1, 2013, and 
December 31, 2022. Concussions were defined using the International Classification of Diseases, Ninth and Tenth 
Revisions, Clinical Modification (ICD-9-CM and ICD-10-CM) codes: 850.0, 850.1, 850.11, 850.12, 850.2, 850.3, 
850.4, 850.5, 850.9, and codes beginning with S06.0. The index concussion was determined by the date and time of 
the encounter. Mental health conditions were defined as having any of ICD-9-CM codes: 293, 294, 300, 308-313, 316, 
or ICD-10-CM codes: F30-F39, F40-F48, or F50-F59 following the index concussion. Exclusion criteria included: 1) 
patients assigned an ICD-9-CM or ICD-10-CM code for a more severe TBI within four weeks of the index concussion; 
2) patients with significant injuries to body regions other than the brain on the same day as the index concussion; 3) 
patients receiving ongoing concussion treatment whose index concussion encounter occurred before January 1, 2013; 
and 4) patients with an ongoing mental health diagnosis or treatment within 12 months prior to the index concussion. 
 
Models 
We modeled the prediction of mental health diagnoses at each follow-up visit within 12 months following the index 
concussion (Figure 1). For a repeated concussion or a  new record of post-concussion symptoms occurring during the 
prediction window, a new prediction time will start for the repeated concussion or the new record of post-concussion 
symptoms, and the original prediction window will be censored. We first developed an interpretable deep learning 
model based on a bidirectional long short-term memory (BiLSTM) network42 (Figure 2). This model incorporated 
multi-modal data, including demographics, injury details, and encounter variables from electronic medical records 
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(EMR), as well as SDoH data from public resources and hospital patient surveys, embedding these inputs into a unified 
representation space. A time embedding accounted for irregular intervals between medical encounters. The model 
utilized a bi-directional LSTM (Bi-LSTM) to process sequential data and generate output vectors, which were 
combined using global max pooling to create a patient representation vector. Finally, a  fully connected layer and 
sigmoid function predicted the probability of mental health sequelae at each post-concussion encounter, continuously 
assessing risk up to 12 months post-injury. For comparison, we also developed several commonly used ML models, 
including Logistic Regression (LR), Multilayer Perceptron (MLP) 43, and recurrent neural networks (RNN) 44. Table 
1 summarizes all variables used in our models.  
 

 
Figure 1. Temporal Predictions of Mental Health Diagnoses in the Year Post-Concussion. Predictions are made at 
each follow-up visit up to 12 months following the index concussion. 

 
Figure 2. Illustration of our deep learning model based on a long short-term memory (LSTM) network. 
 
Table 1. Summary of Model Variables 

Category Number of 
variables 

Description Data source 

Outcome (binary) 1 Mental health diagnosis (Yes vs. No) 
identified using ICD-9-CM codes: 293, 294, 

Institutional EMR 
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Category Number of 
variables 

Description Data source 

300, 308-313, and 316, and ICD-10-CM codes 
F30-F39, F40-F48, and F50-F59 

Demographics 5 Patient age, gender, race, language, residence 
rurality 

Institutional EMR 

Insurance info 1 Payer type (Private/Medicaid/Self-pay) Institutional EMR 

Pre-existing mental health 
problems 

1 Mental health diagnosis prior to 1 year before 
the diagnosis date of the index concussion 
(Yes vs. No) identified using the same ICD 
codes listed above 

Institutional EMR 

Injury and clinical 
characteristics 

23 Recorded date, total post-concussion 
symptom score (based on 22 individual 
symptoms such as headache, dizziness), neck 
pain, don’t feel right, injury mechanism, sleep 
score, learning disability, attend school, 
pressure in head, concussion improved, 
anterograde amnesia, retro post trauma 
amnesia loss of consciousness, weakness in 
extremities etc. 

Institutional EMR 

Repeated concussions 
after the index concussion 

1 Diagnosis date, concussion identified using 
ICD-9-CM codes 850.0, 850.1, 850.11, 
850.12, 850.2, 850.3, 850.4, 850.5, and 850.9, 
and ICD-10-CM codes beginning S06.0 

Institutional EMR 

Individual-level SDoH 
info 

5 Consent to respond, needs of housing, food, 
transportation, utility 

Institutional Patient 
Survey 

Area-level SDoH info 9 Ohio Child Opportunity Index Score: overall, 
family stability, infant health, children's 
health, housing, access to care, education, 
environment, crime 

Public Resource 

 
Model Training Settings 
The dataset was randomly split into three subsets: a  training set (60% of encounters), a  validation set (20% of 
encounters), and a testing set (20% of encounters). The training and validation sets were used during model 
development, while the testing set was reserved for final performance evaluation. To prevent information leakage, 
the split was performed at the patient level across all encounters. Although this approach might cause slight 
discrepancies between the actual and theoretical number of encounters in each set, it ensured that data from the same 
patient did not appear in both the training and testing sets, thereby preserving the integrity and reliability of the 
model's performance evaluation. 
 
The models were trained for 40 epochs using the AdamW optimizer. To prevent overfitting, dropout and batch 
normalization were applied as regularization techniques. The training loop utilized the training set for learning, the 
validation set for model performance evaluation during training, and the testing set for final performance evaluation. 
The model with the lowest validation loss was saved, ensuring that the best model was retained for testing. 
The learning rate for the AdamW optimizer was set to 1e-4, with weight decay set to 1e-2 for additional 
regularization. The Binary Cross-Entropy Loss (BCELoss) was used as the loss function for the models.  
 
 

Continued 
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Performance Metrics 
Our binary classification task categorized patient encounters into either the mental health (MH) diagnosis positive 
class or the MH diagnosis negative class. We evaluated the models using the concepts of true positives (Tp), true 
negatives (Tn), false positives (Fp), and false negatives (Fn). For example, Tp represents the number of encounters 
correctly identified as having an MH diagnosis, while Fn represents the number of encounters with an MH diagnosis 
that were incorrectly classified as negative. We compared the models using various performance metrics: 1) 
Accuracy = (Tp+Tn)/(Tp+Tn+Fp+Fn); 2) Precision (P) = Tp/(Tp+Fp); 3) Sensitivity/Recall (R) = Tp/(Tp+Fn); 4) 
Specificity = Tn/(Tn+Fp); 5) F1-score = 2×P×R/(P+R); and 6) Area Under the Curve - Receiver Operating 
Characteristic (AUC-ROC). 
 
Results 
Details of the Dataset 
Summary statistics of the patient demographics are presented in Table 2. Summary statistics of the dataset utilized in 
our study are presented in Table 3. There were 40,436 total encounters. The training set included 24,380 encounters. 
The validation set included 8140 encounters. These examples were utilized in experiments to fine tune hyper-
parameters of different machine learning classifiers. The test set included 7916 encounters which were used for 
performance evaluation. 
 
Table 2. Patient demographics. 

  N % 
Total 15,259 100.0% 
Age at concussion diagnosis (years)  

Mean (SD) 14.57 (1.87)  
Min-Max 11 - 17.99  

Gender   
Female 6,983 45.8% 
Male 8,276 54.2% 

Race   
Black 2,447 16.0% 
Asian 200 1.3% 
Multiple Race 829 5.4% 
Other/Unknown 522 3.4% 
White 11,261 73.8% 

Ethnicity   
Hispanic or Latino 453 3.0% 
Not Hispanic or Latino 14,540 95.3% 
Other/Unknown 266 1.7% 

Insurance  
 

Private 7,140 46.8% 
Medicaid 4,513 29.6% 
Self-pay 335 2.2% 
Unknown 3,271 21.4% 

Rural-Urban Location   
Urban 13,446 88.1% 
Rural 1,599 10.5% 
Missing 214 1.4% 

*Patients aged 11-17 years with a confirmed concussion 
diagnosis between 1/1/2013 and 12/31/2022 (ten years).  
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Table 3. Statistics of the dataset used in the study. 
  Total encounters Encounters with MH diagnosis 

Overall  40436  8761 

Training set (60%)  24380  5273 

Validation set (20%)  8140  1777 

Test set (20%) 7916  1711 
 
Model Comparison 
The performance of different models for predicting mental health diagnosis following the index concussion is 
presented in Table 4. The LSTM models generated the highest AUCs, accuracy, sensitivity, and F-1 scores. By 
adding SDoH variables to the data, the AUC of the LSTM model increased from 0.887 to 0.892, the accuracy 
increased from 0.873 to 0.883, the sensitivity increased from 0.523 to 0.580, and the F1-score increased from 0.641 
to 0.683.  
 
Table 4. Performance of the models on data with and without SDoH information. 

Performance metric (data without any 
SDoH) 

LR MLP RNN LSTM 

AUC-ROC 0.837 0.865 0.867 0.887 

Accuracy 0.852 0.863 0.867 0.873 

Precision 0.728 0.88 0.887 0.829 

Sensitivity 0.507 0.423  0.441 0.523  

Specificity 0.947 0.984  0.985  0.97 

F1-score 0.598 0.571 0.589 0.641 

Performance metric (data with both 
area-level and individual-level SDoH) 

LR MLP RNN LSTM 

AUC-ROC 0.833 0.861 0.882 0.892 

Accuracy 0.854 0.872 0.876 0.883 

Precision 0.734 0.881 0.897 0.83 

Sensitivity 0.510  0.471 0.481  0.58 

Specificity 0.949  0.983  0.985  0.966 

F1-score 0.602 0.614 0.626 0.683 

LR: Logistic Regression; MLP: Multilayer Perceptron; RNN: Recurrent Neural Networks; LSTM: 
Long Short-Term Memory. 

 
 
Interpretability of the LSTM Model 
We computed the SHapley Additive exPlanations (SHAP)45,46 values to better understand the interpretability of our 
LSTM models. SHAP is a  technique based on cooperative game theory and is widely used today to understand how 
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different features impact the prediction of a model. Figure 3 visualizes the importance and effect of different 
features on our LSTM model’s predictions using a SHAP summary plot. The x-axis represents features in the model 
that do not change over time, while the y-axis shows the SHAP values. A positive SHAP value indicates that a  
feature increases the prediction, whereas a negative SHAP value means it decreases the prediction. Each dot 
corresponds to a SHAP value for a  specific feature in an individual prediction, reflecting how much that feature 
contributed to the prediction for a  particular instance in the dataset. The spread of the dots along the y-axis 
demonstrates the range of SHAP values for each feature across all instances. For example, if many dots for a  feature 
like "Age" have positive SHAP values, it suggests that increasing "Age" generally increases the model’s prediction. 
Conversely, if most SHAP values for a  feature are negative, that feature tends to lower the model’s prediction. The 
variability in the spread of dots indicates how consistent or variable a feature's impact is across different predictions; 
a  wider spread suggests a  more variable impact. Features such as "Urban/Rural" and "Race" exhibit a wide range of 
SHAP values, indicating their influence on predictions varies significantly between instances. On the other hand, 
features like "Pre-existing MH," "Insurance," and "Visit Lead Time" show significant SHAP values, underscoring 
their importance as predictors in the model. 

 
Figure 3.  Illustration of Feature Contributions to BiLSTM Model Predictions Using SHAP Summary Plot. Visit 
Lead Time: number of days from index concussion diagnosis date to the first post-concussion visit date. 
 
At-the-visit Real-time Prediction 
We selected an example patient to illustrate how our BiLSTM model makes predictions at each visit after the index 
concussion to aid in clinical decision making. Figure 4 shows the visit trajectory of a  male patient who lived in an 
area with low child opportunity index and had no historical mental health conditions. This patient had his first visit 
on day 1 and received a diagnosis of concussion. On day 2, he had his first post-concussion visit. At this visit, our 
LSTM model yielded a predicted risk of MH diagnosis as 0.431 (labeled as negative) while the ground truth was 
also negative (no MH diagnosis). On day 7, he had his second post-concussion visit. At this visit, additional clinical 
and injury variables that measure post-concussion symptoms were added to our model, yielding a predicted risk of 
MH diagnosis as 0.627 (labeled as positive) while the ground truth was also positive (a diagnosis of anxiety disorder 
was given). On day 14, he had his third post-concussion visit. At this visit, a  new diagnosis of concussion was given, 
indicating he had a second concussion. Our BiLSTM model incorporated this new information along with additional 
post-concussion symptoms data, yielding a predicted risk of MH diagnosis as 0.839 (labeled as positive) while the 
ground truth was also positive. On day 23, he had his fourth post-concussion visit. At this visit, additional post-
concussion symptoms data were added to our BiLSTM model, yielding a predicted risk of 0.855 (labeled as 
positive) while the ground truth was also positive.  
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Figure 4. Visit trajectory of a  male patient who lived in a metro area with low child opportunity index and had no 
historical mental health conditions. 
 
Discussion and Conclusions 
The use of machine learning models for predicting outcomes in patients with TBI has garnered significant attention 
in recent years. In 2022, Pease et al. demonstrated that a  deep learning model incorporating head CT scans and 
clinical information can effectively predict 6-month outcomes following severe TBI.26 Similarly, in 2018, Rau et al. 
found that artificial neural networks provided the most accurate predictions of mortality in patients with isolated 
moderate and severe TBI.28 In 2019, Feng et al. compared twenty-two machine learning models against logistic 
regression for mortality prediction in severe TBI patients in a single-center study, discovering that support vector 
machines outperformed logistic regression.30 However, these models primarily focus on more severe TBIs, often 
involve small sample sizes, and are typically applied to adult patient populations. 
 
Our study is the first to develop an interpretable deep learning model using a bidirectional long short-term memory 
(BiLSTM) network to predict mental health sequelae following a concussion, a  form of mild TBI, specifically in 
youth. When compared to other machine learning models, including Logistic Regression (LR), Multilayer 
Perceptron (MLP), and Recurrent Neural Networks (RNN), our BiLSTM model has demonstrated superior 
performance, achieving the highest AUC-ROC (0.887), accuracy (0.873), sensitivity (0.523), and F1 score (0.641). 
Incorporating social determinants of health (SDOH) data has further improved the BiLSTM model’s performance, 
resulting in an even higher AUC-ROC (0.892), accuracy (0.883), sensitivity (0.58), and F1 score (0.683). To 
enhance interpretability, we utilized SHAP values, making the model's predictions more transparent. For instance, 
features like "Pre-existing mental health diagnoses," "Insurance," and "Visit Lead Time" were identified as 
significant predictors due to their high SHAP values. Conversely, features such as "Urban/Rural" and "Race" 
displayed a wide range of SHAP values, indicating their varying influence across different predictions. Moreover, 
unlike previous approaches that provide a one-time prediction of outcomes in patients with TBI, our model delivers 
predictions at each visit within 12 months following the index concussion. This real-time prediction capability 
allows clinicians to make immediate, visit-specific referrals for further treatment and interventions. 
 
Our approach holds considerable promise for aiding in the early detection of mental health sequelae following 
concussion in youth at concussion clinics. While the dataset used in our study is from a single institution, we expect 
that our approach to be adapted by other institutions nationwide. Future research is necessary to enhance our training 
models with additional data and to evaluate our prediction models in real-world implementation studies. 
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