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Abstract1

Mosquito-borne diseases cause millions of deaths each year and are increasingly spreading2

from tropical and subtropical regions into temperate zones, creating significant public health3

risks. The establishment of mosquito species in new areas increases the risk of local transmission4

(autochthonous cases), driven by both rising mosquito populations and viremic imported cases,5

infected travelers who can spark local transmission. Such developments present new challenges6

for public health systems in non-endemic regions.7

In Spain, in the Basque Country region, the spread of mosquitoes, driven by changing climatic8

conditions, has enhanced mosquito adaptation alongside an increase in imported cases of dengue,9

Zika, and chikungunya. By employing a model that captures the complexities of the mosquito life10

cycle driven by the interaction with weather variables, including temperature, precipitation, and11

humidity, and leveraging machine learning techniques, this study aims to predict Aedes invasive12

mosquito abundance in provinces of the Basque Country, using egg count as a proxy and the13

weather features as key independent variables.14

Statistical analyses explored the impact of temperature, precipitation, and humidity on15

mosquito egg abundance. Using lagged climate variables and ovitrap egg counts, models were16

evaluated using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) metrics.17

The Random Forest (RF) model demonstrated the highest accuracy, followed by the Seasonal18

Autoregressive Integrated Moving Average (SARIMAX) model. Lastly, the best models were19

implemented to forecast Aedes invasive mosquito abundance in the Basque Country provinces.20

This forecasting tool aids vector control strategies in regions with expanding mosquito popula-21

tions, highlighting the need for ongoing entomological surveillance to improve mosquito spread22

assessments.23
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∗Corresponding Author. Email: vsteindorf@bcamath.org. ORCID: 0000-0002-0707-9511

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 2, 2025. ; https://doi.org/10.1101/2025.01.02.25319885doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2025.01.02.25319885
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction26

Vector-borne diseases, particularly those transmitted by mosquitoes, have become a significant27

global concern. The expansion of mosquitoes and the increase in transmitted diseases are escalating28

worldwide [18]. In the Americas, dengue cases alone surpassed 7 million by May 2024, exceeding29

the total annual of 4.6 million cases reported in the previous year [44]. Traditionally, these diseases30

primarily affected tropical and subtropical regions [18, 21, 44]. However, climate change and global31

warming are facilitating the spread, adaptation, and establishment of competent mosquitoes into32

temperate zones previously unaffected by such diseases, such as Europe [11]. Additionally, increased33

human mobility also plays a critical role, as travelers returning from endemic areas to non-endemic34

regions may introduce infections (imported cases), potentially sparking local transmission in areas35

with competent vectors and susceptible populations. Recently, countries like France, Italy, and36

Spain have experienced a significant rise in dengue imported cases. In France, from the beginning37

of 2024 up to June of the same year, the imported cases overpasses the 200 cases recorded over38

the whole previously year (in 2023) [35]. And, around 500 imported cases were registered in Italy.39

Additionally, there has been a marked increase in autochthonous cases, with 85 reported in France40

and 207 in Italy [18].41

In the Basque Country, an autonomous community in northern Spain, no autochthonous cases42

of Aedes mosquito-borne diseases have been recorded to date. However, with the lifting of mobility43

restrictions after the SARS-CoV-2 pandemic, the Public Health Epidemiological Unit in the Basque44

Country has registered an increase of dengue, chikungunya, and Zika imported cases [32]. On the45

other hand, entomological surveillance in various localities has shown an increase in the abundance46

of Aedes albopictus eggs, and the establishment of Aedes japonicus populations [9]. These devel-47

opments highlight the critical importance of maintaining robust surveillance systems, as effective48

monitoring is essential for preventing and controlling the spread of arboviruses.49

The mosquitoes undergo to three life stages before becoming adults: egg, larva, and pupa.50

Female mosquitoes search for human blood since it provides the essential nutrients required for egg51

development. After feeding, the female typically rests while her eggs mature, and then lays them52

in small batches in areas with stagnant water, such as containers, tire ruts, or tree holes. A female53

mosquito can lay an average of 200 to 400 eggs at a time [17, 31]. Most eggs hatch into larvae within54

48 hours if still water is available. However, they can survive several days, from 300 to 400 days,55

without coming into contact with water [17, 31]. This reproductive process is strongly influenced56

by environmental factors such as temperature, humidity, and rainfall, which affect the availability57

of suitable breeding sites and ultimately the success of egg development.58

The worst conditions for Aedes albopictus eggs are high temperatures and low relative humidity59

[25]. Egg mortality decreases with increasing relative humidity and median temperatures of 24-26◦C.60

Conversely, the optimum temperature for females to lay eggs is between 25-30◦C. At temperatures61

of 20◦C and 34◦C, mosquitoes lay significantly fewer eggs [20, 25]. The optimal temperature for the62

development and survival of Aedes albopictus occurs at summer temperatures of 25-30◦C. While a63

mean winter temperature of more than 0◦C allows egg survival, a mean annual temperature of more64

than 11◦C is required for adult activity [18]. At least 500 mm of annual rainfall is required for the65

breeding habitat, although mosquito populations have been established in areas with lower rainfall66

[1]. In contrast, periods of high precipitation temporarily reduce the number of females actively67

searching for a host. The reproductive season is influenced by increasing temperatures in spring68

and the onset of egg diapause in autumn, triggered by daylight hours below 13-14 hours [1, 18].69
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The association between climate factors and the prediction of dengue outbreaks has been widely70

studied [5, 7, 10, 12, 14, 26, 33]. By employing machine learning approaches, particularly those71

applied in endemic regions, have shown promise in enhancing the accuracy of dengue outbreak72

forecasts. On the other hand, some studies have incorporated vector data, such as adult mosquito73

populations, as proxies [12, 16, 27, 41], or larvae abundance [40]. Moreover, the role of Aedes74

aegypti abundance, climatic factors, and disease surveillance has been also evaluated in regions75

where autochthonous dengue transmission was recently introduced, such as in southern Brazil [12].76

However, one of the key challenges in fitting and validating predictive models is the necessity77

of local incidence data on mosquito-borne diseases cases and vector surveillance information. This78

data serves as a critical predictor variable for outbreak forecasting, but it is typically only available79

in endemic regions, where autocthonous cases is a persistent public health concern. Unfortunately,80

such data is often limited or spatially restricted due to various factors, primarily the high costs81

associated with collecting and maintaining accurate, up-to-date surveillance systems, making it82

difficult to obtain comprehensive data for non-endemic or under-resourced regions [15].83

Despite these challenges, numerous studies have successfully used climate variables and also his-84

torical data on mosquito adult abundance as proxies to forecast mosquito abundance. For example,85

mosquito abundance has been predicted using artificial neural network (ANN) models [27, 28], with86

some studies using adult mosquito populations as predictors [27], while others employed mechanistic87

models [38]. Another study used an ordinary differential equation (ODE) model to predict mosquito88

abundance, considering temperature, rainfall, egg diapause, and population dynamics of mosquitoes89

in southern France [43]. Nonetheless, this study did not include humidity as a climate factor, and90

prior hypotheses based on vector-related parameters were necessary, drawn from existing literature.91

Finally, only a few studies have considered mosquito eggs as predictors for temporal forecasting92

[5, 8, 10]. A more recent study employed spatio-temporal forecasting using stacked machine learning93

techniques [13]. Most studies that have used egg counts for forecasting have linked them with climate94

changes and ovitrap data to predict dengue outbreaks in endemic regions. However, in non-endemic95

areas like the Basque Country, where there is no local Aedes mosquito-borne diseases transmission96

and adult mosquito populations are not systematically monitored, predicting mosquito abundance97

becomes crucial for controlling the spread of the disease and informing surveillance and intervention98

strategies.99

In this study, we aim to estimate Aedes invasive mosquito abundance in a region where au-100

tochthonous mosquito-borne diseases transmitted by Aedes albopictus (such as dengue) have not yet101

been recorded, such as the Basque Country. By using the available data from the Basque Country’s102

provinces, we use machine learning techniques to model the relationship between recorded mosquito103

ovitrap egg counts and key environmental factors, including temperature, humidity, and precipi-104

tation. In Section 2, the relationship between climate variables and the abundance of mosquito105

eggs is analyzed within the context of a maritime climate, as the Basque Country, at the provincial106

and municipality levels. We explore and compare different machine learning models, considering107

variations such as including and excluding lagged versions of egg counts as a predictor, in Section108

3. Notably, incorporating lagged versions of both independent and dependent variables consistently109

improves the performance of most models, demonstrating the importance of temporal dependencies110

in mosquito abundance forecasting. Further, in Section 3, fitting the best-performing models to the111

available data on recorded egg counts in ovitraps allow us to produce more accurate predictions of112

invasive mosquito abundance.113
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2 Materials and Methods114

2.1 Entomological and meteorological data115

Data on Aedes mosquito egg counts from 2013 to 2023 in the Basque Country were obtained using116

ovitraps as described in [9, 22]. Following the European Centre for Disease Prevention and Control117

(ECDC) recommended guidelines [18], the ovitraps were distributed across the three provinces,118

covering 63 municipalities, as shown in Figure 1(b).119

The number of ovitraps varies by municipality, with two sampling areas selected in most cases.120

Each sampling area typically contains five ovitraps, which are positioned in sheltered spots away121

from direct sunlight and wind, often hidden within vegetation. Therefore, up to 10 ovitraps per122

municipality were placed in most cases. Each ovitrap contains water and a wooden stick (or tablex)123

that serves as a substrate for mosquito egg-laying. Every 14 days (on average), these paddles are124

removed, and new ones are put in their place. Thus, each municipality and area is sampled roughly125

10 to 12 times per year, from June through November [9].126

Meteorological data for the Basque Country were collected from the Basque Meteorological127

Agency (Euskalmet) across several weather stations (see Figure 1(b)) 1, covering the period from128

2016 to 2023. The data, obtained from the OpenData Euskadi website [29], include precipitation129

(recorded as cumulative precipitation in millimeters (mm) or liters per square meter (l/m2)), tem-130

perature (measured in degrees Celsius (◦C)), and humidity (relative air humidity as a percentage131

(%)). Weather observations were recorded every 10 minutes at each station. For this study, we132

calculated daily averages of temperature and humidity and daily cumulative precipitation for each133

meteorological station.134

(a) (b)

Figure 1: (a) Basque Country region in Spain (location in the European map). (b) Meteorological
stations and ovitraps locations in the Basque Country provinces during the intersection study period
(2016 to 2023).

1Note that not all meteorological stations displayed on the map contain records of all environmental features
selected for this study.
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2.1.1 Study area and data per provinces135

The Basque Country, located in northern Spain, is divided into three administrative provinces:136

Araba (Álava), Bizkaia (Biscay), and Gipuzkoa (see Figure 1). With a total area of 7234 km2 and137

a population of approximately 2.18 million [19], the region is characterized by diverse landscapes138

and a maritime climate, with temperate conditions and high annual precipitation, particularly139

in the coastal areas. Araba, the southernmost province, has a more continental influence in its140

climate, with drier and slightly colder conditions than the coastal provinces of Bizkaia and Gipuzkoa.141

Bizkaia and Gipuzkoa, bordered by the Cantabrian Sea, experience milder temperatures and higher142

humidity. These climatic differences across the provinces influence the mosquito abundance patterns,143

which this study aims to capture and analyze through the environmental data collected.144

For this study, we analyzed ovitrap mosquito egg counts collected in various locations across all145

three provinces. The data was pre-processed by averaging the 20 highest egg counts per province146

over a 14-day interval, considering that each municipality had a maximum of 10 ovitraps. This147

approach was necessary to address inconsistencies in the number of monitored ovitraps over the148

studied period and to avoid skewing the results with prevalent zero counts. By selecting the 20149

largest egg counts, the data reflects meaningful mosquito activity (in at least two distinct locations),150

effectively filtering out areas with consistently low or zero activity.151

Meteorological data, specifically daily precipitation (cumulative precipitation in millimeters152

(mm), air temperature (in degrees Celsius (◦C)), and relative humidity (percentage (%)), were153

obtained by averaging daily values from all available meteorological stations in each province.154

These features were then aggregated over the previous 14 days to maintain consistent time in-155

tervals between the entomological and meteorological datasets. The average annual temperature156

and accumulated precipitation in each province align with environmental conditions favorable for157

Aedes albopictus survival, approximately 11.5 ◦C and 878 mm in Araba, 13.8 ◦C and 1278 mm in158

Bizkaia, and 13.4 ◦C and 1610 mm in Gipuzkoa [9], which are consistent with the survival thresholds159

discussed in the literature for this species [1, 18].160

The time series of the average egg counts, temperature, humidity, and cumulative precipitation161

for each province in the Basque Country are shown in Figure 2.162

Mosquito eggs are typically found during the summer months, from June to October, when163

the combination of higher temperatures and favorable humidity conditions promotes their activity164

and reproduction. As shown in Figure 2(a), the egg count in the entire Gipuzkoa province has165

significantly increased over the last years of collected data, although this trend may vary between166

municipalities. For example, in the city of Irun (see Supplementary Material B), the second most167

populated city in Gipuzkoa, located on the border with France, where variability is present without168

a clear increasing trend.169

In Gipuzkoa, temperature exhibited a clear seasonal annual pattern, while accumulated rainfall170

showed no apparent trend. Humidity, however, decreased during the winter and followed a quasi-171

periodic structure (see Figure 2(b)). The winter of 2019, right after the expected period of higher172

egg presence, was exceptionally rainy compared to other winters in the province. Combined with low173

humidity (below 75%), this may have contributed to the lower egg counts observed in the following174

summer season (2020). In contrast, the dry summer of 2022, accompanied by higher humidity levels175

(above 75%), may explain the increased egg counts observed that year.176

In Bizkaia, the time series of egg counts has displayed a consistent upward trend over the years,177

with positive egg traps first recorded in 2017 (see Figure 2(c)). Notably, the average mosquito egg178
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Figure 2: Number of mosquitoes eggs collected in (a), (c), (e). And average temperature (◦C),
relative air humidity (%), and cumulative precipitation (mm) in (b), (d), (f). Data gathered
biweekly for Gipuzkoa, Bizkaia, and Araba, respectively.

count in Bizkaia during 2023 serves as a good proxy for the province-wide average, as shown by the179

time series for Bilbao, the capital of Bizkaia (see Figure 13(c) in in the Supplementary Material B).180
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The temperature in Bizkaia followed a clear seasonal pattern, while accumulated rainfall showed181

no apparent trend, with significant cumulative precipitation occurring later in 2021. In contrast to182

Gipuzkoa, however, humidity in Bizkaia exhibited periodic increases approximately every two years,183

with higher levels typically observed during winter months (see Figure 2(d)).184

Moreover, average precipitation in Bizkaia was slightly lower than in Gipuzkoa. Temperature185

fluctuations in Bizkaia were more pronounced, as indicated by the steeper slope of its temperature186

curve compared to Gipuzkoa, potentially explaining the lower average egg counts in the region.187

Additionally, the dry summer of 2021, followed by a rainy winter, may have contributed to the188

consistent egg count trend observed.189

Furthermore, although ovitraps have been distributed and data collected in the province of Araba190

since 2013, positive egg traps were not recorded until 2018, with no positive ovitraps observed in191

2019 or 2020 (see Figure 2(e)). In Laudio, the second most populated municipality in Araba, positive192

ovitraps were only recorded in 2021 (see Figure 13(e) in Supplementary Material B).193

The average temperature in Araba exhibits annual seasonality, while precipitation lacks a clear194

trend, though cumulative rainfall is typically higher during winter. On the other hand, humidity195

also tends to increase alongside precipitation (see Figure 2(f)). The lower average temperature in196

this province may contribute to the reduced presence of mosquito eggs.197

Given the dispersed nature of data in Araba, with many zero values in egg counts (Figure 2(e)),198

there is insufficient information to develop a reliable training dataset for model fitting. Therefore,199

this province is excluded from further analysis. Smaller spatial units, such as individual municipal-200

ities, are similarly excluded, with the focus of this study being the two Basque Country provinces,201

Gipuzkoa and Bizkaia. Nonetheless, descriptive statistics and detailed analyses at the municipal202

level for Irun and Bilbao, which have adequate data, are provided in the Supplementary Material203

B.204

2.2 Methodological approach205

2.2.1 Data processing206

After gathering data, pre-processing is a crucial initial step before model training, forecasting,207

and evaluation. In this study, data pre-processing included the following steps. First, we ensured a208

consistent interval for both the independent and dependent variables, selecting a biweekly interval209

for the entomological data based on the average 14-day period in which egg counts were collected.210

Next, we addressed missing values through imputation, filling gaps with zero values. This choice211

is scientifically justified within the context of this dataset, as institutional data indicated that, for212

months without data collection, ovitrap counts would have likely been zero [9]. This assumption213

was based on data from four sentinel points (two in Gipuzkoa and two in Bizkaia) monitored over214

a year to determine the start and end of Aedes mosquito activity in regions with recorded presence215

in the previous year.216

Additionally, we included only the 20 highest egg counts at the provincial level to account217

for variations in the number of monitored ovitraps over time, helping to reduce dataset skewness.218

Outliers were then removed using a central moving average as a smoothing method, commonly219

applied to mitigate white noise, random fluctuations, and extreme values [39].220

For the meteorological data, no imputation was required as daily weather data was available221

for the entire study period. In this case, outliers were retained as they could signal significant222
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events associated with the presence or absence of mosquito eggs. Basic exploratory analysis was223

then conducted using descriptive statistics and correlation tests, incorporating both the original224

and lagged versions of the meteorological data.225

Finally, we split the data into training and testing sets, with the training data comprising226

85.71% and 83.33% for Gipuzkoa and Bizkaia, respectively. The remaining 26 data points (one year227

of biweekly data) were allocated for testing.228

2.2.2 Models229

In this study, we applied different models including and excluding the lagged version of eggs count230

as a proxy and the lagged version of the independent environmental variables. To appropriately231

handle the discrete and non-negative nature of counts, we restrict our choices and applications of232

the models presented here. For instance, the statistical methods such as the Poisson Regression233

and Negative Binomial Regression are foundational models for count data [36]. However, while the234

first one assume that the time series follows a Poisson distribution, the second one can be useful235

when time series presents more variability and over-dispersion (i.e., the variance is greater than the236

mean) (as it is the case). Both models are an extension of the Generalized Linear model (GLM)237

with a log link function.238

The GLM is a flexible extension of ordinary linear regression that accommodates response vari-239

ables with error distributions other than the normal distribution. This model often outperforms240

others when applied directly to the original data, compared to the transformed data such as using241

logarithmic scale [2, 30]. As such, we initially avoided any normalization or transformation of the242

data. When we applied the GLM to this dataset, it performed better on the smoothed data (using243

a three-point central moving average) than on the original, unprocessed data. And, a GLM with244

the canonical link function was used, assuming a Gaussian distribution for the response variable. In245

other words, the response variable follows a Gaussian exponential family distribution. This allows246

for more flexibility in modeling, as it does not impose the strict relationship between mean and247

variance required by models such as when using the Poisson distribution [23].248

The GLM with a Gaussian family assumes a linear relationship between the predictors and the249

response variable Y, using the identity link function. That is, the conditional mean µ is a linear250

combination of unknown parameters β via the link function g:251

E(Y | X) = µ = g−1(Xβ) = β0 + β1x1 + · · ·+ βpxp,

where E(Y | X) is the expected value of Y conditional to X, and g is the link function, which252

in this case, is the identity function [23]. The model predicts the mean of the response variable253

based on the input variables, and estimates the coefficients β by maximizing the likelihood function,254

assuming that the residuals are normally distributed.255

Moreover, not only the dataset is over-dispersed but the response variables contains a lot of zeros,256

due to two main reasons: one the absence of positive eggs count outside during winter season (the so-257

called true negative) and the absence of more samples in more localities (the so-called false negative).258

In this case, zero-inflated models can handle excess zeros effectively. Zero-Inflated Negative Binomial259

(ZINB) can be effective in this case assuming that the data come from a mixture of two processes:260

one generating zeros and another generated by a negative binomial distribution [37]. Other models261

that can handle over-dispersion and the zero counts is the Generalized Additive Models for Location,262
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Scale, and Shape (GAMLSS) which is flexible in modeling different distributions, not just the mean263

but also the variance [45]. However, after applying these models to the dataset, we observed that264

they were prone to over-fitting, indicating that the model might learned the noise in the training265

data rather than generalizing the unseen data.266

On the other hand, our predictors are temporal series mostly exhibiting seasonal trends. Time se-267

ries models like Seasonal Autoregressive Integrated Moving Average (SARIMA) are commonly used268

for forecasting since it is suitable for temporal count data and can handle seasonality. SARIMA has269

been extended to the Seasonal Autoregressive Integrated Moving Average with Exogenous variables270

(SARIMAX) which can include exogenous variables giving more accurate outcomes. SARIMAX271

combines differencing, autoregression, moving averages, and seasonal components, incorporating272

as well exogenous predictors [24]. Unlike models such as the GLM, this model assumes that the273

response variable depends on its past values Yt. Also, of its past forecast errors ϵt, and external274

predictors, capturing temporal effects. This relation reads:275

Yt = ϕ1Yt−1 + · · ·+ ϕpYt−p + θ1ϵt−1 + · · ·+ θqϵt−q +Xβ + ϵt,

where Yt is the response variable at time t, ϕi are the the autoregressive (AR) parameters, θi the276

moving average (MA) parameters, X is the predictors (exogenous variables), and β is the vector of277

coefficients.278

The model depend, as well, on the order of the AR terms p, representing the number of lagged279

values of the series used in the model; the degree of differencing d, which removes trends and makes280

the series stationary; the order of the MA terms q, representing the number of lagged forecast errors.281

And, on the seasonal component, P , D, and Q that are the seasonal terms for the parameters p, d,282

and q, respectively, and on is the length of the seasonal cycle s [24]. We implemented SARIMAX in283

the R compute language by using the auto.arima( ) function that automatically selects the best284

seasonal and non-seasonal parameters p, d, q, P,D,Q, and s based on the data.285

On the other side, machine learning techniques such as Random Forest (RF) [6], Conditional286

Inference Trees (CTree), and Artificial Neural Networks (ANNs) can be also used for forecasting287

count data. However, in this study, ANNs is the least performing machine learning model, a finding288

corroborated by previous research [37] which do not advises using ANNs for count data with over-289

dispersion.290

RF builds decision trees using bootstrap samples and random feature subsets, and combines291

the predictions from all trees. Each tree is developed using a subset of features, as chosen by the292

mtry parameter [6]. The mtry parameter determines the number of predictor variables considered293

at each split, playing a crucial role in controlling over-fitting. The ntree parameter refers to the294

number of trees to be generated in the RF. Increasing the number of trees generally enhances model295

stability and robustness, although beyond a certain threshold number of trees, the additional trees296

yield to insignificant improvements in the terms of model performance. The advantage of RF lies297

in its ability to handle complex data and it is designed to mitigate over-fitting [14, 37].298

The final RF predictions for the conditional mean of Y , given the predictor X, is based on the299

average or weighted average of all the individual trees’ predictions. Thus, the RF model can be300

expressed as:301

Ê(Y | X) =
1

K

K∑
k=1

ωkhk(X)

9
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where hk(X) is the prediction of the k-th tree, and K is the total number of trees [6]. Each tree is302

built using a bootstrap sample of the original data and selects features at random from the mtry303

subset.304

On the other hand, the CTree is a non-linear method to model the relationships between predic-305

tor variables and a response variable. The CTree algorithm recursively partition the dataset based306

on the values of the predictors, using statistical tests to determine the significance of potential splits.307

The splits are chosen by testing the association between each predictor and the response, and the308

predictor with the strongest association (lowest p-value) is selected for each split.309

The conditional distribution of Y , given the predictor X, is estimated as:310

Ê(Y | X) =
J∑

j=1

Ŷjwj(X)

where Ŷj is the predicted value for the j-th terminal node, wj(X) is the weight indicating whether311

observation j falls into the same terminal node as X [42].312

While RF and CTree both rely on decision tree methodologies, they differ in their approaches.313

RF employs random feature selection to create an ensemble of trees, which enhances generalization314

but sacrifices interpretability. Conversely, CTree focuses on unbiased variable selection, offering315

better interpretability. RF generally offers better predictive performance on large and complex316

datasets, while the structural differences in the partitions can highlight the unique advantage of317

CTree.318

We implement the GLM, SARIMAX, RF and CTree models (and other models discussed in319

this section) in the R computing language (R version 3.6.3) using the packages MASS, forecast,320

randomForest and party, respectively. Nevertheless, only the four models discussed earlier will be321

presented in this study because, as previously mentioned, some models exhibit over-fitting, others322

demonstrate under-fitting (as is the case with the ANNs model), and some fail to capture any323

significant features of the data.324

2.2.3 Stationary analysis325

We applied the augmented Dickey-Fuller (ADF) test, a commonly used method for testing the326

presence of a unit root in time series data, to assess whether the time series is non-stationary. Non-327

stationarity in a time series often presents means, variances, and covariances that change over time,328

making the series unpredictable and challenging to model or forecast. Although some models, such329

as SARIMAX, can handle non-stationarity, stationary time series often yield more reliable results.330

The null hypothesis of the ADF test states that the series contains a unit root, indicating non-331

stationarity, while the alternative hypothesis suggests that the series is stationary. To test the null332

hypothesis, we computed the p-value. A p-value less than 0.05 leads us to reject the null hypothesis,333

implying stationarity.334

We conducted the ADF test using the tseries package in R. For both datasets, Gipuzkoa and335

Bizkaia, the ADF test on the predictor variable yielded a p-value of approximately 0.01 < 0.05,336

indicating that the datasets are stationary.337
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2.2.4 Evaluation metrics338

To compare the performance of statistical and machine learning models, three widely used339

evaluation metrics were employed: the Mean Absolute Error (MAE), the Root Mean Squared Error340

(RMSE), and the R-squared (R2) score.341

The MAE is calculated as:342

MAE =
1

n

n∑
i=1

|yi − ŷi| (1)

where yi and ŷi represent the observed and predicted values, respectively, and | · | denotes the343

absolute value [37]. MAE measures the average magnitude of the errors in a set of predictions,344

without considering their direction.345

The RMSE is given by:346

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)

where yi and ŷi are the observed and predicted values, respectively. RMSE gives a higher weight to347

large errors compared to MAE and is sensitive to outliers.348

The R2 score, also known as the coefficient of determination, is calculated as:349

R2 = 1− Sr

St
= 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − y)2

(3)

where, Sr is the Residual Sum of Squares, representing the sum of squared differences between the350

observed values (yi) and the predicted values (ŷi); and St is the Total Sum of Squares, calculated351

as the sum of squared differences between the observed values (yi) and their mean (y). An R2 score352

of 1 indicates that the model explains all the variability of the response variable, while a score of 0353

indicates no explanatory power.354

The selection of the best model is based on achieving the lowest MAE or RMSE values, or an355

R2 score closest to 1. In this study, the MAE is chosen as the primary evaluation metric due to its356

suitability for machine learning models [37].357

3 Results358

3.1 Exploratory statistical analysis359

Basic exploratory statistical analysis was performed, starting with descriptive statistics for both360

the response and predictor variables (after pre-processing and smoothing). All variables in the361

dataset were found to be skewed and over-dispersed. The null hypothesis of normal distribution362

was rejected based on the results of the Kolmogorov-Smirnov test and the Shapiro-Wilk test, both363

of which yielded p-values < 0.05, indicating significant deviation from normality for all variables.364

For the Gipuzkoa dataset:365

- Eggs count had a mean of 25 and a median of 0.366

- Temperature (in ◦C) had a mean of 14.6 and a median of 14.2.367

- Relative air humidity (in %) had a mean of 79.9 and a median of 80.8.368

- Precipitation (in mm) had a mean of 57.6 and a median of 49.4.369
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For the Bizkaia dataset:370

- Eggs count had a mean of 16 and a median of 0.371

- Temperature (in ◦C) had a mean of 15.5 and a median of 14.8.372

- Relative air humidity (in %) had a mean of 73.6 and a median of 72.8.373

- Precipitation (in mm) had a mean of 37.4 and a median of 27.1.374

Additional details are provided in the Supplementary Material (see Figure 10), as well for the375

province of Araba.376

The relationship between meteorological variables and the number of mosquito eggs was explored377

using scatter plots (see Figures 3(a)-(c) for Gipuzkoa and 3(d)-(f) for Bizkaia). No linear relationship378

was confirmed, as indicated by Pearson’s correlation index. Nevertheless, it is well-known that the379

combination of high temperatures (22 ◦C to 27 ◦C) and high humidity increases oviposition rates380

(egg-laying) in adult female mosquitoes [20, 25]. This association is reflected in Figures 3(a) and381

(b) for Gipuzkoa, and Figures 3(d) and (e) for Bizkaia.382

As described in Section 2.2.1, the time series data were smoothed using a central moving average383

to reduce short-term fluctuations and noise. This preprocessing step helped mitigate spurious384

short-term correlations and revealed underlying long-term relationships between variables, thereby385

increasing correlation indexes.386

On the other hand, Spearman’s correlation analysis confirmed a strong monotonic relationship387

between the number of eggs and temperature, with a correlation index ≥ 0.72 (see Figures 4(a) for388

Gipuzkoa and 4(b) for Bizkaia). Although no significant correlations were found between egg counts389

and the other climate variables, the direction and strength of these relationships are displayed in390

Figures 4(a) and 4(b). Specifically, As humidity increases, the number of eggs increases, showing391

an intermediate correlation. In contrast, as accumulated precipitation increases, the number of eggs392

decreases, albeit with very low or negligible correlation.393

In addition, we have created lagged time series for all the meteorological variables (see Fig-394

ure 5(a)-(c) and 5(d)-(f)), and we evaluate the monotonic correlation using Spearman correlation,395

highlighting the time lag at which the highest index value occurs (see Figure 11(a) and 12(a) in396

the Supplementary Material A). At the time lag at which the highest correlation value occurs, the397

lagged time series will be used as predictor variables (see Figure 11(b) and 12(b) for Gipuzkoa and398

Bizkaia, respectively, in the Supplementary Material A).399

For instance, Figure 5(a) shows that the highest correlation value between egg counts and400

temperature series, in Gipuzkoa, occurs at lag -1. This could imply that the egg production series is401

most strongly correlated with the temperature series 2 weeks (1 period) earlier. Therefore, changes402

in temperature might have a leading effect on egg production, where temperature changes influence403

egg production with a delay of 1 period (2 weeks). For humidity (Figure 5(b)), the highest correlation404

occurs at 0 units (0 weeks) with a (low) positive correlation, while for precipitation, (Figure 5(c)),405

the highest correlation occurs at lag -5 units (10 weeks) with a negative (low) correlation.406

For Bizkaia, Figure 5(d) shows that the highest correlation value between egg counts and tem-407

perature series occurs at lag -1. This could imply that the egg production series is most strongly408

correlated with the temperature series 2 weeks (1 period) earlier. Therefore, changes in temperature409

might have a leading effect on egg production, where temperature changes influence egg production410

with a delay of 1 period (2 weeks). For humidity, (Figure 5(e)), the highest correlation occurs at411
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Figure 3: Average temperature (in ◦C) versus the number of collected mosquito eggs, in (a), (d).
Average relative air humidity (in %) versus the number of collected mosquito eggs, in (b), (e).
Accumulated precipitation (in mm) versus the number of collected mosquito eggs, (c), (f). Data
gather biweekly, in Gipuzkoa and Bizkaia, respectively.
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Figure 4: Spearman correlation matrix between weather features and the number of mosquito eggs.
The matrix shows a high correlation between the number of eggs and temperature (index = 0.72
for Gipuzkoa and index = 0.8 for Bizkaia), but no significant correlation with the other features.

lag -2 units (4 weeks) with a positive correlation, while for precipitation, (Figure 5(f)), the highest412

correlation occurs at lag -5 units (10 weeks) with a negative correlation.413

High correlation is shown between egg counts and temperature at lag -1, with an index value of414
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Figure 5: Spearman correlation between the lagged time series of weather features and the number
of mosquito eggs, with a time lag of 1 unit (2 weeks). For temperature, the maximum correlation
occurs at a lag of −1 unit, in (a), (c). For humidity, the maximum correlation occurs at a lag
of 0 units and −2 units, for Gipuzkoa and Bizkaia, in (b), (e) respectively. For precipitation, the
maximum correlation occurs at a lag of −5 units, in (c), (f).

0.76 and 0.83 for Gipuzkoa and Bizkaia, respectively (see Figures 11(b) and 12(b) in the Supple-415

mentary Material A). While intermediate to low correlation appears to be positive and correlated416

between humidity and egg counts, Figures 3(b) and 3(e) show that the highest egg count occurs417

when humidity percentages are between 70% and 80%.418

Moreover, a low negative correlation between precipitation and egg counts was found (see Figures419

5(c) and 5(f)). Although the strength of the correlation is considered low, the opposite direction in420

the correlation for precipitation approximately 10 weeks prior to egg collection (almost 3 months421

earlier) can be explained by the fact that periods of high precipitation temporarily reduce the422

number of females actively searching for a host and, therefore, laying eggs [18]. On the other423

hand, drier periods occurring 10 weeks before the collection, increase the egg counts. This can be424

attributed to the fact that mosquito eggs are extremely resistant. They can remain viable in a dry425

state within a container for 300 to 400 days without direct water contact, allowing them to stay in426

ovitraps for extended periods without hatching [31].427

3.2 Fitting and error analysis428

Prior to model fitting, the dataset was divided into training and testing sets. For Gipuzkoa,429

the training dataset includes data from 2017 to 2022 (85.71%), while the test dataset consists of430

data points from the year 2023 (see Figure 6). In contrast, for Bizkaia, the training dataset covers431

the period from 2018 to 2022 (83.33%), with 2023 as the test dataset (see Figure 7). The choice of432
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yearly data is related to the frequency of data availability, while the starting point corresponds to433

the need for cleaning the missing values (NA not available) due to the lagged versions of variables.434

We train several models on the training dataset, considering, lagged version of the independent435

variables, as well as including and excluding lagged version of the eggs count variable. The major-436

ity of models performed better including the proxy lagged version. Here we include only models437

with the best performances. Which are: the Random Forest (RF) model, the Generalized Linear438

Model (GLM) with Gaussian distribution (here abbreviated by GLMG), the Seasonal Autoregres-439

sive Integrated Moving Average with Exogenous variables (SARIMAX) model and, the Conditional440

Inference Trees (CTree) (here abbreviated by CT).441
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Model fit and predictions vs data − Gipuzkoa

Evaluation Metrics
Model MAE

Train
MAE
Test

RMSE
Train

RMSE
Test

R²
Train

R² Test

RF 2.59 41.67 5.73 73.94 0.98 0.60
SARIMAX 4.77 38.73 9.85 61.03 0.94 0.73
GLM 6.09 29.37 12.32 45.71 0.90 0.85
CT 7.62 53.51 17.47 95.49 0.81 0.34

Figure 6: Comparison of actual data with the fitted and test values for Gipuzkoa. The actual data is
represented by open black circles, while the fitted values are shown as solid lines and the test values
as dashed lines. The models are represented as follows: in blue, the Random Forest (RF) model
(ntree = 600, mtry= 5); in red, the Generalized Linear Model (GLMG); in green, the SARIMAX
model; and in purple, the Conditional Inference Trees (CT) model (ntree = 500, mtry = 3). The
vertical gray line separates the training dataset (2017–2022) from the test dataset (2023). The table
shows the error metrics for each chosen model, on the training and test datasets for Gipuzkoa.

We implement the GLMG, SARIMAX, RF and CT models in the R computing language (R442

version 3.6.3) using the glm( ), auto.arima(), randomForest() and cforest() function, respec-443

tively. We employed and compare the models on the training dataset and on the testing dataset.444

Later, we evaluate each models performance in the datasets using MAE, RMSE and R2 metrics.445

Based on the evaluation metrics the best performance on the training dataset for Gipuzkua is the446

RF model. The model could explain 98% of the variance in the data, according to the R2 evaluation447

While in the test dataset 60%. For the test dataset GLMG was the model that performed better,448
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explaining 85% of the variance in the dataset, followed by the SARIMAX model (see Figure 6).449

Although the RF model performed best during training, its predictions ranked in third place,450

which might suggests an over-fitting. On the other hand, even though GLMG did not top the451

training performance, it gave better predictions, making it a more reliable model overall. This452

suggests that the simplicity of GLMG helped it generalize better to the unseen data, while RF may453

have captured the noise from the training set, which could reduce the predictive accuracy.454

In the case of Bizkaia, the RF model performed best on the training dataset, explaining 98%455

of the variance, as indicated by the R2 value. However, on the test dataset, it explained only 15%456

of the variance. For the test dataset, the GLMG model performed the best, explaining 81% of the457

variance, closely followed by the SARIMAX model with 80% (see Figure 7).458

Among the four models evaluated, the CT model performed the worst, based on all error metrics459

for both the training and test datasets. Additionally, the CT model was unable to explain the test460

dataset for Bizkaia.
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Evaluation Metrics
Model MAE

Train
MAE
Test

RMSE
Train

RMSE
Test

R²
Train

R² Test

RF 1.16 57.28 2.84 97.54 0.98 0.15
SARIMAX 2.34 30.23 4.43 47.83 0.95 0.80
GLM 3.31 27.43 5.94 46.43 0.90 0.81
CT 3.97 64.68 8.28 109.37 0.81 -0.07

Figure 7: Actual data versus the fitted and test values of the models for Bizkaia. The actual data is
represented by open black circles, while the fitted values of each model are shown with solid lines,
and the test values with dashed lines. In blue, the RF model (ntree = 600, mtry = 5); in red, the
GLMG; in green, the SARIMAX model; and in purple, the CT model (ntree = 500, mtry = 3).
The vertical gray line delineates the training dataset (2018–2022) from the test dataset (2023). The
table shows the error metrics for each chosen model, on the training and test datasets for Bizkaia.

461

The poor performance of the models on the Bizkaia test set, as shown in the time series, can462

be attributed to differences in the characteristics of the training and test data. Notably, the mean463

value of the training data is significantly lower than that of the test data, with egg counts in 2023464

being unusually high. This discrepancy between the training and test datasets likely contributed to465
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the models’ suboptimal performance for Bizkaia.466

After training, testing, and evaluating each model, we used the models with the best performance467

to predict future Aedes invasive mosquito abundance. For this, we included 2023 data points in468

the training dataset and, using the historical time series data along with lagged versions of the469

variables, we forecast values based on the last observations.470

Figure 8 shows the fitted values and predictions for mosquito abundance in Gipuzkoa for 2024,471

while Figure 9 presents the same for Bizkaia. Only the three models with the best performance are472

displayed. It is noteworthy and expected that extending the training dataset length improved the473

performance of all models. This highlights the importance of maintaining entomological surveillance474

for more accurate future predictions.475
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Model Predictions − Gipuzkoa

Evaluation Metrics in the training dataset
Model MAE RMSE R²
RF 3.72 8.70 0.98
SARIMAX 6.79 14.02 0.95
GLM 9.60 20.06 0.90

Figure 8: The actual data versus the fitted and predicted values for Gipuzkoa. The actual data is
represented by a solid black line. The fitted values for each model are shown as solid colored lines,
and the predicted values are displayed as dashed lines. In blue, the RF model (ntree = 600, mtry
= 5); in brown, the GLMG model; and in green, the SARIMAX model. The vertical black line
delineates the training dataset (from 2017 to 2023) from the forecasted period for the year 2024.
The table shows Evaluation of error metrics in the training dataset (for Gipuzkoa) showing the best
model performance.

The error analysis for the training dataset is shown in Figure 8 and Figure 9. The results476

indicate that, across different metrics, the RF model provided the best fit, explaining 98% of the477

variance in both Gipuzkoa and Bizkaia, making it suitable for forecasting. The SARIMAX model478

also performed well, explaining 95% and 94% of the variance in Gipuzkoa and Bizkaia, respectively.479

At the municipal level (see more details in Supplementary Material B), the RF model performed480

best for Irun (in Gipuzkoa), while for Bilbao (in Bizkaia), the SARIMAX model provided the best481

fit, explaining 97% of the variance in the training dataset.482

Furthermore, we estimate and expect that mosquito abundance in 2024 will be lower compared483
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to the previous year, both at the provincial and municipal levels. This reduction may be due to484

various factors, such as changes in optimal environmental conditions and potential variations in485

weather patterns.486
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Model Predictions − Bizkaia

Evaluation Metrics in the training dataset
Model MAE RMSE R²
RF 2.81 7.91 0.98
SARIMAX 5.27 12.44 0.94
GLM 7.47 18.82 0.87

Figure 9: The actual data versus the fitted and predicted values of the model for Bizkaia. The
actual data is represented by a solid black line, while the fitted values of each model are shown as
solid colored lines, and the predicted values as dashed colored lines. In blue, the RF model (ntree=
600, mtry = 5); in brown, the GLMG model; and in green, the SARIMAX model. The vertical
black line delineates the training dataset (from 2018 to 2023) from the forecasted period for the year
2024. The table shows the evaluation of error metrics in the training dataset (for Bizkaia) showing
the best model performance.

4 Discussions and conclusions487

The Basque Country, an autonomous community in northern Spain, has experienced an increase488

in imported cases of mosquito-borne diseases, along with the establishment and expansion of Aedes489

albopictus and Aedes japonicus mosquitoes. This study uses egg count data retrieved from ovitraps490

monitored by the regional surveillance program conducted by the Department of Public Health of491

the Basque Government and the public agency NEIKER at various locations across the Basque492

provinces. We employ statistical models and machine learning techniques to model the relation-493

ship between the recorded mosquito ovitrap egg counts and climate factors such as temperature,494

humidity, and precipitation.495

Before selecting the model, statistical analysis was conducted on the dataset to examine the496

influence of environmental factors on the predictor variables. We compared different models, in-497

cluding versions with and without lagged egg counts as a proxy. Importantly, incorporating lagged498

versions of all independent and dependent variables improved the performance of most models.499
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We found that forecasting mosquito abundance is particularly challenging in non-endemic areas,500

where no local mosquito-borne cases have been reported. While environmental factors are the501

primary drivers of mosquito abundance and distribution, the time series data are not always linearly502

correlated, which hinder the improvement of forecasting efforts. Nevertheless, temperature shows503

to be the most important climate feature, while precipitation had less influence. As previously504

stated, the availability of human water sources appears to have a greater impact on the breeding505

of invasive Aedes mosquitoes than natural rainfall, as these mosquitoes often rely on artificial506

containers near human habitats [34]. Although heavy rainfall can disrupt larval development by507

washing out breeding sites, the connection between precipitation and mosquito populations varies508

depending on local climate conditions [34].509

Additionally, the inclusion of egg abundance proved to be a key predictor. Our findings confirm510

that incorporating mosquito-related data improves the fitting and forecasting of predictive models.511

Consequently, continuous monitoring of mosquitoes and egg abundance by public health systems is512

essential for more accurate forecasting and effective control measures.513

Furthermore, selecting the appropriate lagged variables and ovitrap egg counts, we validated514

the models using different evaluation metrics. Based on metrics such as Root Mean Squared Error515

(RMSE) and Mean Absolute Error (MAE), the Random Forest (RF) model outperformed the oth-516

ers, followed by the Seasonal Autoregressive Integrated Moving Average with Exogenous variables517

(SARIMAX) model. Among the models evaluated, RF performed best on the training data, while518

the Generalized Linear Model (GLM) performed best on the testing data, with SARIMAX in second519

place.520

The poor performance of the models on the Bizkaia test set can be attributed to differences in521

the characteristics of the training and test data. Notably, the mean value of the training data is522

significantly lower than that of the test data, with egg counts in 2023 being unusually high. This523

discrepancy between the training and test datasets likely contributed to the models’ suboptimal524

performance for Bizkaia. Nevertheless, for predicting egg abundance in the municipality of Bilbao525

(Bizkaia), SARIMAX demonstrated superior performance.526

Finally, we applied the best-performing models to estimate Aedes invasive mosquito abundance527

in the Basque Country provinces for the upcoming year. By analyzing mosquito egg counts and528

environmental factors, this study improves and contributes the understanding of seasonal influences529

on mosquito abundance in a non-endemic region with a maritime climate, characterized by cooler530

temperatures, rainy weather, and the presence of competent mosquito vectors. These predictions531

could be used to inform public health strategies and mosquito control efforts, thereby helping to532

prevent the spread of mosquito-borne diseases in non-endemic regions.533

These findings provide valuable insights for future research on assessing the risk of arbovirosis534

outbreaks in non-endemic regions like the Basque Country. By considering factors such as imported535

cases, mosquito abundance, and seasonal variations, risk evaluations for mosquito-borne diseases can536

be refined. Nevertheless, limitations remain in generalizing these results across the diverse areas537

within each province. For example, Bizkaia, which houses the largest human population in the538

Basque Country, includes regions with distinct micro-climates that may influence invasive mosquito539

abundance differently.540

Moreover, by considering shorter temporal intervals, such as weekly data collection (depend-541

ing on vector monitoring schedules and data availability), would improve the precision of vector542

control strategies and strengthen the assessment of mosquito-borne disease risks. However, this543
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would depend mostly on the vector population monitoring intervals and the availability of data.544

Furthermore, future improvements in this research should consider a deeper analysis of the meth-545

ods for partitioning the dataset into training and testing sets, which might enhance the model’s546

performance.547

This research aims to offer an estimate of mosquito population abundance and contribute to548

the development of vector control strategies, thus mitigating the risks of mosquito-borne infections,549

particularly considering the region’s specific environmental conditions. Furthermore, this study550

highlights the critical need for ongoing, localized surveillance to better understand and address the551

expanding threat of mosquito-borne diseases.552
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Supplementary Material727

A. Dataset summary728

A.1. Climatic variables per province729

Figure 10 shows the distribution of climatic data, including temperature, humidity, and precip-730

itation, across the provinces of Gipuzkoa, Bizkaia, and Araba. The graphs summarize the weather731

variables, highlighting outliers (represented as single points or circular dots) in the dataset. The732

horizontal line dividing the box in two represents the median value of the time series for each climatic733

variable.734
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Figure 10: Distribution of time series values for average temperature (◦C), relative air humidity
(%), and cumulative precipitation (mm) over an interval of 14 days, for all three provinces of the
Basque Country.

A.2. Lagged time series for Gipuzkoa735

Figure 11 (a) shows the monotonic correlation, using Spearman correlation, between the climatic736

variables and the egg count time series for Gipuzkoa. Figure 11 (b) highlights the time lag at which737

the highest correlation occurs. At this time lag, the lagged time series will be used as predictors.738
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Figure 11: (a) Spearman correlation indices for the time lag between temperature, humidity, precip-
itation, and the number of eggs. (b) The highest Spearman correlation values between the lagged
time series.

26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 2, 2025. ; https://doi.org/10.1101/2025.01.02.25319885doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.02.25319885
http://creativecommons.org/licenses/by-nc-nd/4.0/


A.3. Lagged time series for Bizkaia739

Figure 12 (a) shows the monotonic correlation using Spearman correlation between the climatic740

variables and the egg count time series for Gipuzkoa. Figure 12 (b) highlights the time lag at which741

the highest correlation value occurs. The lagged time series corresponding to this highest correlation742

will be used as predictor variables.743
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Figure 12: (a) Spearman correlation indices for time lags between temperature, humidity, and
precipitation with the number of eggs. (b) The highest Spearman correlation values for the lagged
time series.

B. Data selection per municipalities744

Due to the dispersed data with many zero values for egg counts and the lack of sufficient745

information to create a reliable training dataset at the municipality level, we conducted the analysis746

at the provincial level. However, we selected one municipality from each province to present the747

results.748

For Gipuzkoa, we selected Irun, a municipality of interest due to its proximity to the French749

border and the frequent movement of travelers. Irun also had more positive ovitraps during the750

analysis period compared to the capital, Donostia/San Sebastián. The C084 weather station in751

Irun was selected over C083, as the latter’s dataset lacked temperature, precipitation, and humidity752

data.753

For Bizkaia, we chose Bilbao as the municipality, rather than larger municipalities like Barakaldo754

or Basauri, since both lack meteorological stations within their boundaries. For Bilbao, station C0B0755

had no data on precipitation or temperature, while station C039, located in Deusto, provided data756

from 2016 to 2021, and station C03A began recording data in December 2021. To cover the entire757

study period, data from both C039 and C03A were used in the initial analysis.758

For Araba, we chose the municipality of Laudio/Llodio. The primary reason for selecting this759

municipality is that no egg counts were recorded in the ovitraps in the capital, Vitoria. For weather760

data, two meteorological stations in Laudio/Llodio were listed in the database (see more details in761

[29]): station C067, which was selected, and station C027, which was not included due to missing762

data for the chosen period.763
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Egg count data were collected at the municipality level, disregarding specific ovitrap locations.764

The dataset was constructed by averaging the highest three egg counts from the ovitraps for each765

municipality every 14 days (bi-weekly). This approach was necessary because the number of mon-766

itored ovitraps varied throughout the study period. We selected the top three counts since, on767

average, no more than 10 ovitraps were placed in each municipality every 14 days. Weather data768

were aggregated by municipality on a daily basis. A dataset was then constructed containing the769

average temperature, average humidity, and cumulative precipitation for the previous 14 days.
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Figure 13: Number of mosquito eggs collected, in (a), (c), (f), and average temperature (◦C), relative
air humidity (%), and cumulative precipitation (mm), in (b), (d), (f). For Irun (in Gipuzkoa), Bilbao
(in Bizkaia) and Lodio (in Araba).
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This information was combined into a single dataset for each municipality. The time series of770

egg counts, average temperature, humidity, and cumulative precipitation are presented in Figures771

13(a)-(b), 13(c)-(d), and 13(e)-(f).772

For further analysis, we will focus on the municipalities of Irun and Bilbao, since Laudio has773

only recorded positive ovitraps from 2021 onward. The same methodology and analysis applied at774

the provincial scale will now be carried out at the municipality scale.775

B.1. Irun776

Statistical analysis777

For Irun, Figure 14 shows the relationship between meteorological variables and number of778

mosquito eggs count using scatter plots. While Figure 15 shows the monotonic correlation using779

Spearman correlation between eggs counts and the time lagged versions of the climate features. For780

temperature, maximum correlation occurs at -1 units (2 weeks). For humidity, maximum occurs at781

-2 units. And for precipitation, maximum correlation occurs at -5 units, with negative correlation.782
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Figure 14: (a) Average temperature (in ◦C) versus number of collected mosquitoes eggs. As tem-
perature increases, the number of eggs increases. (b) Average air relative humidity (in %) versus
number of collected mosquitoes eggs. As humidity increases, the number of eggs increases. (c)
Accumulated precipitation (in mm) versus number of collected mosquitoes eggs. As precipitation
increases, the number of eggs decreases.

29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 2, 2025. ; https://doi.org/10.1101/2025.01.02.25319885doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.02.25319885
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.2

0.4

0.6

0.8

−3 0 3
Time lag

S
p
e
a
rm

a
n
 c

o
rr

e
la

ti
o
n

Cross−correlation between temperature and egg count − Irun

(a)

0.0

0.1

0.2

0.3

−3 0 3
Time lag

S
p
e
a
rm

a
n
 c

o
rr

e
la

ti
o
n

Cross−correlation between humidity and egg count − Irun

(b)

−0.2

−0.1

0.0

0.1

0.2

−3 0 3
Time lag

S
p
e
a
rm

a
n
 c

o
rr

e
la

ti
o
n

Cross−correlation between precipitation and egg count − Irun

(c)

Figure 15: Spearman correlation between the weather feature time series and the number of
mosquito eggs, with a time lag of 1 unit (2 weeks). (a) For temperature, the maximum corre-
lation occurs at a lag of −1 unit. (b) For humidity, the maximum correlation occurs at a lag of −2
units. (c) For precipitation, the maximum negative correlation occurs at a lag of −5 units.

Fitting783

We implemented the GLMG, SARIMAX, RF, and CTmodels using the R programming language784

for the Irun dataset. The training dataset spans from 2017 to 2022, while the test dataset consists785

of data from 2023, as shown in Figure 16. We compared the models’ performance on both the786

training and testing datasets, evaluating them using the Mean Absolute Error (MAE), Root Mean787

Squared Error (RMSE), and R-squared score (R²), as detailed in Table 1.788
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Figure 16: Comparison of actual data versus fitted and predicted values for the Irun dataset. The
actual data is represented by open black circles, while the fitted values for each model are shown
as solid lines and the predicted (test) values as dashed lines. The models are colored as follows:
RF model (ntree = 600, mtry= 5) in blue, GLMG model in red, SARIMAX model in green, and
CT model (ntree = 500, mtry = 3) in purple. The vertical gray line separates the training dataset
(2017–2022) from the testing dataset (2023).
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Evaluation Metrics
Model MAE

Train
MAE
Test

RMSE
Train

RMSE
Test

R²
Train

R² Test

RF 4.00 43.27 10.22 68.84 0.97 0.70
SARIMAX 8.45 37.55 17.32 57.35 0.91 0.79
GLM 10.10 33.51 21.57 52.87 0.86 0.82
CT 11.77 54.21 25.86 89.16 0.80 0.49

Table 1: Evaluation of error metrics for each model on the training and testing datasets (for Irun).
MAE represents the Mean Absolute Error, RMSE the Root Mean Squared Error, and R2 the R-
squared score.

Forecasting789

Subsequently, we used the best-performing trained models to forecast future Aedes invasive790

mosquito abundance in Irun. To do this, we included 2023 data points as part of the training791

dataset. Using the historical time series data and their lagged versions, we predicted future values792

based on the most recent observations (see Figure 17). The error analysis for the training dataset793

is presented in Table 2, which shows that the Random Forest (RF) model performed the best,794

explaining 97% of the variance in the training dataset.795
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Figure 17: The actual data versus the fitted and predicted values of the model for Irun. The data is
represented by a solid black line, with fitted values shown as solid lines in color and predicted values
as dashed lines. In blue, the RF model (ntree = 600, mtry = 5); in brown, the GLMG model; and
in green, the SARIMAX model. The vertical black line separates the training dataset (from 2017
to 2023) from the forecasted period for the year 2024.

31

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 2, 2025. ; https://doi.org/10.1101/2025.01.02.25319885doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.02.25319885
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evaluation Metrics in the training dataset
Model MAE RMSE R²
RF 5.90 12.17 0.97
SARIMAX 11.89 23.56 0.90
GLM 13.68 27.71 0.86

Table 2: Evaluation of error metrics in the training dataset (for Irun), highlighting the best model
performance. MAE refers to the Mean Absolute Error, RMSE stands for the Root Mean Squared
Error, and R2 represents the R-squared score.

B.1. Bilbao796

Statistical Analysis797

For Bilbao, Figure 18 presents the relationship between meteorological variables and mosquito798

egg counts using scatter plots. Figure 19 illustrates the monotonic correlation, calculated using799

Spearman’s correlation, between egg counts and the time-lagged versions of the climate features.800
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Figure 18: (a) Average temperature (in ◦C) versus number of collected mosquito eggs. As temper-
ature increases, the number of eggs increases. (b) Average relative humidity (in %) versus number
of collected mosquito eggs. As humidity increases, the number of eggs increases. (c) Accumulated
precipitation (in mm) versus number of collected mosquito eggs. As precipitation increases, the
number of eggs decreases.
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Figure 19: Spearman correlation between the weather features time series and number of mosquito
eggs with a time lag of 1 unit (2 weeks). For (a) temperature, maximum correlation occurs at −1
units. For (b) humidity, maximum correlation occurs at −3 units. For (c) precipitation, maximum
correlation occurs at −5 units.
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Fitting801

We also implemented the GLMG, SARIMAX, RF, and CT models for the Bilbao dataset. The802

training dataset consists of data from the year 2019 to 2022, while the test dataset consists of data803

points from 2023, as shown in Figure 20. We compare the models on both the training and testing804

datasets, evaluating each model’s performance using the MAE, RMSE, and R² metrics, as detailed805

in Table 3.806
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Figure 20: The actual data versus the fitted and tested values of the model for Irun. The data is
represented by open black circles, while the fitted values of each model are shown in solid lines and
the predicted (tested) values in dashed lines. In blue, the RF model (ntree= 600, mtry = 5); in
red, the GLMG model; in green, the SARIMAX model; and in purple, the CT model (ntree =
500, mtry = 3). The vertical gray line delineates the training dataset (from 2017 to 2022) from the
testing dataset (2023).

Evaluation Metrics
Model MAE

Train
MAE
Test

RMSE
Train

RMSE
Test

R²
Train

R² Test

RF 0.57 81.38 0.99 150.86 0.95 -0.32
SARIMAX 1.10 45.02 1.75 81.82 0.86 0.61
GLM 1.25 36.78 2.25 64.42 0.76 0.76
CT 1.41 82.00 2.72 152.01 0.65 -0.34

Table 3: Different evaluation error metrics in the train and in the test dataset (for Bilbao) of each
model chosen. MAE for the Mean Absolute Error, RMSE for the Root Mean Squared Error, and
R2 representing the R-squared score.

Forecasting807

The best-trained model was then used to predict future Aedes invasive mosquito abundance in808

Bilbao using the historical time series data and lagged versions, as shown in Figure 21. The error809

analysis for the training dataset is presented in Table 4, indicating that the model with the best810

performance is the SARIMAX model, which explains 97% of the variability in the training dataset.811
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Figure 21: Actual data versus fitted and predicted values for Bilbao. The actual data is represented
by a solid black line. The fitted values for each model are shown in solid colored lines, while
predicted values are in dashed lines. The RF model is shown in blue (ntree = 600, mtry = 5), the
GLMG model in brown, and the SARIMAX model in green. The vertical black line separates the
training dataset (from 2017 to 2023) from the forecasted period for the year 2024.

Evaluation Metrics in the training dataset
Model MAE RMSE R²
RF 4.98 15.28 0.95
SARIMAX 4.63 10.57 0.97
GLM 9.45 24.23 0.87

Table 4: Evaluation error metrics for the training dataset (for Bilbao), showing the best model
performance. MAE represents the Mean Absolute Error, RMSE is the Root Mean Squared Error,
and R2 denotes the R-squared score.
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