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ABSTRACT 11 

The COVID-19 pandemic highlighted the importance of early detection of illness and the need 12 

for health monitoring solutions outside of the hospital setting. We have previously demonstrated 13 

a real-time system to identify COVID-19 infection before diagnostic testing 1, that was powered 14 

by commercial-off-the-shelf wearables and machine learning models trained with wearable 15 

physiological data from COVID-19 cases outside of hospitals. However, these types of solutions 16 

were not readily available at the onset nor during the early outbreak of a new infectious disease 17 

when preventing infection transmission was critical, due to a lack of pathogen-specific illness 18 

data to train the machine learning models. This study investigated whether a pretrained clinical 19 

decision support algorithm for predicting hospital-acquired infection (predating COVID-19) 20 

could be readily adapted to detect early signs of COVID-19 infection from wearable 21 

physiological signals collected in an unconstrained out-of-hospital setting. A baseline 22 

comparison where the pretrained model was applied directly to the wearable physiological data 23 

resulted a performance of AUROC = 0.52 in predicting COVID-19 infection. After controlling 24 

for contextual effects and applying an unsupervised dataset shift transformation derived from a 25 

small set of wearable data from healthy individuals, we found that the model performance 26 

improved, achieving an AUROC of 0.74, and it detected COVID-19 infection on average 2 days 27 

prior to diagnostic testing. Our results suggest that it is possible to deploy a wearable 28 

physiological monitoring system with an infection prediction model pretrained from inpatient 29 

data, to readily detect out-of-hospital illness at the emergence of a new infectious disease 30 

outbreak. 31 
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INTRODUCTION 35 

The COVID-19 pandemic highlighted the importance of early disease detection and isolation in 36 

order to prevent the spread of infection 2–4. It is desirable, therefore, to have an effective system 37 

to continuously monitor an individual’s health state. Health monitoring systems consisting of 38 

wearable devices and artificial intelligence (AI) tools are portable, minimally invasive, and were 39 

shown to be able to detect COVID-19 infections 1,5–13. For example, we developed a real-time 40 

infection prediction system using commercial-off-the-shelf (COTS) wearable devices and AI, 41 

which was capable of identifying COVID-19 infection on average 2.3 days before diagnostic 42 

testing with an Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.82 1. 43 

Two other studies reported comparable performance from wearable physiological monitoring 44 

with AUROC=0.80 5 and AUROC=0.77 14, respectively.  45 

 

These health monitoring systems are typically powered by machine learning (ML) models 1,5–7,14 46 

or statistical methods 10 that are sensitive to physiological changes caused by COVID-19 47 

infection. The models gain intelligence through supervised learning on physiological data 48 

collected from the target populations of COVID-19 infection cases. However, training these 49 

models require data from a significant number of COVID-19 positive cases, which is challenging 50 

because infection data collection is time consuming and costly. Additional challenges of data 51 

collection include user compliance, physiologic context effects (such as traveling, intense 52 

exercises, etc.), and uncertainties in the timing of infection onset. These models cannot therefore 53 

be easily developed when they are most needed, such as at the beginning of novel infection 54 

outbreaks like the COVID-19 pandemic. 55 
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To this end, we propose that clinical decision support algorithms developed from data collected 56 

in hospitals can be utilized to significantly accelerate or provide a minimum viable starting point 57 

for wearable systems to monitor for infections in unconstrained, real-world environments. We 58 

previously developed a machine learning model that can identify hospital-acquired infection 59 

(HAI) patients up to 48 hours before clinical suspicion of infection. The model used 60 

physiological measurements from hospital grade devices and demographic information collected 61 

in the hospital 15. Here, we hypothesized that such infection prediction algorithms trained from 62 

hospital dataset (referred to in this article as the “hospital model”) can predict COVID-19 63 

infection from the same set of physiological measurements collected through wearables outside 64 

of hospitals, provided that dataset shift 16 – the changes in the joint distribution of the 65 

physiological features and the infectious disease labels between hospital and wearable datasets – 66 

are properly addressed. More specifically, if we define our physiological input features as X and 67 

our infectious disease labels as Y, we can typically have three types of dataset shifts: 68 

1. Covariate shift: P(X) changes but P(Y|X) and P(Y) remain the same. 69 

2. Label shift: P(Y) changes but P(Y|X) and P(X) remain the same. 70 

3. Concept drift: P(Y|X) changes but P(X) and P(Y) remain the same. 71 

where P(X), P(Y) and P(Y|X) are the probability distribution of X, probability distribution of Y, 72 

and the conditional probability distribution of Y given X, respectively.  73 

 

In this study, we first performed retrospective analyses to identify sources of dataset shift 74 

between hospital dataset and wearable dataset, and then described two correction techniques – 75 

removing contextual confounders and applying a monotonic feature transformation – to reduce 76 

the differences in data distribution between the two datasets. We found that our infection 77 
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prediction model trained from the hospital dataset performed best after applying both correction 78 

techniques, with an AUROC of 0.74, and detection of COVID-19 infection on average 2 days 79 

prior to diagnostic testing. Only a small sample of wearable data from healthy subjects (2 weeks 80 

of data from 25 healthy subjects) was required for the feature transformation. Our results suggest 81 

that a minimum viable wearable physiological monitoring system that detects early signs of 82 

COVID-19 infection can be developed and deployed without the need for data from COVID-19 83 

cases. 84 

 

METHODS 85 

Description of datasets 86 

The two hospital datasets - MIMIC-III (Medical Information Mart for Intensive Care III) 17 and 87 

Banner Health data - used to train the infection prediction model were described previously 15. 88 

The two datasets were combined in this study to create a single hospital dataset to train the 89 

infection prediction model. Both MIMIC-III and Banner Health data comprise de-identified 90 

health-related data from patients during their hospital stay. The MIMIC-III data we used was 91 

from patients who stayed in critical care units of the Beth Israel Deaconess Medical Center 92 

(Boston, MA) between 2001 and 2012. Each patient encounter included in this study was from 93 

the MIMIC-III Waveform Database Matched Subset 18. The Banner Health data was from 94 

patients who stayed in critical care units or low-acuity settings such as general wards in Banner 95 

Health hospitals (Phoenix, AZ). The patient cohort included in this study was collected between 96 

2016 and 2017, where waveform records were available for a subset of the patient encounters. 97 
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The wearable dataset used to test hospital model’s ability to detect COVID-19 infection was 98 

collected in the framework of a study described previously 1 and an extension of the study which 99 

focused on algorithm improvement and augmentation. This dataset comprises de-identified 100 

COTS wearable physiological and activity data from Garmin watch and Oura ring devices, 101 

collected from active military personnel recruited from multiple US Department of Defense 102 

(DoD) sites between June 2020 and May 2022. This dataset also included symptoms and 103 

diagnostic tests information from self-reported daily survey questionnaires.  104 

 

Ethical approval  105 

The MIMIC-III project was approved by the Institutional Review Boards of Beth Israel 106 

Deaconess Medical Center and the Massachusetts Institute of Technology (Cambridge, MA). 107 

The use of Banner Health data was a part of a retrospective deterioration detection study 108 

approved by the Institutional Review Board of Banner Health and by the Philips Internal 109 

Committee for Biomedical Experiments. For both hospital datasets, requirements for individual 110 

subject consent were waived because the project did not impact clinical care, was no greater than 111 

minimal risk, and all protected health information was removed from the limited dataset used in 112 

this study. 113 

 

The collection and use of the wearable dataset was approved by the Institutional Review Boards 114 

of the US Department of Defense. Informed consent was obtained from all participants. 115 

 

Cohort selection 116 
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Patient encounters used in this study to train the hospital-acquired infection prediction model 117 

were selected using the same methodology described previously 15, namely a set of MIMIC-III 118 

and Banner Health patient encounters that had high-sampling frequency waveform recordings 119 

around the time of clinical suspicion of hospital-acquired infection. These data were acquired 120 

prior to the COVID-19 outbreak therefore did not include instances of COVID-19 infections. We 121 

focused on patient encounters with waveform recordings, because we wanted to match the 122 

temporal resolution of the vital sign measurements from which the hospital model was trained, 123 

with the temporal resolution of the vital sign measurements in the wearable dataset to which the 124 

hospital model would be applied. The infection patients, as described previously, were those who 125 

had confirmed infection diagnoses and whose timing of clinical suspicion of infection could be 126 

localized by a microbiology culture test order. Note that we used as our reference the time when 127 

the microbiology culture test was ordered, not the time when the test result was returned. These 128 

infection patients were further screened into a hospital-acquired infection cohort if the earliest 129 

timing of the microbiology culture test order occurred at least 48 hours after hospital admission. 130 

 

Subjects used to validate the performance of the hospital model in predicting COVID-19 131 

infection were extracted from the wearable dataset, as described previously 1. Specifically, 132 

COVID-19 positive subjects were those who reported positive test results and symptoms, and 133 

COVID-19 negative subjects were those who reported at least 1 symptom-free negative test 134 

result, but no positive results. Condition for inclusion in both classes was the presence of data 135 

from a Garmin watch and an Oura ring simultaneously, and that at least 10 nights of physiologic 136 

data were collected during sleep within the 21-day period prior to their COVID-19 test (subjects 137 

were excluded post-hoc if they did not meet these criteria). 138 
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Feature extraction 139 

The trained hospital model in this study used features derived from a subset of the demographics 140 

and vital sign measurements described previously 15. We chose this subset because the same set 141 

of demographics and vital sign measurements were available and reliable in the wearable dataset. 142 

Specifically, the feature vector for training was composed of demographics (age, sex) and four 143 

statistic features - average, minimum, maximum and the standard deviation – of core body 144 

temperature, respiratory rate, heart rate, and RMSSD (Root Mean Square of Successive 145 

Differences between normal heartbeats – a standard measure of heart rate variability), collected 146 

in a 24-hour observation window prior to the observation time of 1-hour before clinical suspicion 147 

of infection. This resulted in a total set of 18 features in the feature vector. We required the 148 

feature vector to contain no missing values, and thus excluded patient encounters that had one or 149 

more types of vital sign measurements missing in the observation window. The majority of the 150 

vital sign measurements, except for temperature which was sporadically measured at the bedside, 151 

were derived from high temporal resolution waveforms and matched to the temporal resolution 152 

of the corresponding measurements provided by a Garmin watch and an Oura ring. In particular, 153 

heart rate and RMSSD were calculated after extracting inter-beat interval from 154 

photoplethysmography (PPG), and respiratory rate was derived from impedance-based 155 

measurements. 156 

 

The same set of demographics and vital sign features were extracted from the wearable dataset. 157 

The Oura rings provided skin temperature and RMSSD measurements. Respiratory rate was 158 

measured from the Garmin watches. Concurrent heart rate measurements from the Garmin watch 159 
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and Oura ring were combined before feature extraction. Plausibility filters were applied so that 160 

unrealistic values outside of a very broad physiological range were discarded 1. For each subject, 161 

we extracted statistic features in 24-hour intervals within a 14-day window prior to their COVID-162 

19 test (hence 14 observation times). Statistic features were derived from measurements 163 

collected in a 24-hour observation window prior to the observation time, similar to those used to 164 

train the hospital model. We extracted more than one day of features because we wanted to 165 

assess how early our model could detect COVID-19 infection prior to diagnostic testing. To 166 

examine the impact of daytime activity and other contextual factors on physiology, we extracted 167 

two sets of features: the first set used all vital sign measurements collected in the 24-hour 168 

observation window (“daily features”), and the second set used vital sign measurements 169 

collected during sleep in the 24-hour observation window (“sleep-only features”). Hypnogram 170 

information from the wearable devices were used to identify the sleep segments where the sleep-171 

only features were extracted. 172 

 

Hospital model training 173 

The model for hospital-acquired infection prediction was trained using the same methodology 174 

described previously 15. Specifically, we used the XGBoost algorithm 19 to train and test the 175 

hospital model with 5-fold cross-validation. Hyperparameters were optimized using grid search. 176 

The set of hyperparameter that yielded the best model performance averaged from the 5 177 

validation folds were used to train the final model for assessing its performance in the wearable 178 

dataset.  179 

 

Testing the hospital model in the wearable dataset 180 
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To assess the performance of the hospital model in predicting COVID-19 infection, we defined a 181 

true positive as being a positive model prediction within the 14-day period prior to a positive 182 

COVID-19 test for the positive class, and a true negative as being a negative model prediction 183 

within the 14-day period prior to a negative COVID-19 test for the negative class. Because 184 

infection risk scores from the model were calculated in 24-hour intervals within a 14-day period, 185 

a positive model prediction was defined as one with at least one prediction within the 14-day 186 

period above the defined risk threshold, and a negative model prediction was defined as one with 187 

all predictions within the 14-day period below the defined risk threshold. In other words, we 188 

computed the hospital model outputs - which were probabilistic scores that estimated the 189 

likelihood of a given subject being infected – from the demographics and vital sign features for 190 

each day (or each sleep segment) and took the maximum score during the 14-day window for 191 

each subject. We then compared the maximum scores between COVID-19 positive and negative 192 

subjects and reported the model performance using the following metrics: 193 

• Area under the Receiver Operating Characteristic curve (AUROC),  194 

• Average Precision (AP), 195 

• True Negative Rate (Specificity), 196 

• True Positive Rate (Sensitivity, or Recall), including:  197 

o Sensitivity(Break-Even): Sensitivity at the break-even point, where Sensitivity 198 

and Precision are equal,  199 

o Sensitivity(80%): Sensitivity when Specificity=0.8,  200 

o Sensitivity(90%): Sensitivity when Specificity=0.9. 201 
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The significance of an AUROC value was assessed by performing a permutation test. The class 202 

labels were randomly permuted 1000 times to estimate the empirical distribution of a “random” 203 

AUROC. The observed AUROC value was then compared with this bootstrapped empirical 204 

distribution to calculate the p-value. 205 

 

To estimate the overall lead time of positive classification, we identified the days (interpolated) 206 

in which the hospital model prediction exceeded a predefined threshold of sensitivity = 0.6 207 

within the 14-day window prior to COVID-19 testing. The threshold was suggested by the study 208 

principal investigators in the US DoD sites. The lead time was then defined as the average across 209 

these positive days for each user and then aggregated across the cohort for the final mean 210 

estimate of the lead time for COVID-19 classification (False Negatives have lead time of 0 211 

days). We also overlayed risk scores with time to have a visual representation of risk score 212 

elevation during the infection period. 213 

 

To reduce the impact of dataset shift on model performance, we performed a monotonic feature 214 

transformation by first calculating percentile values of each feature in the hospital dataset and the 215 

wearable dataset respectively, and then replacing wearable feature values with the hospital 216 

feature values that shared the same percentile. The percentile values of a given feature were 217 

calculated in each dataset using all samples without distinguishing between positive and negative 218 

class labels. This way, we calibrated features from wearables to match the distribution in the 219 

hospital dataset without knowledge of the class labels. We then validated the performance of the 220 

hospital model on the calibrated wearable features and compared it with model performance on 221 

wearable features before feature transformation. To understand the data requirements for feature 222 
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transformation, we performed additional benchmarking experiments with restrictions on the type 223 

and size of wearable data used for feature transformation, including: using wearable data 224 

acquired when the subjects were not under impact of COVID-19 infection; using wearable data 225 

from subjects that were not used to test the model performance; using the most recent days of 226 

wearable data prior to diagnostic testing; and using wearable data from randomly down-sampled 227 

cohorts or subject days (without replacement, 10 iterations). 228 

 

RESULTS 229 

Cohorts and Features for Training and Testing 230 

The cohort selection criteria for training the hospital model resulted in a total dataset size of 231 

9,517 patient encounters with waveform recordings around the time of clinical suspicion of 232 

hospital-acquired infections (not including COVID-19). Of these patient encounters, 3,951 233 

(3,665 controls and 286 HAIs; 51% Banner Health and 49% MIMIC-III) had overlapping PPG 234 

waveforms and impedance-based measurements with good data quality, and therefore had the 235 

full set of 18 demographics and vital sign features (see METHODS) available at 1-hour before 236 

clinical suspicion of infection. These 3,951 patient encounters were used to train the hospital 237 

model of hospital-acquired infection prediction. 238 

 

The cohort selection criteria for testing the trained hospital model resulted in 301 COVID-19 239 

positive subjects and 2,111 COVID-19 negative subjects from the wearable dataset. Within the 240 

14-day windows prior to COVID-19 tests from these subjects, a total of 33,164 subject days and 241 

31,269 subject sleep segments had vital sign measurements that passed our plausibility filter. 242 

From these subject days, we extracted the feature vectors comprising the same set of 18 features 243 
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that was used to train the hospital model, using either all available vital sign measurements or 244 

those measured during sleep (“daily features” and “sleep-only features”, see METHODS), to 245 

quantify the performance of the trained hospital model in predicting COVID-19 infections.  246 

 

Differences between training and testing datasets 247 

The joint distribution of inputs and outputs of the infection prediction model differed between 248 

the training scenario in the hospital dataset and the testing scenario in the wearable dataset – a 249 

problem known as “dataset shift” 16. Here we describe five sources of dataset shift in our study. 250 

 

First, the demographics of the training and testing cohorts were different. The patients from the 251 

hospital dataset were older than the subjects from the wearable dataset (Figure 1A), and the 252 

wearable dataset had an imbalanced sex ratio than the hospital dataset (Figure 1B, 20% female in 253 

the wearable dataset versus 47% female in the hospital dataset). Both age and sex may result in 254 

differences in physiology 20–30.  255 

 

Second, the health states of the training and testing cohorts were different. Patients in the 256 

hospital dataset are those who developed hospital-acquired infections during their stays in 257 

general wards or in some cases intensive care units, and are likely older adults with 258 

comorbidities and under medical treatments, therefore the physiological measurements in the 259 

hospital dataset were more likely to be abnormal and unstable compared to the physiological 260 

measurements in the wearable dataset where healthy young military personnel performing their 261 

daily duty were monitored. We found that patients in the hospital dataset had higher heart rate 262 

and higher respiratory rate than the subjects in the wearable dataset (see the Average and 263 
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Maximum statistic feature in Supplementary Table 1), which were consistent with an overall 264 

declined health state 30–33. The hospital patients also had larger variations in heart rate and 265 

respiratory rate than the subjects in the wearable dataset (see the Standard Deviation statistic 266 

feature in Supplementary Table 1).  267 

 

Third, the data sources where the physiological features were extracted from were different 268 

between the hospital dataset and the wearable dataset. Temperature features were extracted from 269 

core body temperatures in the hospital dataset, whereas in the wearable dataset skin temperatures 270 

measured at the fingers were used. We found that skin temperature had lower values and larger 271 

variance compared with core body temperature (Figure 1C, Supplementary Table 1), which was 272 

consistent with the literatures 34–37.  273 

 

Fourth, the processing methods to extract physiological signals were different between the two 274 

datasets. Heart rate variability measurement RMSSD were computed based on pulse estimates of 275 

heart beats. However, the signal processing algorithms that Oura ring used could be different 276 

from ours in detecting the fiducial points on the pulse waveforms, and in the validation of the 277 

resulted inter-beat intervals. We suspected that differences in the signal processing algorithms to 278 

obtain RMSSD also contributed to the distribution differences in the RMSSD features between 279 

the hospital dataset and the wearable dataset (Supplementary Table 1), in addition to the 280 

demographics and health state differences mentioned above.  281 

 

Finally, wearable physiological data is acquired in an unconstrained, real-world environment, 282 

which is influenced by everyday activities and other contextual factors. In contrast, hospital 283 
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physiological data is typically acquired when the patient is sedentary. Daytime activity such as 284 

physical exercise increases heart rate and respiratory rate 30,31, which is a confounding factor to 285 

infection prediction because infections cause similar changes in vital signs 32,38. Skin temperature 286 

also changes dynamically upon physical exercise, and the directionality of change depends on 287 

the intensity level of the exercise and whether the skin temperature is measured over active or 288 

non-active muscles 39. When limiting feature extraction to wearable physiology data acquired 289 

during sleep, we found that sleep-only features have different data distributions compared to the 290 

daily features (Supplementary Table 1). For example, the data distribution of the mean 291 

temperature feature was shifted towards higher values when restricted to measurements during 292 

sleep (Figure 1C). 293 

 

We included a full comparison of feature values in Supplementary Table 1.  294 

 295 
Figure 1: Comparison between hospital dataset and wearable dataset. (A) Age distribution of 296 
hospital dataset (white) and wearable dataset (black). (B) Sex distribution of hospital dataset 297 
(white) and wearable dataset (black). (C) Boxplot of mean temperature feature value from 298 
hospital dataset (left), wearable dataset (middle), and wearable dataset during sleep (right). 299 

 

Experiment design 300 

We explored two approaches to correct for differences in data distributions between hospital and 301 

wearable datasets. First, we limited feature extraction to wearable physiological data from 302 
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wearable sensors acquired when the subject was sleeping. This approach directly mitigated 303 

dataset shift by removing contextual confounders of daytime activities. Second, we explored a 304 

monotonic feature transformation method to convert the data distribution of physiological 305 

features in the wearable dataset to match the data distribution in the hospital dataset. This 306 

approach addressed covariate shift – one of the three types of dataset shift (see 307 

INTRODUCTION) - due to differences in demographics and health state between hospitalized 308 

patients and subjects in the wearable dataset, as well as differences in physiological 309 

measurements between COTS wearables and hospital grade devices. We compared model 310 

performances with or without using such correction techniques (Experiments I, II, III, IV in 311 

Figure 2), and in addition benchmarked data requirements (Experiments V, VI, VII): 312 

• Experiment I: a baseline comparison where the trained hospital model was 313 

directly applied to the daily features from the wearable dataset. Physiological 314 

measurements during both awake and sleep were used to extract the daily 315 

features. 316 

• Experiment II: the trained hospital model was tested on sleep-only features from 317 

the wearable dataset. Sleep-only features were extracted from the same window 318 

and time interval as the daily features but only using measurements during sleep 319 

segments. 320 

• Experiment III: the trained hospital model was tested on sleep-only features after 321 

the sleep-only features were transformed to match the distribution of the hospital 322 

dataset. 323 

• Experiment IV: the trained hospital model was tested on daily features after the 324 

daily features were transformed to match the distribution of the hospital dataset. 325 
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• Experiments V, VI, VII: benchmarking the amount and type of wearable data 326 

needed for the monotonic feature transformation. 327 

 328 

Figure 2: Schematic view of pipelines for training the hospital model (top box) and for testing 329 
the trained model in the wearable dataset (middle box). Similar steps of the two pipelines are 330 
aligned (bottom box). The trained hospital model was applied to the wearable dataset with or 331 
without the two dataset shift corrections (highlighted, middle box), which resulted in four 332 
experiments (Exp-I, II, III, IV in middle box) to compare model performance. 333 

 

Baseline comparison (Experiment I) 334 

We directly applied the hospital model trained for hospital-acquired infection prediction to the 335 

wearable daily features and quantified its performance in predicting COVID-19 infections. We 336 

hypothesized that the hospital model would not generalize well in predicting COVID-19 337 

infections, due to the differences between hospital and wearable physiological feature spaces. 338 

We found that the hospital model performed at Area under ROC Curve (AUROC) = 0.527, 339 

Average Precision (AP) = 0.132, Sensitivity = 0.163 and Specificity = 0.866 at break-even point, 340 

Sensitivity = 0.193 and 0.113 respectively when Specificity was at 0.8 and 0.9. This performance 341 

was at chance level (p=0.07 for AUROC), suggesting that the hospital model failed to generalize 342 

when directly applied to wearable dataset. 343 

 

Removing contextual confounders (Experiment II) 344 
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When controlling for contextual factors like daytime activity, we found that the hospital model 345 

using the sleep-only features performed at AUROC = 0.644 (p<0.001), AP = 0.260, Sensitivity = 346 

0.279 and Specificity = 0.897 at break-even point, Sensitivity = 0.402 and 0.269 respectively 347 

when Specificity was at 0.8 and 0.9. Thus, using sleep-only features resulted a 22% boosting of 348 

performance in terms of AUROC, suggesting the importance of controlling for contextual 349 

confounders when extracting the likelihood of infection from wearables physiological data. 350 

 

Applying feature transformation after removing contextual confounders (Experiment III) 351 

We hypothesized that a monotonic feature transformation procedure which transforms the 352 

wearable feature values to match the distribution in hospital dataset (see METHODS) could 353 

improve performance of the hospital model. Using mean temperature feature as an example 354 

(Figure 3), the feature transformation procedure based on matching feature values that share the 355 

same 0-100 percentile value in their corresponding datasets resulted in an almost identical data 356 

distribution of the mean temperature feature between the two datasets, despite large 357 

discrepancies in the data distributions before transformation. Hence, we performed the same 358 

feature transformation procedure independently on each feature, and evaluated the performance 359 

of hospital model on the wearable dataset after all the features were transformed. We found that 360 

the hospital model performed at AUROC = 0.740 (p<0.001; Figure 4A, red), AP = 0.330 (Figure 361 

4B, red), Sensitivity = 0.379 and Specificity = 0.910 at break-even point, Sensitivity = 0.588 and 362 

0.409 respectively when Specificity was at 0.8 and 0.9, using transformed wearable sleep-only 363 

features. Applying feature transformation on the sleep-only features resulted an additional 15% 364 

boosting of performance in terms of AUROC (0.740 versus 0.643, red versus green in Figure 365 

4A).  366 
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 367 

Figure 3: Monotonic feature transformation of mean temperature feature. Red, hospital dataset; 368 
green, wearable dataset (sleep-only features); blue, transformed wearable dataset (sleep-only 369 
features). (A) Data distribution of mean temperature feature: red and green shaded areas 370 
describe data distribution from hospital and wearable sleep data respectively. Vertical lines 371 
mark the 0-100 percentile values in 5% intervals on the x-axis corresponding to each dataset. 372 
(B) Monotonic feature transformation curve (black) where feature values with the same 373 
percentile value are mapped between two datasets. Dashed lines mark the 0-100 percentile 374 
values in 5% intervals on the x-axis for wearable sleep data (green) and on the y-axis for 375 
hospital data (red). (C) Data distribution of mean temperature feature: red, green and blue 376 
shaded areas describe data distribution from hospital dataset, wearable sleep dataset and 377 
transformed wearable sleep dataset respectively. Vertical lines mark the 0-100 percentile values 378 
in 5% intervals on the x-axis corresponding to each dataset; blue vertical lines are overlapped 379 
with red vertical lines. 380 
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Applying feature transformation without removing contextual confounders (Experiment IV) 381 

We further investigated whether the same feature transformation procedure could improve the 382 

performance of the hospital model on wearable features without removing the contextual 383 

confounder of awake versus sleep. Similarly, we calculated percentile values of daily wearable 384 

features derived from awake and sleep data combined, replaced the feature value with the 385 

corresponding value from the hospital dataset, and evaluated the performance of the hospital 386 

model on the transformed features. The model had an AUROC = 0.566 (p<0.001; Figure 4A, 387 

orange),  AP = 0.158 (Figure 4B, orange), Sensitivity = 0.256 and Specificity = 0.844 at break-388 

even point, Sensitivity = 0.296 and 0.146 respectively when Specificity was at 0.8 and 0.9, when 389 

applied to the transformed wearable features without using sleep data exclusively. The model 390 

performance was slightly better than before feature transformation (AUROC: 0.565 versus 0.526, 391 

orange versus blue in Figure 4A), but the improvement was not as substantial as when applying 392 

feature transformation to the sleep-only features (AUROC: 0.740 versus 0.643, red versus green 393 

in Figure 4A). These results suggested that both controlling for contextual cofounders and 394 

applying feature transformation to address dataset shift were important to enable good model 395 

performance.  396 

 

Comparison with previous work  397 

We have shown that the hospital model trained for hospital-acquired infection prediction 398 

performed the best in detecting early signs of COVID-19 infection on wearable dataset when 399 

feature transformations were performed and when only sleep data were considered (AUROC = 400 

0.740, Experiment III). Although this performance is viable for a system, it was lower than our 401 
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previously reported solution using a model trained directly on wearable dataset with COVID-19 402 

labels (AUROC = 0.82) 1. This was expected because the hospital model was designed to be an 403 

economical minimal viable solution that uses no COVID-19 labels for training, and thus not 404 

capable of controlling for concept drifts and/or label shifts. When overlaying risk scores with 405 

time from the Experiment III hospital model, on average subjects with positive COVID-19 test 406 

results showed risk score elevations around COVID-19 test time (Figure 4C, black), whereas 407 

subjects with negative COVID-19 test maintained their baseline risk scores (Figure 4C, blue). 408 

Based on a cut-off risk threshold of 15 (yielding 60% sensitivity and 78% specificity), we 409 

identified the days in which the model output exceeded the defined threshold within the 14-day 410 

window prior to COVID-19 testing to estimate the lead time of positive classification (see 411 

METHODS). We found that the Experiment III hospital model successfully predicted COVID-412 

19 infection, on average, 2.2 days prior to testing. This lead time was slightly lower but 413 

comparable to our previously reported wearable solution of 2.3 days prior to testing 1.  414 

 415 

Figure 4: Hospital model performance and risk scores in detecting COVID-19 infection from 416 
wearable dataset. (A) Receiver Operating Characteristic (ROC) curves. Experiment I (blue): 417 
hospital model directly applied to wearable daily features. Experiment II (green): hospital model 418 
applied to wearable sleep-only features. Experiment III (red): hospital model applied to 419 
wearable sleep-only features after feature transformation. Experiment IV (orange): hospital 420 
model applied to wearable daily features after feature transformation, without using sleep data 421 
exclusively. Area under the ROC curve (AUROC) for each experiment is included in the figure 422 
legend. (B) Precision-recall curve. Colors are the same as described in subplot A. Average 423 
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Precision (AP) score for each experiment is included in the figure legend. (C) Mean infection 424 
risk score based on the output of the best generalized hospital model (Experiment III: sleep-only 425 
features + feature transformation) in 301 COVID-19 positive subjects (black) and 2,111 426 
COVID-19 negative subjects (blue) as a function of number of days relative to the COVID-19 427 
test time (red). Grey and light-blue shaded area depicts 95% confidence interval. 428 
 

Data requirements for feature transformation (Experiments V, VI, VII) 429 

Given that our best generalized hospital model (Experiment III) performed reasonable but 430 

inferior to our previous wearable model 1, it is most sensible to use a hospital model for 431 

predicting COVID-19 in the absence of the wearable model, e.g. at the onset and during the early 432 

stage of the outbreak when data from COVID-19 positive cases were limited or unavailable to 433 

train a wearable model. Therefore, we investigated the data requirements of the generalized 434 

hospital model in Experiment III, in particular, the type and amount of wearable sleep data 435 

needed for the feature transformation. A favorable solution should require minimal COVID-19 436 

positive instances. We performed three sets of additional experiments.  437 

 

First, we asked whether illness data of COVID-19 were required for feature transformation 438 

(Experiment V). Interestingly, we found that baseline healthy data was sufficient because 1) 439 

using wearable sleep data from subjects that only reported negative test results for the feature 440 

transformation resulted in similar AUROC of 0.741 (Experient V-a, Supplementary Table 2), 441 

and 2) using wearable sleep data 4 weeks to 2 weeks before COVID-19 test – a time range when 442 

subjects were not infected - achieved similar results (AUROC = 0.741; Experient V-b, 443 

Supplementary Table 2).  444 

 

Second, we asked whether wearable sleep data for feature transformation needed to be from the 445 

same subjects (Experiment VI, Supplementary Table 2). We randomly split the subjects in the 446 
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wearable dataset into 5 folds, and for each subject we used subjects from the other four folds to 447 

transform the features of the given subject. The model performed with an AUROC of 0.741, 448 

suggesting that the wearable data used for feature transformation do not need to come from the 449 

same subjects used to test the model.  450 

 

Third, we examined the minimum sleep data needed for feature transformation by benchmarking 451 

model performance against using sleep data from reduced number of days or from reduced 452 

number of subjects (Experiment VII). We gradually decreased the number of days from the 14 453 

days prior to COVID-19 test where the wearable data were used for feature transformation 454 

(Experiment VII-a, Supplementary Table 2). We found that the model performed at AUROC of 455 

0.74 when more than 2 days immediately preceding the COVID-19 test were used for feature 456 

transformation, and the model performed at AUROC = 0.73 when using data from the day before 457 

or two days before COVID-19 test for feature transformation. We also benchmarked against data 458 

from randomly selected days within the 14-day window prior to the COVID-19 test for feature 459 

transformation and found that the model performed at AUROC of 0.74 for all experiments - 460 

randomly selecting number of N days where N ranges from 1 to 13 days (Experiment VII-b, 461 

Supplementary Table 2). Further, we pooled all subject days and used random down-samples for 462 

feature transformation (Experiment VII-c, Supplementary Table 2). We found that the model 463 

performed at AUROC of 0.74 for all experiments of reduced subject days (number of reduced 464 

subject days: 25,000, or 20,000, or 15,000, or 10,000, or 7,500, or 5,000, or 3,000, or 1,000, or 465 

500, or 300), even when only 300 subject days were used. Regarding the number of subjects 466 

needed, we used data from randomly down-sampled subjects for feature transformation and 467 

found that the model performed at AUROC of 0.74 for all experiments of reduced number of 468 
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subjects (number of reduced subjects: 2,000, or 1,500, or 1,000, or 500, or 250, or 100, or 50, or 469 

25), even when the number of subjects was reduced to 25 (Experiment VII-d, Supplementary 470 

Table 2).  471 

 

Summarizing all the experiments (Supplementary Table 2), we concluded that healthy wearable 472 

data from 25 subjects collected in a period of 14 days for feature transformation would be 473 

sufficient to ensure the same model performance of AUROC = 0.74.  474 

 

DISCUSSIONS 475 

This study demonstrated the feasibility of applying a machine learning model trained on hospital 476 

data to detect early signs of COVID-19 infection in physiological data from COTS wearables 477 

outside of hospitals. Our hospital model was trained from hospitalized patients and vital signs 478 

collected from hospital grade devices to test against a set of common hospital-acquired infections 479 

(prior to the COVID-19 outbreak), therefore had no prior knowledge of COVID-19 infections 480 

and no exposure to physiological data collected through COTS wearables. Nevertheless, after 481 

controlling for dataset shift, the hospital model performed at AUROC = 0.74 in alerting COVID-482 

19 infection before diagnostic testing from wearable physiology monitoring in military personnel 483 

under unrestrained use. This performance was lower than our previously reported solution using 484 

a model trained directly on wearable dataset with COVID-19 labels 1, but is nevertheless viable 485 

for a system, and can detect COVID-19 infection 2 days before diagnostic testing, with no need 486 

of model retraining. Importantly, our approaches in addressing dataset shift did not require any 487 

labeled data of COVID-19 cases; rather, a small dataset from healthy subjects – e.g. 2 weeks of 488 

wearable data from 25 subjects – was sufficient to generalize the hospital model to predict 489 
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COVID-19 infection from wearable data with an AUROC of 0.74. Therefore, our efficient 490 

solution of generalizing the hospital model of infection prediction to wearable physiological 491 

monitoring would be most economical and useful at early onset of outbreaks of novel infections 492 

when data from positive cases are limited or unavailable to train an pathogen-specific model – 493 

such as our previously reported COVID-19 wearable model 1. Because a small amount of healthy 494 

baseline data is feasible to collect prior to any infection outbreak, the transformation function to 495 

calibrate the feature values can be derived to enable rapid deployment of a pre-trained model. 496 

We anticipate such a solution could create a big impact in infectious disease control, as 497 

transmission prevention at the onset and during the early outbreak of an infectious disease is 498 

critical. 499 

 

The two enablers of our solution of generalized hospital model were 1) the isolation of 500 

contextual confounders, focusing on sleep-only wearable data, and 2) feature transformations 501 

that calibrated the wearable feature values to match the distribution of the hospital model training 502 

data and that do not rely on positive labels. Both reduced the differences in the joint distribution 503 

of the physiological features X and the infectious disease labels Y between the hospital dataset 504 

and the wearable dataset, therefore mitigating dataset shift. The model performed at chance level 505 

without these two corrections and performed at AUROC of 0.74 when and only when both 506 

corrections were used. This is likely because the two methods controlled for different aspects of 507 

dataset shift. Feature transformation is a correction technique for covariate shift (see 508 

INTRODUCTION) because it modifies the probability distribution of the physiological features 509 

P(X).  Removing contextual confounder of daytime activities, on the other hand, controls for 510 

both covariate shift P(X) and to some extent concept drift P(Y|X). For example, increases in 511 
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heart rate in hospitalized patients are associated with increased risk of infection 38; in contrast, 512 

increases of heart rate in the subjects from the wearable monitored cohort could be normal 513 

physiology change, e.g. if the subjects are exercising 30. Therefore, daytime activities such as 514 

physical exercises affect the wearable physiology data in such a way that increases the likelihood 515 

that they will be misclassified by the hospital model as infection cases. Hence it is beneficial to 516 

use sleep-only features in our study, and that it is not sufficient to perform feature 517 

transformations on the daily features without isolating sleep periods. 518 

 

In our study we used hypnogram information from wearables to identify measurements during 519 

sleep to compute sleep-only features so that both P(X) and P(Y|X) were more similar to the 520 

hospital dataset, where the physiological measurements were acquired when patients were 521 

sedentary. We could also apply the hospital model to the wearable dataset in other similar 522 

scenarios such as during wakefulness, but limited to resting/sedentary states. It is possible that 523 

there are other contextual confounders that we could identify and isolate from the wearable 524 

dataset to further improve the model performance of the generalized hospital model. Identifying 525 

contextual factors does not require any explicit knowledge of data distributions of the training 526 

nor testing datasets but replies on domain knowledge of the model training and application 527 

scenarios. Removing contextual factors, however, relies on the availability of data elements that 528 

can be used to isolate the contextual factors.   529 

 

It is challenging to address all aspects of dataset shift. In particular, label shift and concept drift 530 

would require labels to be properly addressed. Previous work that corrected dataset shift using 531 

unlabeled data typically addressed covariate shift, and involved re-training using resampling 532 
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weights that were either estimated from the biasing densities 40–42 or inferred by comparing 533 

nonparametric distributions between training and testing samples 43. In contrast, the monotonic 534 

feature transformation technique described in our study requires no labels, no re-training, and is a 535 

straightforward mathematical operation that preserves the rank order of data but modifies the 536 

shape of the distribution. By doing so, we are minimizing the dataset differences in physiological 537 

signals caused by the differences in individual and group baselines, and by the differences in 538 

measurement devices, yet preserving the relative rank of infection risk among individuals. Our 539 

hospital model was based on ensembles of decision tree which makes aggregated decisions from 540 

individual features on each tree split. This makes it possible for us to manipulate the distribution 541 

of each feature independently without altering the overall decision from the tree ensembles based 542 

on the feature ranks (e.g. P(Y|X) is unchanged for monotonic transformations of X, where X is 543 

the physiological features and Y is the infection labels). Algorithms based on decision trees are 544 

particularly suitable for disease modeling, as typically lower and/or higher clinical measurements 545 

are associated with declined health. In other words, infection risk as a function of clinical 546 

measurements resembles a U-shape curve or a monotonic function. This is the reason why 547 

preserving the rank of feature values worked in our solution as it preserved the rank of infection 548 

risk, e.g. both a high rank of skin temperature and a high rank of core temperature are associated 549 

with high infection risk, therefore the conditional probability of COVID-19 infection risk given 550 

skin temperature P(Y_covid|X_skin) can be monotonically mapped to the conditional probability 551 

of infection risk given core temperature P(Y_infection|X_core).  552 

 

Our feature transformation technique requires no labels (therefore is “unsupervised"), no re-553 

training, and is computationally inexpensive and interpretable, compared with previous work that 554 
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corrected dataset shift 40,41,41–43. It is device-agnostic by nature, and we demonstrated its 555 

effectiveness in addressing the dataset shift due to differences in measurement devices, e.g. the 556 

skin temperature feature from Oura ring was transformed to have almost identical distribution as 557 

the core temperature feature from hospital grade device (Figure 3). Removing context 558 

confounders have its challenges in first identifying the relevant context and then finding data 559 

elements that can be used to isolate the context, but theoretically has the potential to make our 560 

solution context-agnostic. Our generalized hospital model of infection prediction performed well 561 

in detecting COVID-19, despite pathogen differences in COVID-19 infection and the set of 562 

hospital-acquired infections used to train the hospital model. Therefore, we believe the 563 

generalized hospital model can be easily adapted to deploy in other scenarios of infection 564 

prediction, and it is not restricted to a specific set of wearable devices, a specific population, or a 565 

specific context. For example, the hospital model of infection prediction may be used to track the 566 

health state of healthcare professionals during flu season with a different set of wearables, given 567 

that similar types of vital sign signals are collected, and appropriate dataset shift transformations 568 

are applied. 569 

 

CONCLUSTIONS 570 

We found that an infection prediction model developed for hospitalized patients can detect early 571 

signs of COVID-19 infection from wearable physiological monitoring (AUROC=0.74), on 572 

average 2 days earlier than diagnostic testing, provided that a small sample (e.g. 25 subjects in a 573 

period of 14 days) of wearable data from healthy subjects is available to address the dataset shift 574 

between hospital dataset and wearable dataset, and that sleep markers can be extracted to control 575 

for contextual effects in wearable dataset. Our approaches to transform features between datasets 576 
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and isolate contextual confounders can enable rapid deployment of a pre-trained infection 577 

prediction model at the onset of novel infection outbreaks. 578 
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Supplementary Table 1: Mean and standard deviation (std) of the feature values by dataset. 727 
Hospital data – from 9,517 hospitalized patients. Wearable data – from 33,164 subject days. 728 
Wearable sleep data – from 31,269 subject sleep segments. 729 

Physiological 

signal 

Feature name Hospital data 

(mean±std) 

Wearable data 

(mean±std) 

Wearable sleep 

data 

(mean±std) 

Heart Rate, 

Beats per 

Minute 

Mean(Heart Rate) 81.40±15.58 71.57±9.80 59.03±8.54 

Std(Heart Rate) 15.00±8.75 13.54±5.20 4.58±1.89 

Max(Heart Rate) 151.9±34.52 125.4±28.23 78.05±12.62 

Min(Heart Rate) 49.50±16.44 49.92±7.29 49.70±7.31 

Respiratory 

Rate, Breaths 

per Minute 

Mean(Respiratory 

Rate) 
17.89±3.49 13.90±0.89 14.51±1.58 

Std(Respiratory Rate) 3.07±0.99 1.67±0.55 1.63±0.63 

Max(Respiratory 

Rate) 
30.24±6.63 19.91±2.64 20.01±2.89 

Min(Respiratory 

Rate) 
9.36±3.02 9.83±1.14 10.16±1.59 

Temperature, 

Celsius 

Mean(Temperature) 36.76±0.32 33.72±0.90 35.34±0.55 

Std(Temperature) 0.30±0.16 2.04±0.47 0.72±0.32 

Min(Temperature) 36.30±0.35 28.16±0.56 32.07±1.94 

Max(Temperature) 37.26±0.54 37.07±1.45 36.40±0.45 

Root Mean 

Square 

Successive 

Mean(RMSSD) 0.118±0.10 0.060±0.035 0.060±0.034 

Std(RMSSD) 0.040±0.036 0.016±0.009 0.017±0.009 

Max(RMSSD) 0.212±0.133 0.105±0.050 0.111±0.051 
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Difference, 

Milliseconds 
Min(RMSSD) 0.061±0.073 0.028±0.020 0.025±0.018 

 

Supplementary Table 2: model performance. Six performance metrics were calculated: AUC 730 
(Area under ROC Curve), AP (Average Precision), Sens.@Break-even (Sensitivity at Precision-731 
Recall break-even point), Spec.@Break-even, (Specificity at Precision-Recall break-even point), 732 
Sens.@Spec.=0.8 (Sensitivity when Specificity is 0.8), Sens@Spec.=0.9 (Sensitivity when 733 
Specificity is 0.9). Experiment I, hospital model directly applied to wearable daily features. 734 
Experiment IV, hospital model applied to wearable daily feature after feature transformation. 735 
Experiment III, hospital model applied to wearable sleep-only feature. Experiment IV, hospital 736 
model applied to wearable sleep-only feature after feature transformation. Experiment V-a, 737 
hospital model applied to wearable sleep-only feature with feature transformation using data 738 
from only subjects who reported negative test. Experiment V-b, hospital model applied to 739 
wearable sleep-only feature with feature transformation using data collected 28 days before to 740 
14 days before COVID-19 test. Experiment VI, hospital model applied to wearable sleep-only 741 
feature with cross-validated feature transformation. Experiment VII-a, hospital model applied to 742 
wearable sleep-only feature with feature transformation using data from the recent n days prior 743 
to testing (n ranges from 1 to 13). Experiment VII-b, hospital model applied to wearable sleep-744 
only feature with feature transformation using data from randomly selected number of n days 745 
within 14 days prior to testing (n ranges from 1 to 13), mean(std) from 10 iterations is shown. 746 
Experiment VII-d, hospital model applied to wearable sleep-only feature with feature 747 
transformation using data from randomly selected number of n subject days 748 
(n=[25000,20000,15000,10000,7500,5000,3000,1000,500,300]), mean(std) from 10 iterations is 749 
shown. Experiment VII-d, hospital model applied to wearable sleep-only feature with feature 750 
transformation using data from randomly selected number of n subjects 751 
(n=[2000,1500,1000,500,250,100,50,25]), mean(std) from 10 iterations is shown.  752 

Exp. 

Features 

Wearable data 

used for 

feature 

transformation AUC AP 

Sens. @ 

Break-

even 

Spec. @ 

Break-

even 

Sens. @ 

Spec. = 

0.8 

Sens. @ 

Spec. = 

0.9 

I Daily features 

derived from 

both awake 

and sleep data 

None 0.527 0.132 0.163 0.866 0.193 0.113 

IV 

[-14,0] day 0.566 0.158 0.256 0.844 0.296 0.146 
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II Sleep-only 

features 

None 0.644 0.260 0.279 0.897 0.402 0.269 

III [-14,0] day 0.740 0.330 0.379 0.910 0.588 0.409 

V-a 

Sleep-only 

features 

[-14,0] day 

from COVID-

19 negatives 0.741 0.313 0.369 0.910 0.578 0.382 

V-b [-28,-14] day 0.741 0.316 0.375 0.910 0.591 0.389 

VI Sleep-only 

features 

Cross-validated 

[-14,0] day 0.741 0.330 0.385 0.911 0.585 0.415 

VII-a 

Sleep-only 

features 

[-13,0] day 0.741 0.332 0.399 0.907 0.588 0.419 

[-12,0] day 0.742 0.333 0.399 0.908 0.585 0.422 

[-11,0] day 0.741 0.336 0.392 0.910 0.575 0.415 

[-10,0] day 0.741 0.338 0.395 0.911 0.575 0.422 

[-9,0] day 0.741 0.338 0.392 0.913 0.578 0.429 

[-8,0] day 0.739 0.342 0.425 0.902 0.568 0.429 

[-7,0] day 0.739 0.338 0.425 0.903 0.561 0.432 

[-6,0] day 0.737 0.337 0.399 0.911 0.555 0.429 

[-5,0] day 0.739 0.341 0.429 0.906 0.555 0.435 

[-4,0] day 0.740 0.341 0.425 0.907 0.555 0.435 

[-3,0] day 0.738 0.340 0.419 0.912 0.568 0.435 

[-2,0] day 0.734 0.334 0.395 0.913 0.558 0.422 

[-1,0] day 0.733 0.341 0.389 0.910 0.565 0.412 

VII-b Sleep-only 

features Random 1 day 

0.738 

(0.002) 

0.325 

(0.012) 

0.391 

(0.022) 

0.909 

(0.005) 

0.579 

(0.011) 

0.407 

(0.013) 
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Random 2 day 

0.740 

(0.002) 

0.327 

(0.009) 

0.406 

(0.035) 

0.906 

(0.008) 

0.579 

(0.01) 

0.411 

(0.015) 

Random 3 day 

0.740 

(0.001) 

0.329 

(0.01) 

0.388 

(0.019) 

0.911 

(0.002) 

0.578 

(0.015) 

0.410 

(0.019) 

Random 4 day 

0.739 

(0.002) 

0.327 

(0.009) 

0.383 

(0.011) 

0.911 

(0.001) 

0.580 

(0.01) 

0.410 

(0.014) 

Random 5 day 

0.740 

(0.002) 

0.324 

(0.008) 

0.380 

(0.006) 

0.911 

(0.001) 

0.581 

(0.01) 

0.409 

(0.009) 

Random 6 day 

0.739 

(0.001) 

0.329 

(0.009) 

0.393 

(0.026) 

0.909 

(0.004) 

0.577 

(0.011) 

0.415 

(0.017) 

Random 7 day 

0.741 

(0.002) 

0.334 

(0.004) 

0.398 

(0.029) 

0.908 

(0.007) 

0.578 

(0.01) 

0.420 

(0.01) 

Random 8 day 

0.740 

(0.002) 

0.330 

(0.009) 

0.388 

(0.011) 

0.910 

(0.002) 

0.58 

(0.009) 

0.417 

(0.011) 

Random 9 day 

0.741 

(0.001) 

0.336 

(0.005) 

0.408 

(0.029) 

0.906 

(0.007) 

0.577 

(0.009) 

0.422 

(0.01) 

Random 10 day 

0.740 

(0.001) 

0.330 

(0.008) 

0.389 

(0.022) 

0.909 

(0.005) 

0.582 

(0.007) 

0.412 

(0.01) 

Random 11 day 

0.741 

(0.001) 

0.332 

(0.003) 

0.387 

(0.006) 

0.910 

(0.001) 

0.583 

(0.006) 

0.416 

(0.005) 

Random 12 day 

0.740 

(0.001) 

0.328 

(0.006) 

0.393 

(0.027) 

0.908 

(0.006) 

0.582 

(0.005) 

0.412 

(0.007) 
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Random 13 day 

0.740 

(0.001) 

0.331 

(0.006) 

0.396 

(0.032) 

0.908 

(0.008) 

0.583 

(0.008) 

0.415 

(0.011) 

VII-c 

Sleep-only 

features 

Random 25,000 

subject days 

0.742 

(0.001) 

0.331 

(0.003) 

0.388 

(0.013) 

0.910 

(0.002) 

0.585 

(0.005) 

0.411 

(0.01) 

Random 20,000 

subject days 

0.741 

(0.001) 

0.333 

(0.001) 

0.392 

(0.008) 

0.909 

(0.003) 

0.583 

(0.005) 

0.414 

(0.006) 

Random 15,000 

subject days 

0.741 

(0.002) 

0.331 

(0.004) 

0.395 

(0.022) 

0.907 

(0.007) 

0.582 

(0.004) 

0.413 

(0.007) 

Random 10,000 

subject days 

0.741 

(0.001) 

0.331 

(0.003) 

0.384 

(0.009) 

0.911 

(0.003) 

0.582 

(0.006) 

0.411 

(0.007) 

Random 7,500 

subject days 

0.742 

(0.001) 

0.330 

(0.004) 

0.384 

(0.01) 

0.910 

(0.002) 

0.584 

(0.005) 

0.409 

(0.011) 

Random 5,000 

subject days 

0.742 

(0.002) 

0.331 

(0.005) 

0.388 

(0.01) 

0.910 

(0.002) 

0.586 

(0.01) 

0.412 

(0.008) 

Random 3,000 

subject days 

0.741 

(0.001) 

0.329 

(0.006) 

0.394 

(0.027) 

0.909 

(0.006) 

0.586 

(0.008) 

0.415 

(0.01) 

Random 1,000 

subject days 

0.741 

(0.003) 

0.325 

(0.008) 

0.384 

(0.018) 

0.910 

(0.003) 

0.588 

(0.008) 

0.407 

(0.015) 

Random 500 

subject days 

0.740 

(0.003) 

0.332 

(0.011) 

0.394 

(0.031) 

0.908 

(0.008) 

0.585 

(0.012) 

0.407 

(0.013) 

Random 300 

subject days 

0.739 

(0.003) 

0.324 

(0.009) 

0.396 

(0.029) 

0.907 

(0.007) 

0.584 

(0.008) 

0.407 

(0.018) 
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VII-d 

Sleep-only 

features 

Random 2000 

subjects 

0.742 

(0.001) 

0.332 

(0.003) 

0.386 

(0.008) 

0.911 

(0.002) 

0.586 

(0.007) 

0.416 

(0.011) 

Random 1500 

subjects 

0.743 

(0.002) 

0.331 

(0.004) 

0.391 

(0.012) 

0.910 

(0.002) 

0.584 

(0.007) 

0.417 

(0.008) 

Random 1000 

subjects 

0.740 

(0.002) 

0.329 

(0.004) 

0.386 

(0.01) 

0.910 

(0.003) 

0.581 

(0.01) 

0.416 

(0.012) 

Random 500 

subjects 

0.741 

(0.002) 

0.328 

(0.007) 

0.389 

(0.017) 

0.909 

(0.005) 

0.585 

(0.011) 

0.407 

(0.016) 

Random 250 

subjects 

0.739 

(0.003) 

0.327 

(0.011) 

0.397 

(0.027) 

0.908 

(0.005) 

0.586 

(0.007) 

0.412 

(0.016) 

Random 100 

subjects 

0.738 

(0.006) 

0.328 

(0.015) 

0.386 

(0.013) 

0.910 

(0.004) 

0.570 

(0.014) 

0.41 

(0.023) 

Random 50 

subjects 

0.738 

(0.004) 

0.327 

(0.019) 

0.386 

(0.018) 

0.910 

(0.004) 

0.584 

(0.015) 

0.407 

(0.02) 

Random 25 

subjects 

0.739 

(0.006) 

0.325 

(0.014) 

0.390 

(0.021) 

0.901 

(0.004) 

0.591 

(0.018) 

0.412 

(0.016) 
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