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Abstract

Despite rapid advances in genomic sequencing, most rare genetic variants remain insufficiently character-
ized for clinical use, limiting the potential of personalized medicine. When classifying whether a variant is
pathogenic, clinical labs adhere to diagnostic guidelines that comprehensively evaluate many forms of evi-
dence including case data, computational predictions, and functional screening. While a substantial amount
of clinical evidence has been developed for these variants, the majority cannot be definitively classified as
‘pathogenic’ or ‘benign’, and thus persist as ‘Variants of Uncertain Significance’ (VUS). We processed over 2.4
million plaintext variant summaries from ClinVar, employing sentence-level classification to remove content
that does not contain evidence and removing uninformative summaries. We developed ClinVar-BERT to dis-
cern clinical evidence within these summaries by fine-tuning a BioBERT-based model with labeled records.
When validated classifications from this model against orthogonal functional screening data, ClinVar-BERT
significantly separated estimates of functional impact in clinically actionable genes, including BRCA1 (p =
1.90 × 10−20), TP53 (p = 1.14 × 10−47), and PTEN (p = 3.82 × 10−7). Additionally, ClinVar-BERT
achieved an AUROC of 0.927 in classifying ClinVar VUS against this functional screening data. This suggests
that ClinVar-BERT is capable of discerning evidence from diagnostic reports and can be used to prioritize
variants for re-assessment by diagnostic labs and expert curation panels.
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1 Introduction

As genomic sequencing becomes increasingly integrated into clinical practice, the pace of variant interpretation
and biomedical data production has accelerated. From 2019 to 2024, clinical laboratories have submitted 3.68
million variant classifications to ClinVar, a public archive of human genetic variation linked to clinical disorders
[1]. However, even in well-studied disease genes like BRCA1 and LDLR, the majority of variants have only
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been observed in a few cases or a single individual [2, 3]. Consequently, these variants often lack definitive
human genetic evidence to be classified as pathogenic or benign and are instead classified as ‘Variants of
Uncertain Significance’ (VUS) [4]. Due to this clinical uncertainty, current practice guidelines do not recommend
communicating information about VUS to providers or patients outside of a clinical indication for testing [5].

This translational gap prevents many patients who carry such variants in actionable genes from benefiting
from genomic medicine at the population level [6]. In nine genes that are responsible for hereditary breast and
ovarian cancer (HBOC), Lynch syndrome (LS), and familial hypercholesterolemia (FH), there is a substantial
burden of such rare variation in the population. Over 16% or 1 in 6 individuals carry a rare, non-synonymous
variant, roughly 18-fold more than those already classified as pathogenic [7]. Although many of these variants
may have limited phenotypic effects, some carry a substantial risk of disease, but they lack sufficient evidence
to be classified as pathogenic.

The sequence variant interpretation (SVI) process involves expert curation of evidence supporting
pathogenicity or benignity, following guidelines developed by the American College of Medical Genetics
and Genomics and the Association for Molecular Pathology (ACMG/AMP) [4]. Information curated during
assessment includes clinical case evidence, computational predictions of variant effect, experimental screening
measuring protein function, among others. The available evidence is weighed collectively to reach a clinical
classification for a variant and is often compiled into a text summary. Since 2019, 2.1 million of these variant
submission text summaries have been deposited to ClinVar [1]. Although they contain a great deal of curated
evidence, these reports contain heterogeneous information, lack a consistent structure, and often do not use
controlled vocabularies for evidence types or clinical information.

Understanding the evidence contained in these diagnostic reports can be useful for improving variant classi-
fication. Recent work has highlighted that as evidence of pathogenicity is developed for a variant, it can be used
to sub-classify variants that may ultimately be classified as pathogenic [8]. Here, we trained language models
(LMs) to discern the evidence patterns that are indicative of pathogenicity, benignity, or uncertainty contained
within variant summaries. Ultimately, this information can be used to identify VUS that have a substantial
amount of evidence of pathogenicity to prioritize them for review by expert panels.

2 Results

Our objective is to train a model that learns text representations of evidence of variant pathogenicity, benignity,
and uncertainty. With these learned representations of evidence, we then classify clinical text summaries for
variants of uncertain significance (VUS), to assess how likely each variant is to contain evidence of being
pathogenic, benign, or uncertain.

2.1 Training data: Variant text summaries

We first developed model training data using variants that had been previously classified by a clinical lab and
deposited into ClinVar. A central challenge in learning representations of evidence is that ClinVar text summaries
are heterogeneous with complex structures. We first deduplicated and filtered highly similar summaries, short,
or uninformative summaries, and standardized punctuation, characters, and language (See Methods in Section
4). We also sample summaries across clinical labs, as many submissions come from just a few labs which could
potentially contribute to bias and lack of text diversity in model training.

Text summaries from some clinical labs follow a template for how evidence is described. Consequently,
summaries from those labs may exhibit high structural similarity. Furthermore, some sentences serve as a
conclusion of the variant classification (e.g. ‘Based on the supporting evidence, this alteration is interpreted as
a disease-causing mutation’) which is a clear proxy of a class label. Other sentences provide a description the
variant (e.g. ‘The p.L95P pathogenic mutation (also known as c.284T>C), located in coding exon 3 of the SDHD
gene, results from a T to C substitution at nucleotide position 284.’). Both of these examples do not provide
evidence of variant pathogenicity and could contribute to bias or overfitting in model training from the presence
of specific structural elements.

We classified and filtered predicted examples of these sentence types, as shown in Figure 1b. Figure 1c
describes the proportion of each type of sentence in the training data; Figure 1d shows the distribution of three
sentence types by year.

We evaluated two approaches to mitigating the challenge of embedded class labels and structural similarity:
1) using a rule-based method to filter and 2) using a sentence classifier to filter as illustrated in Figure 1a, and
contrasted these with using raw original data.

• Rule-Based Filtering (‘rule-based’ dataset): This approach uses a rule-based text processing pipeline
to remove parts of sentences in the dataset that have pre-defined keywords and phrases that are suggestive
of class labels, as specified in Section A (Section A.1.1).
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• Sentence Classification Filtering (‘evidence-only’ dataset): This approach uses a model to classify
sentences (SentenceClassifier) as conclusion, description, or evidence, and retains only evidence sentences.

• Original Unfiltered Data (‘raw-data’ dataset): We contrast results with the original raw ClinVar data
which has not been processed.

After filtering ClinVar text summaries using each of these three approaches, we created three distinct training
sets. We sampled pathogenic or likely pathogenic (P/LP), benign or likely benign (B/LB), or uncertain (VUS)
variants in proportions of 2:2:1, given the limited number of B/LB variants. All three sets contained the same
number of variants, sampling was done by class, submitting lab, and gene.

(a) Overview of the pipeline (b) A text example processing using SentenceClassifier

B/LB P/LP VUS
Submission Classification

0

20

40

60

80

100

Pe
rc

en
ta

ge

1.2% 3.1% 0.6%

94.4%
89.7%

54.5%

4.4%
7.2%

44.8%

(c) Sentence proportions by label

2018 and earlier 2019 2020 2021 2022 2023
Submission Creation Year

0

20

40

60

80

100

Pe
rc

en
ta

ge

5.1%
2.1% 2.0% 0.9% 1.2% 1.4%

85.6% 85.8% 85.1% 87.4% 85.2% 85.0%

9.3%
12.1% 12.8% 11.8% 13.7% 13.6%

Sentence Type
Conclusion
Evidence
Description

(d) Sentence proportion by year

Fig. 1: (a) An overview of text processing and record sampling used ahead of fine-tuning BERT models with
ClinVar submission text summaries. (b) An example submission summary (SCV002749858): In this submission,
the lab describes this variant (gray highlighting) and also classifies the variant as pathogenic (pink highlight-
ing). We trained a sentence classifier to identify and filter these description and conclusion sentences so that
only sentences containing evidence (blue highlighting) are used in model training. (c) Sentence type proportion
distribution for three submission classification labels (B/LB, VUS, and P/LP) in the training data. Text sum-
maries from the B/LB and P/LP classes have much larger fractions of evidence-labeled sentences, in contrast
with VUS-labeled samples, which have a much larger share of description-labeled sentences. (d) Sentence type
proportion distribution by ClinVar submission creation year, with pre-2019 years grouped together and individ-
ual years shown from 2019 through 2024.

2.2 Evaluation of model performance

Next, we sought to evaluate the performance of each possible training set on BioBERT-base, a BERT-based
model trained on a broad set of biomedical knowledge, including PubMed abstracts (PubMed) and PubMed
Central full-text articles (PMC) [9]. We fine-tuned BioBERT-base using each of our three training sets and
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measured classification performance using testing data, a random held-aside sample of 20% of the raw-data
dataset without any text processing. We also compared to native BioBERT-base model performance without
fine-tuning using ClinVar data. We observed a significant performance improvement for models fine-tuned with
ClinVar data compared to the pre-trained BioBERT-base model. Results are shown in Table 1. This indicates
that additional training with ClinVar data enhances the model’s ability to learn useful text representations and
improves prediction accuracy on test data.

Model Accuracy Precision Recall F1 Score AUC-ROC

BioBERT-base + ClinVar (evidence-only) 0.9720 0.9721 0.9702 0.9711 0.9974
BioBERT-base + ClinVar (rule-based) 0.9805 0.9795 0.9802 0.9798 0.9987
BioBERT-base + ClinVar (raw-data) 0.7207 0.8157 0.7193 0.7264 0.9500
BioBERT-base [9] 0.3760 0.1601 0.3133 0.1919 0.5122

Table 1: Performance of fine-tuned BioBERT-base models with ClinVar data compared to a pre-trained
BioBERT-base model that has not been fine-tuned using ClinVar data on test data from the raw-data dataset.

We observed significant evidence of overfitting for the three fine-tuned BioBERT base models we developed.
Overfitting was most apparent with the model developed using the raw-data training set, both in terms of
classification performance and training loss characteristics. We found that training loss converged quickly for
the raw-data approach, often within 100 steps. While the rule-based approach was slower to converge, both
the raw-data and rule-based text processing methods converged quickly during training, achieving over 90%
accuracy with fewer than 1,000 examples. In contrast, the model trained using the evidence-only approach was
the slowest to converge. Training loss, evaluation loss, and accuracy during training for each text processing
method can be found in Section A (Figure A1c).

Next, we aimed to understand and mitigate potential causes of overfitting using an ablation study. For each
variant summary, we identified the most influential sentence that would change model predictions (e.g., from
P/LP to VUS, or vice versa), using randomly sampled ClinVar records. Detailed results of this study can be
found in Section A (A.2.2). We found that the model often learned to make predictions based on template-based
structural characteristics, rather than learning unique or informative evidence of pathogenicity. We used this
information to further refine the SentenceClassifier to help remove such template-based sentence structures to
mitigate overfitting during training.

We additionally evaluated multiple pre-trained general-domain BERT language models, including BERT
[10] and RoBERTa [11] on the raw-data test set. We also used BERT models trained with different biomedical
text corpora including BioBERT [9], ClinicalBERT [12], and ScholarBERT [13] (See Methods in Section 4),
including base and large models where available, on the same test data from the raw-data dataset. Overall, pre-
trained language models did not perform well in this ClinVar text classification task, there was still a noticeable
performance difference between domain-specific language models and general-domain models, as shown in Table
B1 in Section B.

Interestingly, we observed that the performance of domain-specific models, such as BioBERT and Scholar-
BERT, was not as strong as that of general-domain models, without further training on the ClinVar dataset.
However, once these models were fine-tuned with ClinVar data, domain-specific models had slightly better per-
formance than general-domain models, and the performance gap became smaller, with all fine-tuned models
achieving comparable results.

2.3 Validation using orthogonal functional screening data

We next proceeded to validate model predictions using orthogonal estimates of variant-level functional impact
from deep mutational scanning (DMS) screens as ‘ground truth’ validation data. These experimental screens
enable the functional assessment of thousands of coding variants that were installed in a cell line, typically
replacing the native gene sequence. We evaluated model performance using DMS assays for five commonly
screened genes: BRCA1, LDLR, TP53, HRAS, and PTEN, using functional score data from MaveDB [14, 15],
which was normalized and processed using the FUSE pipeline [16].

We measured our model performance by comparing model predictions of pathogenicity from submission
summaries with experimental measurements of variant functional impact from these DMS screening assays.
We first developed class labels for ‘ground truth’ functional score data, using thresholds based on the prior
expectation of proportions of single nucleotide ClinVar VUS [17]. These thresholds were predicted to have
damaging effects, intermediate effects, or have preserved function, from the BRCA1 screening dataset. The
resulting functional score thresholds set the top 27.1% of variant functional scores to be damaging (equivalent
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to our predicted P/LP class) and the bottom 27.5% of variant functional scores to have preserved function
(equivalent to our B/LB class), with the rest labeled as having intermediate function (similar to some variants
in our VUS class). With each functional score having a ground truth class label, we then compared prediction
results from our trained models to the ground truth labels. Results for BioBERT-base models are shown in
Table 2; results for all models are included in Section B (Table B2).

Model Accuracy Precision Recall F1 Score Pair-wise AUC Avg AUC-ROC

P/LP vs B/LB P/LP vs VUS B/LB vs VUS

BioBERT-base + ClinVar (evidence-only) 0.4753 0.4930 0.4753 0.4219 0.9272 0.8043 0.5470 0.7595
BioBERT-base + ClinVar (rule-based) 0.4891 0.5098 0.4891 0.4399 0.9096 0.7938 0.5377 0.7470
BioBERT-base + ClinVar (raw-data) 0.4840 0.5306 0.4840 0.4192 0.9037 0.7882 0.5826 0.7582
BioBERT-base [9] 0.2713 0.0736 0.2713 0.1158 0.3953 0.5428 0.3953 0.4503

Table 2: Evaluation results of trained BioBERT-base models trained with three different text processing and
sampling methods (evidence-only, rule-based filtered, and raw ClinVar data) and pre-trained BioBERT-base on
orthogonal generated DMS Data

We next analyzed the distributions of functional scores for each existing and predicted class label. We first
analyzed DMS functional scores using existing ClinVar variant classifications (not derived from our models).
Higher DMS functional scores generally indicate larger impacts on protein function, whereas lower scores indicate
smaller impacts on protein function. As expected, in most genes, variants originally classified as B or LB had
lower functional scores than VUS variants, which had lower functional scores than variants classified as LP
or P (Figure 2, top). Notably, this was not the case for HRAS which had limited numbers of variants with
classifications in ClinVar with functional scores, and PTEN which had no B variants and very few LB variants.

We then used our fine-tuned models trained using the three text processing methods to make predictions on
each VUS-labeled ClinVar submission with a DMS functional score. Variant text summaries were assigned B/LB,
VUS, and P/LP classifications following specific recalibration proportions derived from published proportions in
BRCA1 [17] so that each model would have an equal number of predictions in each class (See Section 4.3.2). The
DMS functional scores of variants that were classified as P/LP were significantly different from the functional
scores for variants that were predicted as B/LB, for nearly all model types and genes. For many models, we
found that predicted P/LP and B/LB groups showed highly significant differences, with large separations in
their median functional scores (Figure 2).

Notably, DMS data from LDLR was only recently published in [18], so it was highly unlikely that this
DMS information was present in any ClinVar text summaries that we evaluated for this gene. These results
suggest that these fine-tuned models had been sufficiently trained to understand information useful for variant
classification for variants within ClinVar that did not have sufficient evidence required to be classified as benign
or pathogenic. Full visualization results are included in Section B (Figure B2 and Figure B3).

2.3.1 Performance Discussion

We found that the fine-tuned BioBERT-base and BioBERT-large models had the best performance across the
language models we evaluated. We found consistent and highly significant differences between the functional
scores of variants classified as B/LB and P/LP in all five genes, with large shifts in median functional scores
between these two groups. Results for other fine-tuned models were included in Section A (B.0.2). For the
remainder of the paper, we used the evidence-only trained version of BioBERT-base, which we call ClinVar-
BERT.

2.4 Model Attention Weight Visualization

Given that the types of evidence and descriptions in these submission summaries were heterogeneous, we aimed to
characterize the forms of evidence that our models were identifying. We analyzed attention weights to understand
the components of each text summary to identify the specific words or phrases that were influential in driving
model classifications. We used Ecco [19], a Python library for interpreting and visualizing language model
attention weights, to inspect attention patterns that emerged during classification. Ecco processed input text
through our fine-tuned BERT models, extracting the attention weights from each layer and the head of the
transformer, and aggregated these weights to identify components within the input that were influential for
classification.

Using a case review, we analyzed examples of variants submitted to ClinVar as uncertain (VUS) that were
classified by ClinVar-BERT as B/LB or P/LP with high model prediction confidence (probability > 0.8). For the
case example where a ClinVar VUS was classified as B/LB by the model, we found high attention weights on parts
of the summary that describe evidence of variant benignity. Specifically, the model focused on text describing
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Evaluation Results with DMS Assays

Recalibrated Model Predictions for ClinVar VUS
evidence-only

Recalibrated Model Predictions for ClinVar VUS
rule-based

Recalibrated Model Predictions for ClinVar VUS
raw-data

Existing ClinVar Classifications

Fig. 2: Top row: Existing classification on ClinVar (B, LB, VUS, LP, and P) on the x-axis and functional scores
on the y-axis. The following rows are recalibrated model prediction on VUS-labeled submission on the x-axis
(B/LB, VUS, and P/LP), and functional scores on the y-axis.

high population frequency and computational evidence predicting no likely impact on protein function. For the
case example of a ClinVar-labeled VUS submission summary that was predicted to be P/LP, the model showed
high attention weights on different parts of the summary. The model particularly focused on references to prior
publications describing the variant, functional screening evidence highlighting the impact on potassium channel
function, and case reports for individuals with Long QT Syndrome. Altogether, this supported the notion that
the model focused on clinically relevant information, such as specific ACMG evidence types including case
reports, functional screening evidence, and computational predictions.
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(a) Example of VUS Predicted to be B/LB

(b) Example of VUS Predicted to be P/LP

Fig. 3: Attention visualization using Ecco for two case examples. Text summaries are from variants classified
as uncertain (VUS) within ClinVar, which are predicted by our model to be B/LB and P/LP with probabilities
over 0.8. (a) Example of a ClinVar-labeled VUS submission summary that is model predicted as B/LB. The
model has high attention weights on parts of the summary that describe the variant, highlighting that it is
not highly rare in human population datasets, and that computational evidence predicts that it is not likely to
impact protein function. (b) Example of a ClinVar-labeled VUS submission summary that is model predicted
to be P/LP. The model has high attention weights on parts of the summary that highlight references to prior
publications about the variant, functional screening evidence that highlights an impact on potassium channel
function, and case reports for individuals with Long QT Syndrome.

2.5 Submission Summary Embedding UMAP Visualization

To investigate how fine-tuning with ClinVar data enhances the ability of models to encode clinically meaningful
patterns, we performed a comparative analysis of submission summaries. We randomly sampled 25,000 ClinVar
submission summaries and then visualized and compared the embedding spaces of BioBERT [9] and ClinVar-
BERT using UMAP [20]. We analyzed these embedding spaces with regard to submitting laboratory, submission
classification, and overall clinical significance, as shown in Figure 4.

BioBERT and ClinVar-BERT produce different embedding spaces when representing ClinVar submission
texts. In the BioBERT visualization (Figure 4b, 4d, and 4f), submissions show a scattered distribution with
loosely defined boundaries. Compared to ClinVar-BERT embedding spaces, each BioBERT space has a lower
Silhouette score of 0.061 for clinical significance and 0.094 for submission classification. In contrast, ClinVar-
BERT embeddings (Figures 4a, 4c, and 4e) demonstrate significantly tighter clustering, with higher Silhouette
Scores of 0.116 for clinical significance and 0.157 for submission classification. The well-defined clusters in the
UMAP visualization demonstrate that ClinVar fine-tuning strengthened the model’s ability to encode evidence-
associated patterns from submission text records.

The distribution of VUS records of clinical significance (Figure 4e) from ClinVar-BERT embeddings reveals
that the language patterns in VUS summaries systematically differ according to their proximity to P/LP versus
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B/LB clusters. VUS summaries clustering near P/LP regions tend to include some evidence of pathogenicity,
as illustrated by this example: “The G57R variant has not been published as pathogenic or been reported as
benign to our knowledge. The G57R variant is not observed in large population cohorts (Lek et al., 2016;
1000 Genomes Consortium et al., 2015; Exome Variant Server)...This substitution occurs at a position that
is conserved across species, and in silico analysis predicts this variant is probably damaging to the protein
structure/function.” This example contains population evidence (PM2) and computational evidence (PP3) of
pathogenicity. Whereas VUS summaries that cluster closer to B/LB regions typically contain language suggesting
an absence of pathogenic evidence or evidence of benignity, as seen in this example:“In summary, the available
evidence is currently insufficient to determine the role of this variant in disease... The threonine amino acid
residue is found in multiple mammalian species, which suggests that this missense change does not adversely
affect protein function...”.

These UMAP visualizations suggest that fine-tuning with ClinVar data has helped to adapt the embedding
space to better capture text related to pathogenicity and the underlying strength of evidence. This information
appears to be reflected in submitter-specific documentation patterns. The model’s ability to capture the semantic
features of clinical evidence can provide valuable insights for prioritizing variant re-classification.
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Fig. 4: UMAP visualization comparing embeddings from ClinVar-BERT and BioBERT models for 25,000
randomly sampled ClinVar submission summaries. The left column visualizes ClinVar-BERT embeddings, and
the right column visualizes BioBERT embeddings. (a) and (b) are visualizations with respect to the ClinVar
submitter. (c) and (d) are UMAP visualizations colored with the submission classification, which is the variant
pathogenicity assertion of the submission, showing P/LP and B/LB. (e) and (f) visualize the ClinVar clinical
significance at the variant level on ClinVar, which considers all submissions related to the same variant and
phenotype.
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3 Discussion

In this study, we evaluated the potential of training language models to learn generalizable clinical evidence from
unstructured variant summary text records in ClinVar. We fine-tuned both general-purpose and domain-specific
models using labeled clinical summary text records to discern evidence of variant pathogenicity or benignity. We
mitigated model bias and overfitting using a quality control pipeline that identified problematic records and a
sentence classifier that filtered sentences that were unlikely to contain evidence of pathogenicity or benignity. We
also validated our models using orthogonal data from functional screening assays in genes which were entirely
held aside from model training. We found that variants classified as pathogenic and benign using ClinVarBERT
had significantly different functional assay scores, supporting the hypothesis that this model identified relevant
evidence.

We found large improvements in variant classification tasks using models fine-tuned with ClinVar training
data over general-domain models. Among the models we evaluated, classification performance is also consis-
tently better when fine-tuning models trained on broad biomedical text corpora, such as BioBERT-base, rather
than using general-domain models. Given that BioBERT-base was trained on a large set of PubMed abstracts
and PubMedCentral full-text articles, it appears to be a solid foundation for learning additional generalizable
biomedical and clinical evidence within ClinVar text summaries. Training and classification metrics also demon-
strate that our sentence classification approach (filtering sentences from text summaries that were unlikely to
contain clinical evidence) performed well across validation datasets. This approach reduces overfitting, likely
by removing conclusion sentences that contained proxy class labels, as well as by removing sentences with high
structural similarity which were common in description sentences.

Our findings underscore the utility of language models in processing and interpreting intricate clinical nar-
ratives, offering potential applications in variant prioritization. Our model ClinVar-BERT has the potential to
identify variants whose text summaries contain meaningful clinical evidence, but which were not yet sufficient
for a pathogenic or benign classification. Future research may include integrating information across a set of
clinical summaries about the same variant from different diagnostic labs. By analyzing information developed by
different labs, such an approach could prioritize variants that collectively had sufficient evidence to be reclassi-
fied, but where the evidence provided by any single lab was insufficient for classification. This information could
be used to inform ClinGen Variant Curation Expert Panels (VCEPs) about which variants are most likely to
change classifications from expert review. Future work could also extract specific forms of evidence which were
present within a clinical summary text, and use that to identify evidence gaps.

3.1 Limitations of this work

This study has several limitations. First, some variants have multiple text summaries from different clinical
labs, which may need to be harmonized. Because evidence of pathogenicity is often developed over time, more
information is likely to be contained in the latest submission summary, but it is not guaranteed to contain all
available evidence. In contrast, while a very large number of variants have submission text summaries, many do
not.

Second, text summaries are increasingly being generated using lab-standardized templates, which leads to
high structural similarity among text summaries. This can lead to bias or overfitting if models learn characteris-
tics about these templates which are correlated with a specific classification, rather than learning about relevant
evidence. Pre-processing approaches must meet the challenge of filtering these highly predictive sentence struc-
tures. These templates are not uniform across labs, but increasingly VCEPs are recording structured evidence
types with reports from expert reviews, which should help mitigate this issue more generally.

Finally, while the accuracy of our classifications is strong, these models are more suited to variant prioriti-
zation for expert review. These models have not been calibrated to measure the strength of evidence provided
for variant classification. Given that these models were trained on many forms of clinical evidence, it compli-
cates their calibration and use following the existing classification guidelines. Model performance is contingent
on the quality and representativeness of the clinical reports available within ClinVar. Class imbalance, partic-
ularly in the B/LB category, poses a challenge that must continue to be addressed. Continual improvement
of model architectures, training strategies, and dataset diversity is needed to enhance model robustness and
generalizability.

4 Methods

We parsed and extracted 2.1 million plaintext submission summaries from ClinVar1. These submission sum-
maries were used by diagnostic labs to describe the evidence used during variant interpretation when submitting
a classification to ClinVar [1]. We processed these submission summaries by removing potential class labels from

1https://www.ncbi.nlm.nih.gov/clinvar/
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each submission summary record and filtering short or duplicated records, as described in the following section.
This processing step reduced the number of submission summaries linked to variant assertions to about 1.2 mil-
lion. We then developed training and testing datasets to fine-tune language models to understand evidence of
pathogenicity. Next, we used these models to assign probabilities for each text summary for whether the variant
is P/LP (pathogenic or likely pathogenic), B/LB (benign or likely benign), or VUS (variant of uncertain signif-
icance). Finally, we validated the classification accuracy of these models using text summary records as well as
orthogonal functional screening data.

4.1 ClinVar Dataset Processing

4.1.1 Removing short and duplicated text summaries

We filtered out short submission summaries by setting a threshold of 100 characters to ensure each comment
contained sufficient evidence and removed duplicate summaries from the dataset.

4.1.2 Removing highly similar submission summaries and standardizing text

Deduplication of text data was shown to significantly improve model performance, especially for models with a
large number of parameters, as this step removed redundancy and thereby increased the diversity of the data
[21–24]. Deduplication was frequently performed in an embedding space, where hashed numerical encodings were
compared using methods such as MinHashLSH [25], which combined MinHash encoding [26] and the Locality
Sensitive Hashing algorithm [27]. Based on n-grams (a contiguous sequence of n characters/tokens from a given
sample of text), MinHash provided a technique for quickly estimating the Jaccard similarity between two texts.
In our study, we considered the sets of n-grams derived from the raw ClinVar text reports and studied the
similarity between the reports and between sentences within each report.

We performed deduplication both at the report level and the sentence level. Moreover, rather than relying
on exact repetition searches, researchers had increasingly adopted “fuzzy” deduplication methods [23, 28, 29].
This approach identified “nearly” repeating data by measuring similarity and applying a threshold. Fuzzy
deduplication became standard practice in the area of LLMs, as exemplified by its use in models such as
GPT-3 [30], Llama [31], Falcon [32], Pangu [33], and the Pile dataset [34]. For our ClinVar model training, we
incorporated fuzzy deduplication into our text preprocessing pipeline.

To standardize the text in the extracted ClinVar corpus, we took the following steps: First, we removed
non-English words and characters by identifying and eliminating such instances from the corpus. Next, we
standardized punctuation and symbols to conform to conventional English usage. Finally, we applied MinHash
[35] with a Jaccard similarity threshold of 95% to remove highly similar summaries based on groups of submission
labs and genes, where template-based summaries stemmed from. Examples of deduplication results from ClinVar
text are provided in Section A (A.1.4).

4.1.3 SentenceClassifier

A ClinVar submission summary is a plaintext clinical report generated by a diagnostic lab that describes how
a single variant contributes to a specific phenotype or disorder. These submission text summaries often include
one or more purely descriptive sentences, for example, describing the gene, location, and type of variant in the
report, rather than the evidence that might be used to classify whether it is pathogenic or benign. Additionally,
many text summaries include a conclusion sentence that summarizes the evidence described and an assertion
about the variant’s pathogenicity, which maps to one of our three class labels (B/LB, VUS, and P/LP). Given
our goal is to train the model to understand text representations of evidence that indicate a variant is more
likely to be pathogenic, benign, or uncertain, these conclusions could lead to bias or overfitting. To address this
potential bias or overfitting, we fine-tuned a BERT [10] model with our labeled data to train a sentence classifier
for labeling sentences in submission summaries as description, evidence, and conclusion. Examples of our
labeled data are provided in Section A (A.1.2).

We then used the NLTK sentence tokenizer [36] to split each submission summary into individual sentences.
We employed the sentence classifier to identify sentences labeled as description and conclusion by the model
and removed them from each submission summary (see examples in Section A, A.1.4) to reduce the likelihood
that our dataset contains assertions of variant pathogenicity.

4.1.4 Model training data processing

Finally, we sampled a subset of the ClinVar dataset to create training and testing datasets. Given the imbalanced
distribution of B/LB submission summaries relative to P/LP and VUS summaries (22k B/LB, 216k P/LP, and
682k VUS), we sampled all B/LB summaries and maintained a 1:2:2 ratio for B/LB, P/LP, and VUS summaries.
This corpus was split with 80% used for training and 20% for testing the model.
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4.2 Fine-Tuning BERT Models for Sequence Classification

Upon obtaining training and testing data, we defined our approach as a sequence classification task. Specifically,
we input a submission summary from ClinVar into a language model and task the model with predicting
whether the variant is P/LP (pathogenic or likely pathogenic), B/LB (benign or likely benign), or VUS (variants
of uncertain significance). We evaluated multiple BERT-based transformer models [37], including BERT [10],
RoBERTa [11], BioBERT [9], ScholarBERT [13], and ClinicalBERT [12]. BERT and RoBERTa are general-
domain models, whereas BioBERT, ScholarBERT, and ClinicalBERT are domain-specific models pre-trained
on large biomedical or clinical text corpora. Configurations and detailed training setups are discussed in Section
A (A.2).

4.3 Evaluation with Experimental Functional Screening Data

4.3.1 Deep Mutational Scanning (DMS) dataset construction

To validate the accuracy and generalizability of our fine-tuned models, we evaluated their performance on
separately generated experimental screening data. This dataset includes estimates of functional impact for
genetic variants derived from high-quality experimental assays in genes with established clinical significance:
BRCA1, HRAS, LDLR, PTEN, and TP53. Submission summaries for variants in these genes are excluded from
the training and testing data. The DMS dataset was constructed by matching ClinVar submission summaries to
variants with corresponding functional assay scores. These scores, downloaded from MaveDB [14], were processed
using the FUSE optimization pipeline [16] and paired with ClinVar submission summaries at the amino acid
substitution level.

4.3.2 Validation of model classifications with DMS functional scores

We then applied our fine-tuned models to make predictions on variants with submission summaries in the
DMS dataset, where the model would have three probability scores P (B/LB), P (P/LP ), and P (V US) for

each prediction. We then normalized prediction scores for B/LB and P/LP by P (B/LB) = P (P/LP)
P (B/LB)+P (P/LP) ,

P (P/LP) = P (P/LP)
P (B/LB)+P (P/LP) so that there is no overlap between the prediction scores for each group.

Then we recalibrated our predicted class label frequencies using the expected proportions of impacts from
single nucleotide VUS from a well-established functional assay in BRCA1 [17]. There are three predicted impact
types from this functional assay: ‘LOF’ or loss-of-function which is equivalent to our P/LP class label, ‘INT’ or
intermediate, which is equivalent to our VUS class label, and ‘FUNC’ or functional, which is equivalent to our
B/LB class label. We matched the frequency of variants exactly in proportion to our recalibrated class labels:
variant scores that are in the top 21.1 percentile are assigned P/LP, variants below the 72.5 percentile are
assigned B/LB, and all remaining variants are assigned VUS. Finally, with our recalibrated prediction labels,
we performed Mann-Whitney U tests [38] to assess the statistical significance and median shifts between groups
predicted as P/LP or B/LB based on their functional assay scores.

4.4 Model Attention Weights Visualization

Using the chosen preprocessing criteria and model, we generated predictions on the held-aside dataset. To analyze
whether our ClinVar-BERT model focuses on words and phrases indicative of pathogenicity or benignity, we
examined its attention weights. With the model’s attention weights and tokenized ClinVar summaries, we utilized
Ecco [19] to analyze attention patterns. Ecco applies non-negative matrix factorization (NMF), a dimensionality
reduction technique that transforms high-dimensional data into a lower-dimensional, more interpretable matrix.
By specifying the number of components, we visualized attention weights through color-coded tokenizations.
These components represent ‘concepts’ within the ClinVar summaries, highlighting relationships between words
and phrases. This analysis revealed where the model focuses during the prediction task, providing insights into
its interpretability.

4.4.1 Selection of summaries for attention weights visualization case review

Through a case review approach, we selected two ClinVar-labeled VUS summaries classified by the model as
B/LB and P/LP respectively. To ensure strong case evidence, these summaries were sorted based on two criteria:
high model prediction confidence and sufficient text length. We filtered summaries with a final class probability
greater than 0.8 to ensure high model prediction confidence. Longer summaries were prioritized, as they are more
likely to contain comprehensive textual evidence, with selection based on the total string length of the ClinVar
summary. After sorting, we manually reviewed the summaries, focusing on those with evidence consistent with
the American College of Medical Genetics and Genomics/Association of Molecular Pathology Sequence Variant
Interpretation (ACMG/AMP SVI) framework [4].
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4.5 Submission Summary Embedding UMAP Visualization

To visualize and compare the embeddings from the pre-trained BioBERT [9] model and our fine-tuned ClinVar-
BERT model, we analyzed ClinVar submission summary text data focusing on their submitters and associated
submission classification on ClinVar.

We first performed stratified sampling based on ‘submitter’ to ensure a balanced representation while main-
taining the natural distribution patterns in the data. Specifically, we selected the top 5 submitters by submission
volume and sampled a total of 25,000 submissions, with a minimum of 1,000 samples per submitter.

We computed embeddings for each submission summary in our sampled dataset using both BioBERT and
ClinVar-BERT models, so that we could conduct a comparative analysis of the embedding spaces before and after
ClinVar-specific training. We then employed Uniform Manifold Approximation and Projection (UMAP) [39] for
dimensionality reduction. The UMAP algorithm was configured with the following parameters: n neighbors=50
to balance local and global structure preservation, min dist=0.2, and cosine similarity as the distance metric
to effectively capture semantic relationships between texts. The resulting two-dimensional embeddings were
visualized as scatter plots, with points colored by three key categorical variables: ClinVar submitter, submission
classification made by the submitter, and clinical significance (the interpretation of a variant).

5 Conclusion

By training language models to discern evidence of pathogenicity from unstructured clinical text, we have
introduced a novel approach to prioritize variants for expert review. This research promises to allow clinicians to
more readily make use of expert-curated information that is currently prohibitively complicated to use at scale.
This information should enable expert panels to classify a larger proportion of variants as pathogenic or benign,
allowing more patients to learn about clinically actionable findings. This could advance genomic medicine to
the large number of patients who collectively harbor a VUS, potentially improving their clinical management.
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Appendix A Supplementary Methods

A.0.1 Data Cleaning and Processing

With the dataset being parsed from the raw XML file, we then applied several text processing methods to
prepare our dataset for model training and downstream evaluation tasks. Since ClinVar submission summary
text is a specific domain of text such that it contains notations (i.e. HGVS nomenclature) and acronyms (i.e.
ACMG evidence types) that only appear in this type of clinical text data, we develop text processing methods
tailored to this dataset, the following describes our text processing steps in detail.

A.1 Training a Sentence Classifier

In order to remove variant or submission classification labels and their proxies in submission summaries via a
robust approach, we train a sentence classifier for labeling a sentence as evidence or conclusion. This classifier
aims to label sentences as evidence or conclusion. We define a sentence as conclusion if it represents a
decision made by the submitter or the testing lab or institution, asserting a classification result for a specific
case upon submission to ClinVar. References to classification results from other sources, such as other testing
labs or publications, do not qualify as conclusion under this definition.

A.1.1 Rule-based conclusion vs. evidence labeling

To construct a dataset for training the classifier, we initially implemented a rule-based labeling method, so
that we could efficiently extract sentences labeled as conclusions from the ClinVar dataset. This rule-based
methodology provides a more fine-grained approach to process data and is widely used in the field of machine
learning and LLMs [40–43]. In our case, our rules are various types of sentence patterns that we use for conclusion
sentence matching. Analyzing the submission summaries from multiple submitters with various classification
labels enables us to identify a unique list of keywords associated predominantly with conclusion sentences.

Using these keywords, we extracted a preliminary set of sentences, labeling them as conclusion. The
remaining sentences were labeled as evidence. To enhance the reliability of this rule-based labeled dataset, we
conducted manual reviews and corrections, resulting in a balanced dataset consisting of 2,500 evidence and 2,500
conclusion examples. Furthermore, to ensure data quality, a set of 100 randomly selected examples underwent
a rigorous review by a domain expert.

Rule-Based Labeling: Conclusion Phrases and Keywords

• “In summary”
• “In conclusion”, “To summarize”, “To conclude”
• “Therefore,”, “is therefore predicted to be”
• “Taken together”, “Taking together”, “In brief”
• “this alteration remains unclear”, “Considering all the evidence”
• “Based on the available evidence”, “Due to insufficient evidences and the lack of functional studies”
• “After careful consideration”, “Upon review of the evidence”
• “Based on available information”, “Based on the results”
• “it has been classified as”, “Based on the available information”
• “based on the above information”, “with clinical assertions as classified by the original submitter”
• “Based on insufficient or conflicting evidence”, “the clinical significance of this alteration remains

unclear”
• “Since supporting evidence”, “For these reasons”
• “based on the currently available information”, “We consider it to be”
• “As such”, “Due to these contrasting evidences and the lack of functional studies”
• “The score for this variant resulted in a classification of”, “Taking together”, “we classify this variant

as”
• “we classify the”, “we classify it as”, “Considering that this is a”
• “there is insufficient evidence to classify”, “we interpret”
• “Considering available [. . . ]”
• “Due to limited information”, “Due to the potential impact of”
• “Based on the evidence outlined above”, “Variant of Uncertain Significance due to insufficient

evidence:”
• “Since supporting an evidence is limited at this time”, “the clinical significance of this variant is”
• “Based on the classification scheme”, “Given all the evidence”
• “this collective evidence supports the classification of”, “leading us to conclude that”
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A.1.2 Examples of labeled conclusion vs evidence data

As we train a classifier for identifying sentences including classification labels in text, we first have a labeled
dataset that includes balanced numbers of labeled examples for evidence and conclusion.

Example Labeled Data

Conclusion-Labeled Data

• The co-occurring 3’-UTR variant is located three base pairs upstream of the polyadenylation signal of
PHEX, thus it remains unclear whether it is just a marker for this pathogenic duplication, or can be
also detrimental in isolation.

• Therefore, this collective evidence supports the classification of the c.416G>A (p.Ser139Asn) as a
recessive Likely Pathogenic variant for Nonsyndromic hearing loss and deafness.

• Thus, the clinical significance of the p.Phe17754Ser variant cannot be determined with certainty.
• Based on the collective evidence, the p.Arg947Pro variant is classified as a variant of uncertain

significance for autosomal dominant pseudohypoaldosteronism type 1.
• In summary, the clinical signi ficance of the p.Arg343Gln variant is uncertain.
• Due to these contrasting evidences and the lack of functional studies, the clinical significance of the

p.Glu886Ala change remains unknown at this time.

Evidence-Labeled Data

• This variant is present in population databases (rs201097255, gnomAD 0.06%).
• This population frequency is higher than expected for a pathogenic variant in MSH2 causing Lynch

syndrome (BS1).
• ClinVar contains an entry for this variant (Variation ID: 17355).
• (I) 0304 - Variant is present in gnomAD (v2) <0.01 for a recessive condition (93 heterozygotes, 0

homozygotes).
• BARD1 His686Arg occurs at a position that is not conserved and is located in the BRCT 2 domain

(UniProt).
• The K61E variant was not observed in approximately 6,500 individuals of European and African

American ancestry in the NHLBI Exome Sequencing Project, indicating it is not a common benign
variant in these populations.

A.1.3 Examples of submission summaries before vs. after removing the
conclusion-labeled sentence

Example summaries

Before
The c.1329delT pathogenic mutation, located in coding exon 5 of the BARD1 gene, results from a dele-
tion of one nucleotide at nucleotide position 1329, causing a translational frameshift with a predicted
alternate stop codon (p.V444Lfs*31). This alteration is expected to result in loss of function by prema-
ture protein truncation or nonsense-mediated mRNA decay. As such, this alteration is interpreted
as a disease-causing mutation.

After
The c.1329delT pathogenic mutation, located in coding exon 5 of the BARD1 gene, results from a deletion
of one nucleotide at nucleotide position 1329, causing a translational frameshift with a predicted alternate
stop codon (p.V444Lfs*31). This alteration is expected to result in loss of function by premature protein
truncation or nonsense-mediated mRNA decay.

With the sentence classifier, the conclusion sentence containing a proxy of the classification label ”disease-
causing mutation” is removed.

A.1.4 Examples of highly similar submission summaries

With a threshold of 0.95, the following submission summaries are identified as highly similar by MinHash [35]
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Example summaries

• This missense variant replaces methionine with isoleucine at codon 141 of the MSH2 protein. Compu-
tational prediction tool is inconclusive regarding the impact of this variant on protein structure and
function. Internally defined REVEL score threshold: 0.5 < inconclusive < 0.7 (PMID: 27666373)...

• This missense variant replaces leucine with methionine at codon 9 of the MSH2 protein. Computational
prediction is inconclusive regarding the impact of this variant on protein structure and function.
Internally defined REVEL score threshold: 0.5 < inconclusive < 0.7 (PMID: 27666373)...

• This missense variant replaces methionine with valine at codon 779 of the MSH2 protein. Compu-
tational prediction tool is inconclusive regarding the impact of this variant on protein structure and
function. Internally defined REVEL score threshold: 0.5 < inconclusive < 0.7 (PMID: 27666373)...

• This missense variant replaces lysine with glutamic acid at codon 579 of the MSH2 protein. Computa-
tional prediction is inconclusive regarding the impact of this variant on protein structure and function.
Internally defined REVEL score threshold: 0.5 < inconclusive < 0.7 (PMID: 27666373)...

As we can see from the example above, with a threshold of 0.95 using MinHash, these submission summaries
are identified as highly similar, and we can notice that these summaries are highly template-based and the
only difference between each of them is the amino acid and codon information mentioned, and the rest of the
evidence being reference to is exactly the same for all of them. These are the summaries that we want to filter
out to ensure training text data diversity before sampling training and testing data.

A.2 Fine-Tuning Language Models with ClinVar Dataset

A.2.1 Model Training Details

We fine-tuned all models using a maximum sequence length (max length) of 512 tokens, which is the maximum
token length for BERT models. This configuration was chosen based on the distribution of token lengths in our
training data, where the average token count is 155.59, the median is 143.0, and the 90th percentile is 254. We
set the learning rate at 2 × 10−5 and applied a weight decay of 0.01 to optimize training.

Training loss, evaluation loss, and evaluation accuracy comparison during training using ClinVar datasets
with different text processing methods:

(a) Training Loss (b) Evaluation Loss (c) Evaluation Accuracy

Fig. A1: Comparison of training Loss, evaluation Loss, and accuracy during training among three text processing
methods
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A.2.2 ClinVar Summary Ablation Study

Removing the sentence changes the prediction label from P/LP to VUS

{

"Comment": "This sequence change replaces arginine, which is basic

and polar, with glutamine, which is neutral and polar, at codon 495

of the MYBPC3 protein (p.Arg495Gln). This variant is present in

population databases (rs200411226, gnomAD 0.006\%). This missense

change has been observed in individuals with hypertrophic

cardiomyopathy (PMID: 11499718, 20019025, 22857948, 23396983,

24093860). ClinVar contains an entry for this variant (Variation ID:

164113). Algorithms developed to predict the effect of missense

changes on protein structure and function (SIFT, PolyPhen-2, Align

GVGD) all suggest that this variant is likely to be disruptive. This

variant disrupts the p.Arg495 amino acid residue in MYBPC3. Other

variant(s) that disrupt this residue have been determined to be

pathogenic (PMID: 18403758, 19659763, 20624503). This suggests that

this residue is clinically significant, and that variants that

disrupt this residue are likely to be disease-causing.",

"removed_sentence": "This missense change has been observed in

individuals with hypertrophic cardiomyopathy (PMID: 11499718,

20019025, 22857948, 23396983, 24093860).",

"Original_Prediction": "P/LP",

"Ablated_Prediction": "VUS",

"Prediction_Difference": "Changed",

"SCV": "SCV000218744",

"Submitter": "Invitae",

"Gene": "MYBPC3",

"ground_truth_classification": "P/LP",

"prediction_labels_ft": "P/LP",

"prediction_scores_ft": [

0.99008584,

0.009653065,

0.00026108805

],

"Ablated_Prediction_Scores": [

8.087950845947489e-05,

0.9998732805252075,

4.587376315612346e-05

],

"Score_Difference": 0.9900049604915405

}

VUS to P/LP Influential Sentences Examples

• This sequence change creates a premature translational stop signal (p.Arg494*) in the EGF gene.
• This sequence change disrupts the translational stop signal of the FANCM mRNA.
• This sequence change affects an acceptor splice site in intron 5 of the TBX20 gene.
• The V462I variant in the PCCB gene has not been reported previously as a pathogenic variant, nor

as a benign variant, to our knowledge.
• This variant results in a copy number gain of the genomic region encompassing exon(s) 50-57 of the

NF1 gene.
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VUS to B/LB Influential Sentences Examples

• This sequence change replaces aspartic acid, which is acidic and polar, with glycine, which is neutral
and non-polar, at codon 650 of the BBS9 protein (p.Asp650Gly).

• This sequence change replaces arginine, which is basic and polar, with threonine, which is neutral and
polar, at codon 429 of the PIGV protein (p.Arg429Thr).

• This sequence change replaces aspartic acid, which is acidic and polar, with glycine, which is neutral
and non-polar, at codon 435 of the SMCHD1 protein (p.Asp435Gly).

• This sequence change replaces arginine, which is basic and polar, with cysteine, which is neutral and
slightly polar, at codon 261 of the DHX32 protein (p.Arg261Cys).

• This sequence change replaces threonine, which is neutral and polar, with proline, which is neutral
and non-polar, at codon 249 of the DSC2 protein (p.Thr249Pro).

A.3 Analysis

A.3.1 Attention Weights Visualization Configurations

The Ecco visualization model is configured by specifying the model id, activations, and model config.
For model id, the path to the trained model was provided, and activations were enabled (True). The
model config was defined with several parameters: embedding set to ‘embeddings.word embeddings’, type
as ‘mlm’, activations as ‘intermediate

textbackslash.dense’, token prefix as ‘, ’, and partial token prefix as ‘##’.
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Appendix B Supplementary Results

B.0.1 Test Data Evaluation Results

Fine-tuned and pre-trained model performances on test data from evidence-only processed ClinVar dataset.

Model Accuracy Precision Recall F1 Score AUC-ROC

BioBERT-large [9] + ClinVar 0.9754 0.9756 0.9730 0.9743 0.9982
ScholarBERT [13] + ClinVar 0.9720 0.9721 0.9702 0.9711 0.9974
ClinicalBERT [12] + ClinVar 0.9666 0.9685 0.9621 0.9651 0.9976
RoBERTa-base [11] + ClinVar 0.9717 0.9734 0.9669 0.9700 0.9979
RoBERTa-large [11]+ ClinVar 0.9729 0.9728 0.9705 0.9716 0.9978
BERT-Base [10] + ClinVar 0.9729 0.9724 0.9715 0.9720 0.9979
BERT-Large [10] + ClinVar 0.9754 0.9756 0.9730 0.9743 0.9982
BioBERT-large 0.2000 0.3046 0.3318 0.1136 0.5599
ScholarBERT 0.2309 0.3277 0.3477 0.1789 0.5344
ClinicalBERT 0.4152 0.2801 0.3505 0.2346 0.4686
RoBERTa-base 0.1360 0.0900 0.1537 0.1110 0.4988
RoBERTa-large 0.3030 0.2325 0.3774 0.2552 0.5984
BERT-base 0.4025 0.4503 0.3355 0.1953 0.3768
BERT-large 0.1998 0.2139 0.3132 0.1372 0.4705

Table B1: Performances of fine-tuned BERT models compared to pre-trained models on ClinVar raw-data
test data.
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B.0.2 DMS Evaluation Results

Model Accuracy Precision Recall F1 Score Pair-wise AUC Avg AUC-ROC

P/LP vs VUS B/LB vs VUS P/LP vs B/LB

BioBERT-large + ClinVar 0.4753 0.4930 0.4753 0.4219 0.8043 0.5470 0.9272 0.7595
ScholarBERT + ClinVar 0.4702 0.4840 0.4702 0.4171 0.8014 0.5641 0.9084 0.7579
ClinicalBERT + ClinVar 0.4792 0.4900 0.4782 0.4266 0.7933 0.4927 0.9057 0.7306
BERT-base + ClinVar 0.4829 0.4955 0.4829 0.4330 0.8135 0.5650 0.9267 0.7684
BERT-large + ClinVar 0.4805 0.4967 0.4805 0.4267 0.8109 0.5085 0.9150 0.7448
RoBERTa-base + ClinVar 0.4648 0.4863 0.4648 0.4103 0.8091 0.5874 0.9217 0.7728
RoBERTa-large + ClinVar 0.4754 0.4879 0.4754 0.4219 0.7810 0.4458 0.8941 0.7070

Table B2: Evaluation results of fine-tuned models trained with evidence-only dataset on orthogonally gen-
erated DMS Data
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Fig. B2: Comparison of DMS validation results of evidence-only trained BioBERT-base and BioBERT-large
models on orthogonally generated DMS data
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Fig. B3: Comparison of evidence-only trained DMS validation results of multiple BERT-architecture language
models
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