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Abstract— In recent years, several machine-learning
(ML) solutions have been proposed to solve the problems
of seizure detection, seizure characterization, seizure pre-
diction, and seizure onset zone (SOZ) localization, achiev-
ing excellent performance with accuracy levels above 95%.
However, none of these solutions has been fully deployed
in clinical settings. The primary reason has been a lack
of trust from clinicians towards the so-called black-box
decision-making operability of ML. More recently, research
efforts have focused on explainability frameworks of ML
models that are clinician-friendly. In this paper, we con-
ducted an analysis of graph neural networks (GNN), a
paradigm of artificial neural networks optimized to oper-
ate on graph-structured data, as a framework to detect
seizures from intracranial electroencephalographic (iEEG)
data. We employed two multi-center international datasets,
comprising 23 and 16 patients and 5 and 7 hours of iEEG
recordings. We evaluated four GNN models, with the high-
est performance achieving a seizure detection accuracy of
97%, demonstrating its potential for clinical application.

Index Terms— Electrophysiological signal processing,
graph neural networks, health informatics

I. INTRODUCTION

Epilepsy is a neurological disorder affecting over 50 mil-
lion individuals worldwide [1], often necessitating thorough
assessment in specialized units like the Epilepsy Monitoring
Unit (EMU). Patients in these units undergo continuous video
and electroencephalographic (EEG) monitoring, generating
vast amounts of data—ranging from 1 to 10 terabytes per
individual. Approximately 30-40% of these patients require
intracranial EEG (iEEG) monitoring [2], [3], involving the
implantation of electrodes within the brain to precisely locate
seizure origins. For instance, the EMU at the Toronto West-
ern Hospital annually manages about 300 patients for EEG
recordings and nearly 40 patients for iEEG recordings.

Accurate detection and localization of seizure onset zones
(SOZ) are crucial for effective treatment, particularly for
those who are candidates for surgical intervention. Despite
the significant volume of data generated, there is a lack of
standardized methods for the automated processing, analysis,
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and interpretation of EEG and iEEG data, which hinders
advancements in epilepsy treatment.

In recent years, machine-learning (ML) solutions have
shown remarkable potential in automating tasks related to
epilepsy management, such as seizure detection, character-
ization, prediction, and SOZ localization, with some works
achieving accuracy levels exceeding 99% [4]–[16]. However,
the full deployment of these technologies in clinical practice
remains limited due to the lack of interpretability and trans-
parency in ML models, often referred to as the “black-box”
problem. Clinicians require models that not only provide high
accuracy but also offer understandable and actionable insights
to inform their decisions.

To address this challenge, research efforts have increas-
ingly focused on developing explainability frameworks for
ML models in epilepsy care [4]–[6], [17]–[19]. For example,
Covert et. al. (2019) [4] explored localized and shared features
across scalp EEG data to elucidate what their model was
learning, linking this to the electrode influence in the model’s
decision-making process. Pinto et. al. (2023) [5] provided a
framework for explaining ML models, though further anal-
ysis was necessary to fully understand the brain dynamics
of seizure generation. Batista et. al. (2024) [6] investigated
preictal changes to predict seizures, emphasizing the need for
models that clinicians can trust. Explainable AI (XAI) aims
to make the decision-making processes of these models more
transparent and interpretable, fostering greater trust and ac-
ceptance among healthcare professionals. Within this context,
graph neural networks (GNNs) have emerged as a powerful
paradigm, capable of effectively handling graph-structured
data, such as the complex neural connections captured in iEEG
recordings. For example, Lian et al. (2020) [15] introduced
a joint graph structure and representation learning network,
optimizing graph structure and preictal feature representations
for seizure prediction. Their work highlights the potential
of GNNs in providing interpretable and actionable insights
for epilepsy management, bridging the gap between high-
performance models and clinical application.

In this paper, we conduct an analysis of GNN models built
for seizure detection from iEEG data, emphasizing model
interpretability of spectral and spatial dependencies among
iEEG channels. By utilizing two comprehensive iEEG datasets
[20]–[22], comprising 23 and 16 subjects and 5 and 7 hours of
iEEG recordings, we evaluate the performance of four different
GNN architectures. Our results demonstrate that the highest-
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performing GNN model achieves a seizure detection accuracy
of 97%, showcasing its potential for clinical application.

The contributions of this paper are twofold:
• We introduce a GNN-based framework for seizure detec-

tion from iEEG data that uses explainable and customiz-
able data structures.

• We conduct cross-subject and cross-dataset experiments
on four GNN models built for seizure detection.

By integrating advanced GNN techniques with explainable
and customizable data structures, we aim to bridge the gap
between high-performance ML models and their practical
deployment in clinical environments, ultimately improving the
management and treatment of epilepsy.

II. RELATED WORK

In this section, we review recent advancements in EEG
signal processing using graph neural networks (GNNs) in
conjunction with deep learning (DL) methods, particularly
focusing on seizure detection and localization. Convolutional
neural networks (CNNs) have traditionally been effective in
learning from EEG data. However, their fixed-grid architecture
limits their ability to capture complex electrode connections
[23]–[27]. Recent studies have explored integrating GNNs
with CNNs to enhance the representation of EEG data by
leveraging graph structures [28].

Covert et al. (2019) [4] introduced a temporal graph convo-
lutional network (GCN) model tailored for automated seizure
detection from scalp EEG data. Their approach emphasized
extracting localized and shared features across temporal se-
quences, demonstrating progress in understanding electrode
influence during decision-making processes.

Hassan et al. (2019) [7] proposed an innovative method
using feedforward neural networks (FfNNs) trained on multi-
band features derived from discrete wavelet transform (DWT)
decomposition for epileptic seizure detection in EEG record-
ings. Meanwhile, Zeng et al. (2020) [14] developed a GCN
model achieving near-perfect accuracy in seizure prediction
from scalp EEG signals, although concerns about overfitting
were raised.

Lian et al. (2020) [15] designed a joint graph structure
and representation learning network aimed at optimizing
graph structure and preictal feature representations for seizure
prediction. Their focus on brain-computer interface (BCI)-
aided neurostimulation systems highlighted the potential of
integrating graph-based learning with clinical applications.

Zhao et al. (2021) [8] introduced a linear GCN approach
to enhance feature embedding of raw EEG signals during
seizure and non-seizure periods, reporting robust performance
metrics including accuracy, specificity, sensitivity, F1, and
AUC scores.

Dissanayake et al. (2021) [28] proposed a GNN model
for seizure prediction using scalp EEG data, achieving state-
of-the-art performance with over 95% accuracy. However,
challenges in defining the prior graph for training highlighted
ongoing methodological refinements needed in graph deep
learning (GDL).

Li et al. (2022) [9] developed a graph-generative network
model for dynamic discovery of brain functional connectivity

using scalp EEG. Their supervised learning approach classified
between ictal and non-ictal states with 91% accuracy, show-
casing advancements in understanding brain dynamics through
graph-based models.

Jia et al. (2022) [13] addressed the challenge of data volume
in traditional DL models by employing a GCN model with 60-
second windows to predict epileptic seizures from scalp EEG,
aiming to make these technologies more suitable for wearable
devices.

Liu et al. (2022) [29] combined unsupervised and semi-
supervised GCN methods for SOZ localization using iEEG
data, demonstrating improved precision compared to tradi-
tional indices like the Epileptogenicity Index (EI) [30] and
Connectivity Epileptogenicity Index (cEI) [31].

Grattarola et al. (2022) [12] incorporated attention mecha-
nisms into their GNN model for SOZ localization in epilepsy
patients using iEEG recordings, identifying crucial brain re-
gions associated with electrodes during interictal and ictal
phases.

Wang et al. (2022) [11] developed a Spatiotemporal Graph
Attention Network (STGAT) based on phase locking values
(PLVs) to capture connectivity information among EEG chan-
nels, demonstrating high accuracy, specificity, and sensitivity
in temporal and spatial learning. Additionally, Wang et al.
(2023) [10] proposed a Weighted Neighbour Graph (WNG)
representation for EEG signals, which aimed to reduce redun-
dant edges by exploring different thresholding methodologies.
Their study focused on improving the efficiency of graph-
based EEG signal processing techniques.

Rahmani et al. (2023) [32] combined meta-learning with
GNNs to offer personalized seizure detection and classification
using minimal EEG data samples, achieving promising results
in accuracy and F1-score.

Pinto et al. (2023) [5] reviewed explainability features in
ML models for clinicians, emphasizing the need for deeper
understanding of seizure dynamics and the interpretability of
automated systems.

Statsenko et al. (2023) [16] evaluated a DL model for scalp
EEG classification in binary and multi-class settings, exploring
the influence of sampling rate and electrode number on model
performance.

Raeisi et al. (2023) [33] integrated CNNs with graph atten-
tion networks (GATs) for EEG data from neonatal subjects,
achieving high accuracy in seizure detection by capturing
critical channel pairs and brain interareal information flow.

Batista et al. (2024) [6] investigated preictal changes in EEG
data to predict seizures within 5 minutes of onset, highlighting
challenges in real-life applications due to conservative alarm
triggers.

Our study diverges from the aforementioned research by
focusing on constructing effective and explainable graph rep-
resentation (GR) data structures tailored to intracranial EEG
(iEEG) data. Unlike previous works primarily centered on
scalp EEG data, our emphasis on iEEG data offers superior
resolution and volume, providing unprecedented insights into
the intricate mechanisms underlying epilepsy. This strate-
gic shift underscores the critical importance of leveraging
iEEG data to advance our understanding and enhance clin-
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ical decision-making in epilepsy management. Moreover, we
conduct an analysis of leveraging different GNN architectures.

III. METHODS AND MATERIALS

A. On the data

1) OpenNeuro ds003029 dataset: We used a publicly avail-
able dataset hosted at OpenNeuro with Accession Number
ds003029 [20], which was first used in Li et. al. (2021) [34],
where the authors proposed the metric of neural fragility as a
biomarker of epilepsy that can be used for SOZ localization.
The dataset consists in iEEG and EEG data from 100 individ-
uals across 5 epilepsy centers in the US that were resective
surgery candidates. However, a large portion of the data was
simply not available because one of the research centres failed
to de-identify and share it. In the OpenNeuro repository online
there are 35 data entries. However, for the purposes of our
study, 12 entries were not usable due to inconsistencies in the
clinical annotations. For example, in some cases there were not
marks for the seizure onset or the seizure offset events, which
posed a significant limitation given the supervised learning
configuration of our GNN models. Thus, we only used 23
subjects from this dataset, which we describe in Table I. All
subjects were monitored with electrocorticography (ECoG)
electrodes. All subjects underwent resective surgery, except
for UMMC001 and UMMC007. The surgery outcome was
set as success or failure, where the former meant that no
seizure events were registered on the patient after surgery,
and the latter that seizure events continued to occur. The post-
surgery monitoring period varied from patient to patient, with
the shorter monitoring period being 1 year and the longest 7
years.

Each patient dataset consists in 1 to 4 runs of seizure
activity of varying duration. A run is considered as a single
recording of iEEG activity that captures one seizure event, and
is characterized by containing three time periods, the preictal,
ictal, and postictal periods, which correspond to instances of
time before, during, and after the seizure event. Each run that
we selected has been clinically annotated for seizure onset and
seizure offset times. The monitoring resolution across patients
varied from 250 Hz, 500 Hz, and 1 kHz. We have selected 67
runs in total for the 23 patients, with an average number of
electrodes of 71.86 ± 26.32, the average number of seizures
in the dataset is 2.86 ± 0.66, and the average seizure duration
time in seconds is 118.91 ± 78.82.

2) SWEC-ETHZ short-term dataset: We used another pub-
licly available dataset hosted by the Sleep-Wake-Epilepsy-
Center (SWEC) of the University Department of Neurology
at the Inselspital Bern and the Integrated Systems Laboratory
of the ETH Zurich at http://ieeg-swez.ethz.ch/.
This was first used by Burrello et. al. (2018 and 2019) [21],
[22], where they investigated the problem of seizure detec-
tion using hyperdimensional computing. The dataset consists
in 100 anonymized intracranially recorded electroencephalo-
graphic (iEEG) datasets of 16 patients with pharmaco-resistant
epilepsy who were evaluated for epilepsy surgery.

The following description was extracted from the online
repository on May 2024: the iEEG signals were recorded

intracranially by strip, grid, and depth electrodes. After 16-
bit analog-to-digital conversion, the data were digitally band-
pass filtered between 0.5 and 150 Hz using a fourth-order
Butterworth filter prior to analysis and written onto disk
at a rate of 512 Hz. Forward and backward filtering was
applied to minimize phase distortions. All the iEEG recordings
were visually inspected by an EEG board-certified experienced
epileptologist (K.S.) for identification of seizure onsets and
endings and exclusion of channels continuously corrupted by
artifacts. Each recording consists of 3 minutes of preictal
segments (i.e., immediately before the seizure onset), the ictal
segment (ranging from 10 s to 1002 s), and 3 minutes of
postictal time (i.e., immediately after seizure ending). For
consistency with the OpenNeuro dataset, we only kept up to 4
seizure files per patient, though more seizure files are available
in a per-patient basis. A summary of the data is shown in Table
II, which was adapted from [22] and modified to the number
of seizures and seizure duration statistics. We have selected
55 runs in total for the 16 patients, with an average number of
electrodes of 61.93 ± 18.77, the average number of seizures
in the dataset is 3.37 ± 0.74, and the average seizure duration
time in seconds is 116.25 ± 107.27.

B. Data processing pipeline

The data processing pipeline that we developed is illustrated
in Figure 1. It is entirely developed in Python, and it uses
the MNE software [35] for iEEG data management and
preprocessing, the Spektral project [36] and Keras [37] with
Tensorflow [38] for data balancing and GNN model handling,
and it leverages the supercomputer infrastructure from the
Canada-wide High Performance Computing platform from the
Digital Research Alliance of Canada. The technical integration
of these tools with our customized software interfaces will be
disseminated elsewhere.

1) iEEG data management: Monitoring an epilepsy patient
with iEEG for a 24/7 period collects around 10 TB (terabytes)
of data. Handling iEEG data is a concern of every hospital or
EMU, and it is influenced by the monitoring equipment avail-
able to these entities, and the clinical and technical expertise
of the individuals working with the data. This unstandardized
practice has resulted in large heterogeneous iEEG datasets that
are not findable, accessible, interoperable and reusable (FAIR),
and that have limited clinical use within their own centers.
Thus, iEEG data management standardization protocols are
required. In 2019, the iEEG-BIDS protocol was proposed in
[39], which extends the Brain Imaging Data Structure (BIDS)
protocol [40] to operate with iEEG data. Since then, the iEEG-
BIDS protocol has been spread around the iEEG research and
clinical community, although its adoption as a gold-standard
has yet to be realized. The OpenNeuro ds003029 dataset [20]
is stored under the iEEG-BIDS format. Within our pipeline,
we leverage iEEG-BIDS data handling processes with the
MNE software [41], which provides robust tools to read/write
and process this type of data. In contrast, the SWEC-ETHZ
dataset is stored in a customized data format leveraging Python
NumPy arrays.
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TABLE I: Summary of 23 patients’ information from the OpenNeuro ds003029 dataset. All data used for this study are already
deidentified and publicly available online at OpenNeuro with Accession Number ds003029 [20]

Dataset ID Electrode # Seizure # Seizure Duration (s) Age Range Engel Score

Mean Std Min Max

PT1 84 4 107 37 85 163 30-34 1
PT2 62 3 279 275 98 596 25-29 1
PT3 97 2 104 25 86 123 45-49 1
PT6 80 3 125 32 105 163 30-34 2
PT7 94 3 52 18 30 63 35-39 3
PT8 59 3 89 4 85 93 25-29 1

PT10 55 3 134 26 103 151 40-44 2
PT12 54 2 372 186 240 503 40-44 2
PT13 117 4 9 0.5 8 9 25-29 1
PT14 58 2 99 22 83 115 45-49 4
PT16 46 3 151 83 94 246 50-54 1

UMMC001 87 3 101 9 91 110 20-24 -1
UMMC002 49 3 146 83 50 205 15-19 1
UMMC003 45 3 111 28 92 143 30-34 1
UMMC004 46 3 123 30 101 157 35-39 1
UMMC005 48 2 137 22 121 153 45-49 1
UMMC006 52 3 29 5 22 33 35-39 1
UMMC007 30 3 182 67 105 228 50-54 -1
UMMC009 45 3 70 40 24 100 35-39 1

JH101 107 4 70 92 22 209 NR 4
JH103 88 3 118 16 99 133 NR 4
JH108 136 4 39 18 10 50 NR 4

UMF001 76 1 31 - 31 31 35-39 1

TABLE II: Summary of 16 patients’ information from the SWEC-ETHZ dataset. All data used for this study are already
deidentified and publicly available online at http://ieeg-swez.ethz.ch/

Dataset ID Electrode # Seizure # Seizure Duration (s) Age Range Engel Score

Mean Std Min Max

1 47 4 85 57 10 136 20-24 2
2 42 4 223 88 96 301 15-19 1
3 98 2 99 36 73 125 25-29 1
4 62 4 140 14 127 160 30-34 4
5 54 4 105 33 84 154 20-24 2
6 64 4 145 47 89 190 45-49 1
7 36 2 15 1 14 16 30-34 4
8 59 2 56 6 52 61 35-39 4
9 56 4 119 11 104 129 25-29 1
10 100 4 12 1 10 14 45-49 2
11 64 2 109 36 83 135 25-29 1
12 49 4 36 10 23 46 55-59 4
13 92 4 72 36 19 100 45-49 2
14 74 4 493 313 154 903 35-39 1
15 61 3 120 66 52 184 20-24 4
16 59 4 80 9 67 89 30-34 2

2) Data preprocessing: Although iEEG data can be captured
at high sampling rates of up to 25KHz [42], clinical practice
often relies on lower recording resolutions from 250Hz to
2kHz [43]. Despite the availability of high resolution sensors,
the monitoring process is far from perfect, and recordings are
often corrupted due to many-form noise sources. These include
power-line electricity noise and artifacts caused by involuntary
body movements (i.e., eye-lid or muscle movement). More-
over, it is common to have unusable data from bad channels

due to bad electrode placement or contact. Data corruption
phenomena are commonly fixed by preprocessing the data,
which is yet another unstandardized process in clinical and
research practice.

Our iEEG data preprocessing pipeline consists in first
removing bad channels from the dataset which were identified
by the clinicians, and are part of the metadata found within
the iEEG-BIDS format in the OpenNeuro dataset. The SWEC-
ETHZ dataset already contains only good channels. Next we
apply a notch filter at 60 Hz and corresponding harmonics
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Fig. 1: Diagram illustrating our data pipeline. The tool is entirely developed in Python, and it is powered by MNE [35] for
iEEG data management and preprocessing, Spektral [36] and Keras [37] with Tensorflow [38] for data balancing and GNN
model handling, and it is running on the Canada wide High Performance Computing platform managed by the Digital Research
Alliance of Canada.

(120 Hz, 180 Hz, etc.), to attenuate the presence of power-
line noise. We do not perform any artifact removal or artifact
reconstruction method as we are interested in using the data
with as little preprocessing as possible. This part of our
pipeline also leverages the MNE software tools for iEEG
signal processing.

The electrophysiological activity of the brain is known to
use different frequency bands for different purposes. For in-
stance, recently low-gamma oscillations have been found to be
involved in emotional regulation, and high-gamma oscillations
seem to be involved in speech temporal information [44],
[45]. However, the self-regulatory neuromodulation processes
of the brain are vastly unknown. Consequently, we are also
interested in investigating the role of different frequency bands
and their role in seizure events. Moreover, we are interested in
devising how to use this information to create powerful iEEG-
GRs to improve seizure detection with GNNs. For this, our
preprocessing pipeline also includes bandpass filtering with a
highpass filter set at 0.1 Hz and a lowpass filter set at the
Nyquist limit, which depends on the sampling frequency of
each run. Last, we clip each preprocessed run in their preictal,
ictal, and postictal signal traces, and stored them in serialized
file objects.

3) Functional connectivity networks: FCNs are abstractions
of brain data that aim to represent the dynamics of neurophys-
iological activity recorded with neuroimaging tools, such as
diffusion tensor imaging (DTI) or electrophysiological tools,
such as iEEG. FCNs are useful to study neurophysiological
activity from a networks perspective, and they can be used to
map network-modeled neurophysiological activity to behav-
ioral and cognitive dimensions. Network analysis of iEEG data
pose new perspectives to uncover neural circuits underlying
neurological disorders, which will be instrumental for the
development of new treatment options [46].

In this study, we focus solely on iEEG-based FCNs. Thus,
the purpose of the iEEG data-to-network abstraction is to
quantify the degree of similarity across iEEG signals. While
there are several methods to create iEEG-based FCNs, map-
ping FCNs to behavioral or cognitive tasks is an active research
field, and there is no one method that is useful for all cases.
For this study, we consider the methods of Pearson correlation,
which is used to measure the similarity of energy levels across
signals over time, in the time domain; the coherence, which

also measures similarity of energy levels across signals over
time but in the frequency domain; and the phase-lock value
(PLV), which measures where are the signals over time.

Our method for FCN creation is illustrated in Figure 2. In
block A, we show an iEEG run from one patient, where the y-
axis depicts the signals collected at each electrode (measuring
energy in Volts), and the x-axis depicts time starting at t0 and
ending at L seconds. For the binary classification problem
we label nonictal data (preictal and postictal traces) as class
0, and ictal data as class 1. For the multi-class classification
problem we label preictal, ictal, and postictal data as class 0,
1, and 2, respectively. There are two markers on each run,
t on and t off , indicating the beginning and the end of the
ictal activity as annotated by the clinical experts. To compute
FCNs, we define a window, W , depicted in green at the top-
left, which indicates the interval of time in which the degree
of connectivity across signals is assessed. Then, we define a
sliding window, SW , which indicates how to slide W across
the run to create FCN sequences as depicted in blocks B and
C. For this study, we consider 1 second W and 0.125 seconds
SW .

4) Graph representations: In computer science, GRs are
data structures that extend the original graph data structure to
account for node and edge feature vectors. Take for instance
a regular graph data structure illustrated in Figure 3, A,
where G = {V,E}, and V and E are sets of vertices and
edges between vertices. Instead, the GR in B is represented
as GR = {A,

−→
V ,

−→
E }, where A is an adjacency matrix or

”original graph”,
−→
V and

−→
E are sets of multidimensional

vectors representing node and edge features [47]. As shown in
block C, similarly to the creation of sequences of FCNs, we
can create sequences of GRs to increment the representational
power of the abstracted data.

5) Data balancing: To evaluate the GNN model, we split
each patient dataset in train, validation, and test sets, taken
from 80%, 10%, 10% of the data, respectively. However, the
amount of data samples varies from the preictal, ictal, and
postictal signal traces, meaning that there is an imbalanced
class representation for the binary and multi-class classifica-
tion problems. Consequently, we implement a data balancing
algorithm that guarantees there is a balanced representation of
classes. For this, we consider the maximum number of ictal
samples within a run to be the total number of ictal samples,
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Multi-class classification
Binary classification
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SW + 1
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color coding:A

B

C

Sequence of FCNs

Fig. 2: Methodology to create functional connectivity networks (FCNs). A. Every iEEG record (each run) of duration L has
2 main time marks, the seizure onset (t on) and the seizure offset (t off ). The signal trace within t0 and t on indicates the
preictal period of the signal, which we label as 0 for the binary and multi-class classification problems. The signal trace within
t on and t off indicates the ictal period, which we label as 1 for the binary and multi-class classification problems. The signal
trace within t off and L indicates the postictal period, which we label as 0 and 2 for the binary and multi-class classification
problems, respectively. To create FCNs, we declare a window W (in green, top-left) that indicates the portion of the iEEG
record to analyze. Then, we declare a sliding window SW (in blue, top-center) that indicates how to slide W over the entire
record. B. Illustration of 4 FCNs sequentially created by sliding W by SW . C. The result is a multidimensional array shaped
by (e, e, L− SW + 1), representing an FCN sequence.

G = A = (V, E)

V

V

GR = (A, 𝑽, 𝑬)

V

V V

N

V

M

A
V

E

Sequence of GRs

L -
SW + 1

L -
SW

 + 
1

L -
SW + 1

V

V
V

M N

V

A B

C

Fig. 3: Illustration of graph representations (GRs). A. G = A = (V,E) is the original graph represented as a set of vertices
V and edges E. B. GR = (A,V,E) is a graph representation with 3 elements: and adjacency matrix, AV×V , a node features
vector, V V×M , and an edge features vector, EV×N , where M and N are the number of node and edge features, respectively.
C. Similar to the FCN sequences, we can create sequences of GRs.

and non-ictal samples are taken from the preictal and postictal
traces in equal amounts. This process is illustrated in Figure
4. Each data sample represents a GR that is used for the train,

validation, and test datasets, marked with a red cross, a cyan
square, and a turquoise circle, respectively.

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2024. ; https://doi.org/10.1101/2024.12.28.24316703doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.28.24316703
http://creativecommons.org/licenses/by/4.0/
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Fig. 4: Illustration of the data balancing procedure.

C. Graph neural network architecture

Our GNN architecture is depicted in Figure 5
1) ECC, edge-conditioned convolution layer: The GNN

model proposed by Grattarola et. at. in [12] is illustrated in
Figure 5. This depicts a 2-layer neural network composed of
an ECC layer [48] followed by a GAT layer [49]. The ECC
layer constrains the learning to focus on the edge features,
while the GAT layer computes attention coefficients, which
are measurements that quantify the importance of each node
in a graph in the learning process. In [12], the authors proposed
the use of the attention mechanism as a means to map attention
coefficients to the SOZ. However, we did not find success in
applying this methodology, and we plan to devise strategies
for SOZ localization within our pipeline in future work.

The ECC layer as defined in Equation 1, serves as a
critical component in processing the graph representation of
EEG signals. In this equation, Y (i) represents the transformed
feature at node i, obtained by aggregating information from
neighboring nodes j within the graph N(i).

Thus, the ECC layer employs edge-conditioned convolu-
tions to capture intricate relationships between nodes and
edges, while the GAT layer leverages attention mechanisms
to dynamically weight the contributions of neighboring nodes.
These mathematical formulations constitute essential compo-
nents of graph neural networks applied to the classification of
EEG signals, facilitating the effective learning and represen-
tation of complex data patterns.

Y (i) ∼
∑

j∈N(i)

ΘijX(j) =
∑

j∈N(i)

F (L(j, i);w)X(j) (1)

2) GCN, graph convolutional layer: This layer computes:

X ′ = D̂−1/2ÂD̂−1/2XW + b

where Â = A+I is the adjacency matrix with added self-loops
and D̂ is its degree matrix.

3) Diff, diffusion convolutional layer: Given a number of
diffusion steps K and a row-normalized adjacency matrix Â,
this layer calculates the q-th channel as:

X ′
:,q = σ

 F∑
f=1

(
K−1∑
k=0

θkÂ
k

)
X:,f



4) Cheb, Chebyshev convolutional layer: This layer com-
putes:

X ′ =
K−1∑
k=0

T (k)W (k) + b(k),

where T (0), . . . , T (K − 1) are Chebyshev polynomials of L̃
defined as:

T (0) = X,

T (1) = L̃X,

T (k) = 2 · L̃T (k − 1)− T (k − 2) for k ≥ 2,

where

L̃ =
2

λmax
· (I −D−1/2AD−1/2)− I.

5) GAT, graph attention layer: Conversely, the GAT layer
introduces the concept of attention coefficients (ei,j) to assign
varying degrees of importance to neighboring nodes during the
aggregation process. In this equation, a signifies an attention
mechanism that computes these coefficients based on the node
features hi and hj associated with nodes i and j. The weight
matrices W enable the model to adaptively learn the optimal
attention weights.

This layer computes a convolution similar to
layers.GraphConv, but uses the attention mechanism to
weight the adjacency matrix instead of using the normalized
Laplacian:

X ′ = αXW + b

where

αij =
exp(LeakyReLU(a⊤[(XW )i∥(XW )j ]))∑

k∈N (i)∪{i} exp(LeakyReLU(a⊤[(XW )i∥(XW )k]))

where a ∈ R2F ′
is a trainable attention kernel. Dropout is

also applied to α before computing Z. Parallel attention heads
are computed in parallel and their results are aggregated by
concatenation or averaging.

6) Pooling layer: The pooling or aggregation process is
governed by the learned parameters Θij , which determine
the significance of each neighboring node’s contribution. The
function F (L(j, i);w) denotes a convolution operation applied
to the edge feature L(j, i), with respect to a set of trainable
weights w. This operation effectively combines information
from neighboring nodes and their associated edge features,
enabling the model to capture latent patterns and dependencies
inherent in the graph structure.

D. Code Availability

The entire graph representation and graph neural network
pipeline has been containerized into a Python package, avail-
able at https://github.com/yousifKashef/NeurologyKit. To use
the repository, sample scripts are located in the ‘projects’
directory and the Python modules are located under ‘bgreg’.
Input data can be inserted under ‘data files’, enabling dataset
customization.
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Fig. 5: Architecture of the GNN model proposed by Grattarola et. at. in [12], extended for multi-class classification.

IV. RESULTS

A. Graph representations

1) Leveraging node and edge features: Graph-structured
data contained within GRs are commonly used as input
data to build GNN models, a paradigm of artificial neural
networks optimized to operate with graph-structured data. In
recent years, GNN models have been used to advance the
understanding of real-life network phenomena found across
several scientific fields including physics and chemistry [47].
More recently, some works have started to show the potential
of GNNs to assist the field of neuroscience [12], [50], but
further research is require to deploy these models in the
clinical practice. Importantly, the ability of GNN models to
learn about the graphs they operate on is dependant on the
abstraction of the data within the GRs, which is still considered
an art in the realm of deep learning and AI. In this study, we
investigate the creation of GRs of iEEG data that are more
helpful to build a GNN model for seizure detection.

Our goal is to understand what combination of graph
representation elements renders the most powerful iEEG-GR
for seizure detection. We consider 9 GRs, presented in Table
III, which we cluster in 3 groups. Group 1 is composed of tests
b1, b2, and b3 correspond to the baseline GRs used in [12] (b1
and b2), where node and edge features are considered as all-
ones vectors, and adjacency matrices are considered as FCNs
of the Pearson correlation and PLV methods. Test b3 was not
used in [12], but we include it to evaluate the usage of the
coherence method in this form. Group 2 is composed of tests
t11, t12, and t13, and correspond to GRs that use the average
energy recorded by the iEEG electrodes as node features vector
and FCNs of the Pearson correlation, coherence, and PLV
methods. The average energy at electrode vector has a shape of
(V, 1), where V is the number of electrodes. Last, group 3 are
tests t21, t22, and t23 and correspond to GRs that consider the
average energy at electrode and the average energy at electrode
by frequency band as node features vector. The average energy
at electrode by frequency band has a shape of (V, F ), where
F corresponds to the frequency bands considered. For iEEG
signals that were recorded with a 250 Hz sampling rate, F = 6,
as we consider the frequency bands δ, delta (1 - 4 Hz), θ, theta
(4 - 8 Hz), α (8 - 13 Hz), alpha β, (13 - 30 Hz), γ, gamma
(30 - 70 Hz), and Γ, high-gamma (70 - 100 Hz). For signals
that were recorded with a 500 Hz sampling rate, F = 7, as
we also consider ripples in the frequency band (100 - 250

Hz). For signals recorded at 1 kHz sampling rate, F = 8,
as we also consider fast ripples in the frequency band (250 -
500 Hz). We then create the node features vectors for these
tests by concatenating the vectors for the average energy at
electrode and the average energy at electrode by frequency
band. Similarly, for the edge features vector we concatenate
2 FCNs that are different from the adjacency matrix. For
example, in test t21, the adjacency matrix is considered to
be a Pearson correlation-based FCN, while the edge features
vector is the concatenation of the coherence FCN with the
PLV FCN.

TABLE III: Graph representation elements.

Test AM Node Features Edge Features
b1 PC 1 1
b2 COH 1 1
b3 PLV 1 1
t11 PC Ē(e) COH
t12 PC Ē(e) PLV
t21 COH Ē(e) PC
t22 COH Ē(e) PLV
t31 PLV Ē(e) PC
t32 PLV Ē(e) COH

AM: Adjacency matrix metric and window time, GNN: Graph
neural network layers, PC: Pearson correlation, PLV: phase-lock

value, Coh: coherence, Coh+: average overall coherence and
coherence by frequency band (λ) 1: all-ones vector, Ē(e):
average energy at electrode (e), ¯E(e, λ): average energy at

electrode (e) by frequency band (λ).

Table IV shows the results of binary classification. Note
that all tests with non-trivial node and edge features (t11-t32)
outperform the baseline tests with all-ones vector node and
edge features (b1-3).

In Table V we show the evaluation of the GNN model
using the same GRs from the binary classification problem
for the multi-class classification problem. The base tests (b1-
3) are excluded as their relatively lower performance had
already been indicated through the binary problem. Here, we
also see that by including more data within the GRs we can
significantly improve the performance of the GNN model in
accuracy, AUC, and F1-score with mean performance across
the 25 subjects of 90%, 97%, and 88% for tests t21, t22, and
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TABLE IV: Mean (SD) performance evaluation of GNN model for binary classification across 23 subjects.

Metric b1 b2 b3 t11 t12 t21 t22 t31 t32

Loss 0.5992
(0.0688)

0.5648
(0.1147)

0.6354
(0.0642)

0.3261
(0.1298)

0.3980
(0.1347)

0.3435
(0.1256)

0.4471
(0.1176)

0.3941
(0.1320)

0.4611
(0.1263)

Accuracy 0.6717
(0.0819)

0.6881
(0.1075)

0.6426
(0.0994)

0.8716
(0.0711)

0.8253
(0.0847)

0.8602
(0.0711)

0.7982
(0.0802)

0.8317
(0.0767)

0.7936
(0.0785)

AUC 0.7284
(0.0838)

0.7481
(0.1154)

0.6679
(0.1186)

0.9352
(0.0559)

0.8945
(0.0732)

0.9240
(0.0606)

0.8715
(0.0772)

0.8975
(0.0698)

0.8636
(0.0750)

F1-Score 0.6607
(0.1619)

0.6821
(0.1392)

0.6861
(0.1084)

0.8685
(0.0817)

0.8225
(0.0946)

0.8528
(0.0865)

0.7898
(0.1006)

0.8275
(0.0870)

0.7857
(0.0927)

TABLE V: Mean (SD) performance evaluation of GNN model
for multi-class classification across 23 subjects.

Metric t11 t12 t21 t22 t31 t32

Loss 0.4050
(0.1881)

0.5047
(0.2078)

0.4254
(0.1882)

0.5809
(0.1973)

0.5073
(0.2042)

0.5885
(0.1844)

Accuracy 0.8504
(0.0892)

0.7961
(0.1101)

0.8369
(0.0933)

0.7649
(0.1055)

0.7975
(0.1047)

0.7615
(0.0991)

AUC 0.9545
(0.0440)

0.9240
(0.0643)

0.9479
(0.0467)

0.9082
(0.0655)

0.9241
(0.0640)

0.9065
(0.0639)

F1-Score 0.8241
(0.1051)

0.7597
(0.1295)

0.8105
(0.1059)

0.7260
(0.1211)

0.7633
(0.1254)

0.7195
(0.1186)

t23. Importantly, we can see that the GNN model is capable
of discriminating between preictal and postictal signal traces,
showing a potential to develop seizure prediction algorithms
in the future.

In general, our methodology is better than the baseline, how-
ever, same GR structures do not work equally well for all pa-
tients, as depicted by the outliers in these figures. We speculate
that similarly to the difficulties encountered by clinical experts
in visually inspecting the iEEG data, GNN models struggle to
learn features from ambiguous or corrupted data recordings.
In future work, we will investigate the relationships between
graph embeddings and iEEG signal characteristics, and their
impact on GNN learning and decision-making processes.

It’s worth noting that our methodology is constrained by
the features utilized for GR creation, as detailed in Table III.
The three distinct methods we have employed for computing
FCNs from iEEG data serve as gateways to different data
abstractions. Each method offers a unique lens through which
we can decipher the underlying intricacies of the data.

Firstly, the Pearson correlation method allows us to quantify
the degree of similarity in signal activity based on the energy
levels observed at any given moment in time. This approach,
with its focus on the temporal energy perspective, is particu-
larly valuable when scrutinizing iEEG patterns within the time
domain. It sheds light on how signal energies evolve over time,
enabling us to discern subtle variations and transitions in the
data.

Secondly, coherence analysis steps into the frequency do-
main, providing us with a distinct perspective on energy
levels within iEEG data. By quantifying energy levels in the
frequency domain, coherence analysis facilitates the study
of iEEG patterns from a frequency-based viewpoint. This
methodology unveils how different frequency components

interact and synchronize, offering a richer understanding of
the data’s dynamics.

Thirdly, PLV analysis offers a nuanced dimension by quan-
tifying the degree of synchronicity among signals over time. It
enables us to delve deep into the temporal dynamics of iEEG
data, elucidating how signals align and interact temporally.
Thus, PLV helps to understand signal synchronization.

To explore further possibilities and delve into higher-level
processes, such as directional signaling with the direct abso-
lute coherence (DAC) [51], we anticipate undertaking future
investigations. This broader exploration will help us uncover
new insights and refine our approach.

2) Different adjacency matrix lengths: We aim to establish an
optimal time span for the window used in the computation of
the adjacency matrix metric. Given its superior performance as
illustrated in the previous section, we use coherence as the ad-
jacency metric in our tests. In Figure 6, we show that increases
in adjacency matrix window time span from 1 to 20 seconds
trends toward greater performance in test accuracy, F1-Score,
and AUC. Moreover, the 20s time span shows statistically
significantly better performance in all aforementioned metrics
among the patient dataset compared to all the time spans 5s
and shorter. (p ≤ 0.05 from Man-Whitney U test). There are
no sacrifices in training time, as represented in Figure 6d. Note
that attempting to compute adjacency matrices for time spans
beyond 20s resulted in computation problems, such as memory
overflow issues, largely due to artefacts and errors present in
the original dataset. Thus, for our purposes we conclude that
20s is the optimal time span for computation of the adjacency
matrix in GRs in order to maximize performance.

3) Extending node and edge features: We first explore
the effects of increasing the information stored in GR node
features by expanding their dimensions. Node features are
expanded to include both average overall energy as well as
average energy by frequency band, potentially yielding up
to 9 total dimensions depending on on the original data.
We use phase locking value as edge features and 20s win-
dows of coherence as the adjacency matrix metric. Using the
multi-task classification problem, we obtain mean loss (SD)
0.1741 (0.1126), mean accuracy (SD) 95.26% (3.57%), mean
AUC (SD) 0.9906 (0.0115), and mean F1-Score (SD) 0.9411
(0.0441). This demonstrates improvement over all tests t11-32
from Table V.

Next we explore expanding edge features. We use the same
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Fig. 6: Test performance and training time for binary classification of seizure detection from graph representations with varying
window times for their adjacency matrix computation. Coherence is used as the adjacency matrix metric. A Man-Whitney U
test is run (* indicates p ≤ 0.05, ** indicates p ≤ 0.01).

setup as above (including the expanded node features), except
now edge features are expanded to include both average overall
coherence as well as average coherence by frequency band.
Again, we see a noticeable improvement in all performance
metrics: mean loss (SD) 0.1504 (0.2548), mean accuracy (SD)
97.07% (2.62%), mean AUC (SD) 0.9942 (0.0065), and mean
F1-Score (SD) 0.9616 (0.0335).

B. GNN models
We will now vary the first layer of our GNN model, while

keeping the second layer constant as a graph attention layer
(GAT). To demonstrate robustness of our GR methodology
and the GNN models, we conduct tests on 2 separate open-
source datasets: OpenNeuro (Table VI), which was used in all
previous testing, and SWEC-ETHZ (Table VII). Both datasets
yield similar results, reflecting the stability of our GR pipeline.
For both datasets, the edge conditioned convolutional (ECC)
layer performed strongest while the diffusion convolution layer
was weakest.

V. CONCLUSION

Automating the process of iEEG-based seizure detection
within clinical pipelines treating epilepsy is a timely need
to improve healthcare practice. In this paper we proposed an
iEEG data processing pipeline that uses a GNN model to detect

TABLE VI: Mean (SD) performance evaluation of different
GNN Layers for multi-class classification across OpenNeuro
dataset.

Metric ChebGAT DiffGAT ECCGAT GCNGAT

Loss 0.3377
(0.1486)

0.5286
(0.3162)

0.1554
(0.3205)

0.2383
(0.1158)

Accuracy 0.9023
(0.0618)

0.7788
(0.1528)

0.9703
(0.0273)

0.9353
(0.0417)

AUC 0.9757
(0.0233)

0.8996
(0.1171)

0.9943
(0.0069)

0.9868
(0.0116)

F1-Score 0.8831
(0.0752)

0.6865
(0.2401)

0.9611
(0.0353)

0.9200
(0.0503)

ictal and non-ictal activity, and that detects preictal, ictal, and
postictal data. Moreover, we demonstrate that by leveraging
iEEG signal data as GRs of iEEG data we can significantly
improve the performance of GNN-based systems.
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(0.0237)

F1-Score 0.8945
(0.1120)

0.5630
(0.2567)

0.9517
(0.0851)

0.9333
(0.0760)

in the conceptualization of this project. As well, we thank Dr.
Daniele Grattarola for sharing his technical expertise in the
development of graph neural network models.

REFERENCES

[1] E. H. Reynolds, “The ILAE/IBE/WHO epilepsy global campaign his-
tory,” Epilepsia, vol. 43, pp. 9–11, 2002.

[2] S. Kovac, V. N. Vakharia, C. Scott, and B. Diehl, “Invasive epilepsy
surgery evaluation,” Seizure, vol. 44, pp. 125–136, 2017.

[3] A. Mansouri, A. Fallah, and T. A. Valiante, “Determining surgical
candidacy in temporal lobe epilepsy,” Epilepsy research and treatment,
vol. 2012, 2012.

[4] I. C. Covert, B. Krishnan, I. Najm, J. Zhan, M. Shore, J. Hixson, and
M. J. Po, “Temporal graph convolutional networks for automatic seizure
detection,” in Machine learning for healthcare conference. PMLR,
2019, pp. 160–180.

[5] M. F. Pinto, J. Batista, A. Leal, F. Lopes, A. Oliveira, A. Dourado,
S. I. Abuhaiba, F. Sales, P. Martins, and C. A. Teixeira, “The goal of
explaining black boxes in eeg seizure prediction is not to explain models’
decisions,” Epilepsia Open, vol. 8, no. 2, pp. 285–297, 2023.

[6] J. Batista, M. F. Pinto, M. Tavares, F. Lopes, A. Oliveira, and C. Teix-
eira, “Eeg epilepsy seizure prediction: the post-processing stage as a
chronology,” Scientific Reports, vol. 14, no. 1, p. 407, 2024.

[7] K. M. Hassan, M. R. Islam, T. Tanaka, and M. K. I. Molla, “Epileptic
seizure detection from eeg signals using multiband features with feedfor-
ward neural network,” in 2019 International conference on cyberworlds
(CW). IEEE, 2019, pp. 231–238.

[8] Y. Zhao, C. Dong, G. Zhang, Y. Wang, X. Chen, W. Jia, Q. Yuan,
F. Xu, and Y. Zheng, “EEG-Based Seizure detection using linear graph
convolution network with focal loss,” Computer methods and programs
in biomedicine, vol. 208, p. 106277, 2021.

[9] Z. Li, K. Hwang, K. Li, J. Wu, and T. Ji, “Graph-generative neural
network for EEG-based epileptic seizure detection via discovery of
dynamic brain functional connectivity,” Scientific Reports, vol. 12, no. 1,
p. 18998, 2022.

[10] J. Wang, S. Liang, J. Zhang, Y. Wu, L. Zhang, R. Gao, D. He, and C.-
J. R. Shi, “EEG Signal Epilepsy Detection with a Weighted Neighbour
Graph Representation and Two-stream Graph-based Framework,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, 2023.

[11] Y. Wang, Y. Shi, Y. Cheng, Z. He, X. Wei, Z. Chen, and Y. Zhou, “A
Spatiotemporal Graph Attention Network Based on Synchronization for
Epileptic Seizure Prediction,” IEEE Journal of Biomedical and Health
Informatics, vol. 27, no. 2, pp. 900–911, 2022.

[12] D. Grattarola, L. Livi, C. Alippi, R. Wennberg, and T. A. Valiante,
“Seizure localisation with attention-based graph neural networks,” Ex-
pert Systems with Applications, vol. 203, p. 117330, 2022.

[13] M. Jia, W. Liu, J. Duan, L. Chen, C. L. P. Chen, Q. Wang, and
Z. Zhou, “Efficient graph convolutional networks for seizure prediction
using scalp eeg,” Frontiers in Neuroscience, vol. 16, 2022. [Online].
Available: https://www.frontiersin.org/journals/neuroscience/articles/10.
3389/fnins.2022.967116

[14] D. Zeng, K. Huang, C. Xu, H. Shen, and Z. Chen, “Hierarchy graph
convolution network and tree classification for epileptic detection on
electroencephalography signals,” IEEE Transactions on Cognitive and
Developmental Systems, vol. 13, no. 4, pp. 955–968, 2021.

[15] Q. Lian, Y. Qi, G. Pan, and Y. Wang, “Learning graph in graph
convolutional neural networks for robust seizure prediction,” Journal
of Neural Engineering, vol. 17, no. 3, p. 035004, jun 2020. [Online].
Available: https://dx.doi.org/10.1088/1741-2552/ab909d

[16] Y. Statsenko, V. Babushkin, T. Talako, T. Kurbatova, D. Smetanina,
G. L. Simiyu, T. Habuza, F. Ismail, T. M. Almansoori, K. N.-V. Gorkom
et al., “Automatic detection and classification of epileptic seizures from
eeg data: Finding optimal acquisition settings and testing interpretable
machine learning approach,” Biomedicines, vol. 11, no. 9, p. 2370, 2023.

[17] O. E. Karpov, V. V. Grubov, V. A. Maksimenko, S. A. Kurkin, N. M.
Smirnov, N. P. Utyashev, D. A. Andrikov, N. N. Shusharina, and A. E.
Hramov, “Extreme value theory inspires explainable machine learning
approach for seizure detection,” Scientific Reports, vol. 12, no. 1, p.
11474, 2022.

[18] O. E. Karpov, S. Afinogenov, V. V. Grubov, V. Maksimenko, S. Kor-
chagin, N. Utyashev, and A. E. Hramov, “Detecting epileptic seizures
using machine learning and interpretable features of human eeg,” The
European Physical Journal Special Topics, vol. 232, no. 5, pp. 673–682,
2023.

[19] J. C. Vieira, L. A. Guedes, M. R. Santos, and I. Sanchez-Gendriz, “Using
explainable artificial intelligence to obtain efficient seizure-detection
models based on electroencephalography signals,” Sensors, vol. 23,
no. 24, p. 9871, 2023.

[20] A. Li, C. Huynh, Z. Fitzgerald, I. Cajigas, D. Brusko, J. Jagid, A. O.
Claudio, A. M. Kanner, J. Hopp, S. Chen, J. Haagensen, and S. Sarma,
“Epilepsy-iEEG-Multicenter-Dataset,” 2021.

[21] A. Burrello, K. Schindler, L. Benini, and A. Rahimi, “One-shot learning
for ieeg seizure detection using end-to-end binary operations: Lo-
cal binary patterns with hyperdimensional computing,” in 2018 IEEE
Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2018,
pp. 1–4.

[22] ——, “Hyperdimensional computing with local binary patterns: One-
shot learning of seizure onset and identification of ictogenic brain re-
gions using short-time ieeg recordings,” IEEE Transactions on Biomed-
ical Engineering, vol. 67, no. 2, pp. 601–613, 2019.

[23] Z. Li, M. Fields, F. Panov, S. Ghatan, B. Yener, and L. Marcuse,
“Deep learning of simultaneous intracranial and scalp eeg for prediction,
detection, and lateralization of mesial temporal lobe seizures,” Frontiers
in Neurology, vol. 12, p. 705119, 2021.

[24] L. Tang, N. Xie, M. Zhao, and X. Wu, “Seizure prediction using multi-
view features and improved convolutional gated recurrent network,”
IEEE Access, vol. 8, pp. 172 352–172 361, 2020.

[25] P. Nejedly, V. Kremen, V. Sladky, J. Cimbalnik, P. Klimes, F. Plesinger,
I. Viscor, M. Pail, J. Halamek, B. Brinkmann et al., “Exploiting
graphoelements and convolutional neural networks with long short
term memory for classification of the human electroencephalogram,”
Scientific reports, vol. 9, no. 1, p. 11383, 2019.

[26] G. Wang, D. Wang, C. Du, K. Li, J. Zhang, Z. Liu, Y. Tao, M. Wang,
Z. Cao, and X. Yan, “Seizure prediction using directed transfer function
and convolution neural network on intracranial eeg,” IEEE Transactions
on Neural Systems and Rehabilitation Engineering, vol. 28, no. 12, pp.
2711–2720, 2020.

[27] Y. Wang, Y. Yang, G. Cao, J. Guo, P. Wei, T. Feng, Y. Dai, J. Huang,
G. Kang, and G. Zhao, “Seeg-net: An explainable and deep learning-
based cross-subject pathological activity detection method for drug-
resistant epilepsy,” Computers in Biology and Medicine, vol. 148, p.
105703, 2022.

[28] T. Dissanayake, T. Fernando, S. Denman, S. Sridharan, and C. Fookes,
“Geometric deep learning for subject independent epileptic seizure
prediction using scalp eeg signals,” IEEE Journal of Biomedical and
Health Informatics, vol. 26, no. 2, pp. 527–538, 2021.

[29] X. Liu, L. Hu, S. Wang, and J. Shen, “Localization of seizure onset
zone with epilepsy propagation networks based on graph convolutional
network,” Biomedical Signal Processing and Control, vol. 74, p. 103489,
2022.

[30] F. Bartolomei, P. Chauvel, and F. Wendling, “Epileptogenicity of brain
structures in human temporal lobe epilepsy: a quantified study from
intracerebral eeg,” Brain, vol. 131, no. 7, pp. 1818–1830, 2008.

[31] A. Balatskaya, N. Roehri, S. Lagarde, F. Pizzo, S. Medina, F. Wendling,
C.-G. Bénar, and F. Bartolomei, “The “connectivity epileptogenicity
index”(cei), a method for mapping the different seizure onset patterns
in stereoelectroencephalography recorded seizures,” Clinical Neurophys-
iology, vol. 131, no. 8, pp. 1947–1955, 2020.

[32] A. Rahmani, A. Venkitaraman, and P. Frossard, “A meta-gnn approach
to personalized seizure detection and classification,” in ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2023, pp. 1–5.

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2024. ; https://doi.org/10.1101/2024.12.28.24316703doi: medRxiv preprint 

https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.967116
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.967116
https://dx.doi.org/10.1088/1741-2552/ab909d
https://doi.org/10.1101/2024.12.28.24316703
http://creativecommons.org/licenses/by/4.0/


12

[33] K. Raeisi, M. Khazaei, G. Tamburro, P. Croce, S. Comani, F. Zappasodi
et al., “A class-imbalance aware and explainable spatio-temporal graph
attention network for neonatal seizure detection,” International Journal
of Neural Systems, vol. 33, no. 9, p. 2350046, 2023.

[34] A. Li, C. Huynh, Z. Fitzgerald, I. Cajigas, D. Brusko, J. Jagid, A. O.
Claudio, A. M. Kanner, J. Hopp, S. Chen, J. Haagensen, and S. Sarma,
“Neural fragility as an EEG marker of the seizure onset zone,” Nature
neuroscience, vol. 24, no. 10, pp. 1465–1474, 2021.

[35] A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier,
C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen, and M. S.
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