Supplementary Materials

Development and clinical validation of a cross-sex translator of ECG drug responses

Authors:

Roshni Shetty¹, Stefano Morotti¹, Vladimír Sobota², Jason D. Bayer², Haibo Ni¹, Eleonora Grandi¹*

Affiliations:

¹Department of Pharmacology, University of California Davis; Davis, CA, USA.

²LIRYC Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université; Pessac-Bordeaux, France.

*Corresponding author. Email: <u>ele.grandi@gmail.com</u>

Fig. S1. Drug plasma concentrations (bottom) vs time and corresponding QTc intervals (top; re-plotted from Fig. 3A) over time for males (pink) and females (blue) in clinical dataset 1 (27, 29). Solid lines represent the mean values, with shaded areas indicating the standard error of the mean (SEM), and each column corresponds to a separate drug administration and monitoring over a 24-hour period. All subjects received identical drug dosages prior to ECG monitoring during a particular drug evaluation (27).

Fig. S2. Drug plasma concentrations (bottom) vs time and corresponding QTc intervals (top; re-plotted from Fig. 4A) over time for males (pink) and females (blue) in clinical dataset 2 (29, 28); Solid lines represent the mean values, with shaded areas indicating the standard error of the mean (SEM), and each column corresponds to a separate drug administration and monitoring over a 24-hour period. All subjects received identical drug dosages prior to ECG monitoring during a particular drug combination evaluation and were dosed three times during the day (28).

Table. S1. Effects of sex-diverging plasma concentrations of quinidine on major ionic currents at maximum value of difference in mean plasma concentrations during quinidine administration in male vs female: 2065 ng/mL (2638 nM) in female vs 1425 ng/mL (1820 nM) in male at time point 2 hours (shown in **Fig. S1**). Row 1: IC50 (nM) and hill coefficient (n_h) for ion channels blocked by quinidine (Data from (*34*)); Effect k = $1/(1+([D]/IC50)^{nh})$, where [D] is the drug concentration at 1820 nM (Row 2) and 263 8nM (Row 3).

Quinidine	I _{Kr}	I _{NaL}	I _{CaL}	I _{Na}	Ito	I _{K1}	I _{Ks}
CIPA							
IC50	992	9417	51592.3	12329	3487.4	39589919	4898.9
(n _h)	(0.8)	(1.3)	(0.6)	(1.5)	(1.3)	(0.4)	(1.4)
k	0.3810	0.8944	0.8815	0.9463	0.6996	1	0.80
[D] = 1820 nM							
k	0.3138	0.8395	0.8562	0.9100	0.5898	0.9755	0.7041
[D] = 2638 nM							

Table. S2. Analysis of simulated QTc from baseline male and female cable models and following administration of quinidine concentration 1820 nM (Row 1) and 2638 nM (Row 2).

Quinidine	QTc	QTc simulated % increase	QTc simulated	QTc simulated %
Concentration	simulated	from baseline male	(female)	increase from baseline
[D]	(male)	(285.3ms)	ms	female
	ms			(340.8ms)
1820 nM	456.0	59.8%	533.4	56.5%
2638 nM	498.6	74.8%	582.0	70.8%