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Abstract 24 

Background: The gait pattern results from a complex interaction of several body parts, 25 

orchestrated by the (central) nervous system that controls the active and passive systems of the 26 

body. An impairment of gait due to a stroke results in a decline in quality of life and 27 

independence. Setting up efficient gait training requires an objective and wholesome 28 

assessment of the patient’s movement pattern to target individual gait alterations. However, 29 

current assessment tools are limited in their ability to capture the complexity of the movement 30 

and the amount of data acquired during gait analysis.  31 

Aims: In this study, we explore the potential of variational autoencoders (VAE) to learn and 32 

recognise different gait patterns within both, pathologic and healthy gait.  33 
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Methods: For this purpose, the lower-limb joint angles of 71 participants (29 stroke survivors, 34 

42 healthy controls) were used to train and test a VAE.  35 

Results: The good reconstruction results (range r = 0.52 - 0.91, average normalized RMSE 36 

23.36 % ± 4.13) indicate that VAEs extract meaningful information from the gait pattern. 37 

Furthermore, the extracted latent features are sensitive enough to distinguish between the gait 38 

patterns of stroke survivors and a healthy cohort (p<0.001).  39 

Conclusions: The presented approach allows the assessment of gait data in an objective and 40 

wholesome manner, thereby integrating the individual characteristics of each person’s gait, 41 

making it a suitable tool for monitoring the progress of rehabilitation efforts. 42 

Keywords: gait; artificial intelligence; pattern recognition; unsupervised deep learning; joint 43 

angles, stroke, pathologic  44 

Introduction 45 

Human gait is highly individual just like a fingerprint. The fact that one can recognize a known 46 

person from a far distance is utilized for gait biometrics, identifying the individual solely by 47 

their gait pattern [1–3].  48 

A gait pattern results from a complex interaction of several body parts, orchestrated by the 49 

(central) nervous system. Therefore, pathologic gait is an expression of altered motor function. 50 

Individuals who have had a stroke exhibit different gait patterns than healthy individuals [4]. 51 

Their gait pattern is usually not optimal resulting in an increased energy cost [5,6] and a 52 

reduction of stability of walking [7] when compared to healthy elderly.  53 

As walking is the most frequently executed form of locomotion, this impacts participation and 54 

quality of life [8]. Therefore, regaining gait quality is one of the main goals of stroke 55 

rehabilitation [9].  56 
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To assess gait quality and potential therapy success, researchers and clinicians seek to identify 57 

meaningful information in the gait pattern using instrumented 3D gait analysis to collect 58 

predefined segment motions [10]. The result is a high dimensional data set where each time 59 

series non-linearly interacts with others resulting in a problem of high complexity.[11] One 60 

common solution to reduce complexity is the preselection of variables of interest. However, 61 

this selection is dependent on the background and experience which might result in partly 62 

subjective interpretations of the formerly objective gait data [12,13]. Moreover, this approach 63 

could result in the neglect of key features by focusing on predefined outcome measures and 64 

does not reflect the complexity of human gait where the emphasis should be put on the 65 

interaction of different variables [11,14].  66 

Lately, advanced data processing and analysis methods were developed to tackle the 67 

complexity problem. Both supervised and unsupervised methods showed promise to classify 68 

different stroke gait patterns. Algorithms such as support vector machines, principal component 69 

analysis, and decision trees have been studied for their ability to extract clinically relevant 70 

information from gait data [15–20], distinguish patient [21,22] or identify the representatives 71 

of individual gait [23]. 72 

These approaches although objective, are often in need of conventional gait features for 73 

training and clustering algorithms are not capable of reflecting the individual characteristics of 74 

a patient’s gait pattern [14] or neglect that the differences between gait patterns are continuous.  75 

To this end, we propose a novel method for analysing 3D gait data. We opt for a wholesome 76 

quantitative approach that incorporates all collected information utilizing the interactions 77 

between multiple joints and motion planes, extracts characteristics of the input data and 78 

therefore objectively reduces the number of dimensions. 79 

Variational autoencoders (VAE) are a type of generative model that can learn a compressed, 80 

probabilistic representation of high-dimensional data, such as gait patterns [24]. This 81 
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representation, known as a latent space, can capture the essential features of the data and enable 82 

efficient analysis. A VAE extracts a defined number of latent features by encoding the input 83 

data as a Gaussian distribution over the latent space, rather than only as a vector [24]. This 84 

allows for regularization of the latent space in addition to minimization of the reconstruction 85 

error. Therefore, VAEs are an unsupervised method to generate regular latent representations 86 

of the input data [25]. 87 

The aim of this paper is twofold. First, we propose a new method based on a VAE to learn gait 88 

patterns, assessed via the network’s reconstruction accuracy. Second, we aim to do a first 89 

exploration of to what extent the VAE’s latent space can be used to represent an individual’s 90 

gait fingerprint. We do so in two ways, (1) by exploring whether the gait pattern of each 91 

participant forms clusters distinguishable from another and (2) by analysing whether the 92 

location of the participant within the latent space is meaningful, expressed through different 93 

gait patterns. Further, we hypothesized that the area covered by a stroke survivor’s data within 94 

the latent space is larger than the areas of the healthy controls, due to the higher expected 95 

variability contained in stroke gait [26]. 96 

Methods 97 

Participants. For this study, two data sets were combined. The first sample contains the 98 

kinematic data of 29 stroke survivors which was derived from the [27]. Participants were 99 

included when they were at least six months post-stroke, aged > 40 years, had a Mini-Mental-100 

State-Examination (MMSE) score of at least 24 to follow instructions [28] and had a minimum 101 

functional ambulation category (FAC) of 3. The second sample contains the kinematic data of 102 

42 healthy participants and was derived from the publicly available data set of Fukuchi et al. 103 

(approval number: CAAE: 53063315.7.0000.5594) [29]. All participants were capable of 104 

walking without handrail support during the data collection period. Further participant 105 

characteristics are displayed in Table 1.  106 
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Set-up and Procedure. Both data sets were collected during treadmill walking. The 3D 107 

trajectories of 47 retroreflective markers of the stroke survivors were captured with ten infrared 108 

cameras (100 Hz, Vicon, Vicon Motion Systems, Oxford) [27]. As for the healthy cohort, their 109 

kinematic data using the 3D trajectories of 26 retroreflective markers were collected with 12 110 

infrared cameras (150 Hz, Raptor-4; Motion Analysis Corporation, Santa Rosa, CA, USA) 111 

[29]. Further information on the experimental setup we refer to the cited articles. 112 

Data pre-processing. The marker trajectories of the stroke survivors were mirrored if their 113 

paretic limb was on the left side. This ensured that the side of the impairment was not affecting 114 

the outcome of the VAE model. 115 

Joint angles in 3D were calculated according to the ISB recommendations [30] for the hip, knee 116 

and ankle joints of both limbs. To ensure that the joint angles were not affected by either within-117 

study sample or between-study sample differences in marker placement, the 3D joint angles of 118 

the reference pose were subtracted from the dynamic joint angles. 119 

All data were resampled towards 50 Hz as the two data sets were acquired at different sampling 120 

frequencies. 121 

The right foot contact events were determined using the coordinate-based treadmill algorithm 122 

[31]  and were used to segment each participant’s measurement into multiple epochs of four 123 

seconds (200 frames) of data. Each epoch had a maximum of 50% overlap with the previous 124 

epoch depending on the moment of foot contact. The different joint angle trajectories were 125 

min-max normalized before training the model. 126 

Training and test set: In total, 5876 periods of 4 seconds formed the input data for the VAE. 127 

Each period contains the time series of the six lower-limb joints angles in three dimensions, 128 

thus an 18 by 200 input matrix. The data was split into a train and test set subject-wise to avoid 129 
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data leakage, whereby the test set consisted of 2300 periods (35%). A detailed description of 130 

the train and test split is presented in Table 1.  131 

Models and validation. A one-dimensional convolutional variational autoencoder (VAE) [32] 132 

was used as an unsupervised deep-learning technique to analyse the gait patterns. The encoder 133 

contains 3 convolutional layers, a flatten and dense layer. The information from the encoder is 134 

represented in a defined number of latent variables, each containing a mean and standard 135 

deviation. The decoder was used to reconstruct the input based on the latent space. The decoder 136 

is symmetrical to the (supplementary material, S1). To approximate the intractable posterior, a 137 

Gaussian distribution (which consists of two trainable parameters µ and σ) is chosen as the 138 

variational inference scheme. The VAE was trained to minimize the summed reconstruction 139 

error between the input and reconstructed signal and the Kullback-Leibler divergence loss [33]. 140 

Minimizing the latter at the same time as the reconstruction error allows for a “smooth” and 141 

“regular” latent space, in which two similar vectors decode to similar signals, and in which a 142 

sampled vector decodes to a realistic signal. The model was trained on the training data set 143 

using 40 epochs. Model validation was based on the test split. The training process was stopped 144 

in case the validation loss did not improve anymore for at least 25 repetitions. 145 

To minimize the number of latent features while preserving maximum information we 146 

developed models using 2, 3, 4 and 6 latent features. The final decision on the number of latent 147 

features was based on a minimal number of latent features without a significant reduction in 148 

model performances.  149 

These were evaluated by determining how well the VAE was able to reconstruct the walking 150 

pattern. We calculated the root mean squared error (RMSE), RMSE normalized to the joint’s 151 

range of motion (nRMSE) and Pearson correlation coefficient r between the original and 152 
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reconstructed time series. Additionally, to validate the regularity of the latent space, the time 153 

series of three randomly chosen points of the latent space were reconstructed (Figure S3). 154 

Identification of the individual’s gait fingerprint 155 

Finally, the size of the area covered by each individual within the latent space was assessed. 156 

Therefore the centre of their latent features and the Euclidean distance ε of the data points to 157 

the participant’s centre were calculated: 158 

𝜀𝜀𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2,𝐿𝐿𝐿𝐿3 = ���𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2,𝐿𝐿𝐿𝐿3 − 𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐𝑙𝑙𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿2,𝐿𝐿𝐿𝐿3�
2  /𝑁𝑁 159 

Where ε is the root mean of the sum of the squared distances normalized to the number of gait 160 

trails (N) per participant.  161 

The size of each individual’s data cloud within the latent space was then expressed as the 162 

volume calculated from the three Euclidean distances: 163 

𝜀𝜀𝐿𝐿𝐿𝐿1 × 𝜀𝜀𝐿𝐿𝐿𝐿2 × 𝜀𝜀𝐿𝐿𝐿𝐿3 164 

To compare the data cloud sizes between the stroke survivors and the healthy controls, the 165 

Mann-Whitney-U t-test was performed. 166 

All procedures follow the EQUATOR network Recommendations for Reporting Machine 167 

Learning Analyses in Clinical Research [34]. 168 

Results 169 

Optimising the number of latent features 170 

While the reconstruction error was not significantly different when decoding the latent space 171 

from two, three, four or six latent features, the correlation coefficient between the 172 

reconstructed and the original signal improved when increasing the number of latent features 173 

from two to three without further improvements when increasing the number of latent 174 
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features even more (Figure 1A). All results presented in the following are therefore based on 175 

three latent features. 176 

Evaluation of VAE model 177 

To assess the ability of the network to reduce the gait data to three latent features with minimal 178 

loss of relevant information, the time series of the training and the test set were reconstructed 179 

from the latent features. The error between the reconstructed and the raw input data is displayed 180 

in Figure 1B. The RMSE and the nRMSE for the test and the train set showed comparable 181 

results (RMSE: 6.03° ± 2.71 and 5.76° ± 2.68, nRMSE: 23.02% ± 4.05 and 23.36% ± 4.13). 182 

Due to the higher variability relative to the range of motion, the nRMSE was higher for the 183 

non-sagittal movements while the RMSE was highest for the knee flexion angle (11.70° ± 0.23 184 

averaged over training and test set).  185 

The correlation between the reconstructed and the raw data showed a high coefficient (range 186 

0.70 – 0.91) for the sagittal knee and all motion planes of the left and right hip joint angles 187 

(Figure 1B). A moderate relationship (range 0.52 – 0.69) for all other joints and planes except 188 

the right frontal knee joint angle which only showed a low to moderate correlation (r = 0.40).  189 

The reconstruction accuracy was not systematically different between the healthy cohort and 190 

the stroke survivors (Figure S2), which indicated that the network is capable of learning both 191 

healthy and pathologic, potentially more inconsistent gait patterns. There was no difference 192 

between the left and right leg’s joint angles (Figure 1B). Further, the reconstruction of three 193 

arbitrary points from the latent space resulted in realistic gait patterns (Figure S3). 194 

Gait fingerprint 195 

The quality of the network was assessed in its ability to preserve relevant information which 196 

resulted in the successful discrimination between the gait pattern of stroke survivors and the 197 
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healthy controls. Figure 2A displays the encoded data of the test set. The stroke survivors 198 

manifest into three main groups, located on the outer rim of the healthy controls. 199 

The covered space of the included stroke patients, represented as the 3D Euclidean distance 200 

from the participant’s centre is significantly higher than those of the healthy controls for all 201 

latent features except LF2 (p<0.001, see Table 2). Also, the stroke survivors’ volume of the data 202 

cloud was significantly larger (p<0.001), expressing that stroke gait pattern is less uniform.  203 

Discussion 204 

This study aimed to determine if a VAE can describe gait data with a limited number of features 205 

while preserving all relevant information, free from theory-driven constraints. It was 206 

hypothesized that a VAE is capable of recognizing gait patterns of healthy and pathologic gait. 207 

For this purpose, the data set of stroke survivors and a healthy population were merged, and 208 

their 3D lower-limb joint angles were used as the input for the VAE, which encoded the input 209 

into three latent features. These latent features were used as the 3D coordinates to map each of 210 

the gait segments in the 3D space to further analyse the specific location within this space. 211 

The most promising result of this study was that the VAE recognizes distinct characteristics of 212 

gait patterns and locates them in different regions of the latent space (Figure 3). Most 213 

participants covered only a small area, which indicates that the network indeed recognized a 214 

participant-specific gait pattern distinguishing the individual from others. However, some 215 

participants covered larger areas, expressed also in larger Euclidean distances from the centre 216 

of their data (Figure 2B-D) and an overall larger data cloud. The stroke survivors’ areas were 217 

significantly larger, which is not a surprising result, as they are reported to have less uniform 218 

gait patterns than healthy individuals [16]. We propose that the centre and the area covered by 219 

one’s data cloud within the latent space as an easy-to-report measure of this gait pattern to be 220 

monitored throughout gait training. Variability in gait is a well-discussed parameter, usually 221 
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assessed using entropy, standard deviation or similar approaches. While the standard deviation 222 

as a linear measure is not a good representation of a non-linear data set [11], entropy is, but its 223 

interpretation is difficult. Both, the location and the size of the area are clear representatives of 224 

the individual’s gait fingerprint. The size of the data cloud is the direct outcome of the 225 

variability, and a decrease represents a more uniform gait pattern. However, using the size of 226 

a patient’s data cloud as a variability measure is just a side product of the VAE. A network that 227 

is capable of learning complex information, can be utilised in several ways, not just for 228 

variability estimation. 229 

As all lower limb joint angles were used to train the VAE, the location of a single patient within 230 

the latent space represents wholesome information about the gait pattern. This location is not 231 

biased by any hypothesis, it is data-driven. Further, the transition of location is continuous, 232 

which is advantageous as also small changes in the gait pattern are likely to be recognized. This 233 

makes the use of VAEs superior to classification methods where the features are forced into 234 

groups which neglects the continuity of changes. This opens a new opportunity to assess the 235 

gait quality of a patient. Simply speaking, the location of the patient on the map relative to e.g. 236 

a healthy cohort can be used as a starting point for the rehabilitation process. By knowing the 237 

characteristics of a certain region of the map, the joint and plane of highest priority can be 238 

defined and prioritized during rehabilitation. During treatment, the patient can be monitored by 239 

presenting the new gait data to the VAE and tracking the location within the latent space. With 240 

this, the clinician’s assessment of the rehabilitation can be supported in an objective, efficient 241 

and wholesome manner. 242 

The quality of the used VAE was high enough to satisfyingly reduce the high dimensional gait 243 

data towards three latent features while still being able to distinguish between individuals. This 244 

is reflected by high Pearson correlation coefficients and low RMSE and nRMSE results. 245 

However, it has to be mentioned that the reconstruction of the non-sagittal plane joint angles 246 
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was less accurate than the sagittal plane movement. This is not a specific issue of VAEs but 247 

has also been reported for supervised learning algorithms – resulting from the combination of 248 

low movement amplitude and high movement variability [35–37]. Therefore, it is more 249 

difficult for any algorithm to learn the pattern. To extract individual gait patterns, high 250 

reconstruction accuracy is preferred, but the current accuracy is sufficient since the joint angles 251 

aren't used for decision-making. Increasing the dataset could further improve accuracy. The 252 

outer edge of the latent space had lower reconstruction accuracy than the centre, as it represents 253 

the gait patterns of the slowest and fastest walkers, trained on limited data. To extend the area 254 

of high accuracy, the network could be trained with more data from noisy conditions or more 255 

impaired gait patterns. 256 

The latent space forms a spiral structure, contrary to the ideal of finding completely 257 

disentangled latent features where changes in one unit affect only one generative factor [38]. In 258 

this case, all three latent features together describe the data variation. It's noted that improving 259 

disentanglement often increases reconstruction loss [38,39]. Future research should explore 260 

whether a different balance between entanglement and reconstruction loss could enhance the 261 

research outcomes. 262 

The presented results are explorative. To be applicable in clinical practice, it is necessary to 263 

increase the sample size of the training set especially with data coming from pathologic gait. 264 

Having data sets of patients that were collected in comparable environments was restricted in 265 

the past, however, this will change in the future. In recent years, the number of publicly 266 

available data sets increased. With many initiatives promoting open science, this process 267 

should become the new normal soon, enabling us to reach the aim of increasing sample size.  268 
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Optical motion capture data, like in this study, is often impractical in clinical settings due to 269 

high costs and time requirements. Future efforts will focus on using data from wearable sensors 270 

or 2D video cameras, which are more affordable and user-friendly. 271 

Conclusion 272 

The results demonstrate that deep unsupervised learning algorithms effectively assess 273 

individual movement patterns. VAEs can detect subtle gait differences, providing objective 274 

and data-driven evaluations of patient gait alterations. Representing complex data in a 3D map 275 

enables clinicians to assess gait without predefined assumptions, while monitoring extracted 276 

features helps track rehabilitation progress. This approach enhances clinical efficiency and 277 

improves patient outcomes through personalized therapy. 278 
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Table 1: Participant characteristics of the general data set and the test split: N = number of 405 
participants, Age in years (mean ± standard deviation (std)), height in cm (mean ± std), weight in kg 406 
(mean ± std), sex and Gait speed in m/s (mean ± std). 407 

  N Age Height Weight Sex m/f Gait speed 

Su
m

m
ar

y 
Pa

rt
ic

ip
an

ts
 

Stroke 
survivors 29 58.6 ± 11.9 172.0 ± 

11.4 85.4 ± 18.3 13/18 0.7 ± 0.3 

Healthy 
controls 
young 

24 27.6 ± 18.1 171.1 ± 
10.9 68.4 ± 11.2 14/10 1.2 ± 0.4 

Healthy 
controls 
older 

18 62.4 ± 7.4 161.9 ± 9.2 66.7 ± 10.0 10/8 1.1 ± 0.4 

Su
m

m
ar

y 
te

st
 sp

lit
 Stroke 

survivors 8 52.8 ± 10.4 168.1 ± 
12.7 90.4 ± 24.4 7/1 0.9 ± 0.2 

Healthy 
controls 
young 

10 28.4 ± 4.6 171.4 ± 
11.1 68.8 ± 9.4 5/5 1.2 ± 0.4 

Healthy 
controls 
older 

8 64.0 ± 9.6 164.7 ± 8.6 66.7 ± 9.5 6/2 1.2 ± 0.4 

 408 

  409 
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Table 2: Covered area of the individual data clouds within the latent space represented as the Euclidean 410 
distances ε of the three latent features (LF) and the resultant size. The statistical outcome of the Mann-411 
Whitney U test is represented by the p-value. 412 

 Stroke survivors Healthy controls p-value 

ε LF 1 (mean ± std) 4.48 ± 3.32 2.61 ± 1.49 <0.001 

ε LF 2 (mean ± std) 6.09 ± 4.89 4.16 ± 3.15 0.059 

ε LF 3 (mean ± std) 6.06 ± 4.08 3.02 ± 2.41 <0.001 

Size of data cloud (mean ± 
std) 

266.84 ± 375.71 48.97 ± 125.65 <0.001 

 413 
 414 
  415 
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 416 

Figure 1: Validation results: Pearson’s r, RMSE and nRMSE for all input channels. Red boxplots refer 417 
to the reconstruction accuracy of the test set. Blue boxplots refer to the reconstruction accuracy of the 418 
train set. Circles = median, error bars = SD. Top row: comparison of model performance for two, three, 419 
four and six latent features (LF), results were averaged over all joints and motion planes. Lower rows: 420 
Model performance for three LF for the knee, hip and ankle joint angles in all motion planes. The light 421 
blue and light red boxplots indicate the reconstruction accuracy of the right (for the stroke survivors – 422 
the affected) leg, displaying only minor differences when compared to the left leg.  423 
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 424 

Figure 2: A: The stroke survivor’s data (blue) is located on the outer rim of the healthy cohort’s data 425 
(pink). For interactive figures visit:  426 
https://mybinder.org/v2/gh/SinaDavid/VAE/main?urlpath=%2Ftree%2F B-D: Representation of the 427 
Euclidean distances and centres of the clusters of each included individual, the black dots represent the 428 
centre of each participant, while the shaded areas represent the space covered by their data. The 429 
ellipsoids are based on the Euclidean distance in the 3 directions of the latent space. The areas, 430 
represented in blue/green are representing the stroke survivors, expressing the large variability within 431 
their gait pattern. The areas coloured in red/yellow represent the healthy controls. 432 
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 433 

Figure 3: Regional analysis of six selected participants. A) representation of the latent features of each 434 
of the gait trials. B) mean (bold line) and standard deviation (shaded area) of the reconstruction of the 435 
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joint angles of six selected participants from their three latent features. Blue: right leg, red: left leg. 436 
Participants S16, S19 and S21 are from the group of stroke survivors while the other three participants 437 
are from the healthy cohort. 438 

 439 
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