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Supplemental Information. Relationship between the risk difference (RD), 
relative risk (RR), and hazard ratio (HR) in time-to-event data. 
 
Definitions 
Mortality probability 𝑝(𝑡) = 𝑃(𝑇 ≤ 𝑡) represents the probability that a subject will 
die before time 𝑡. 
Risk difference 𝑅𝐷 = 𝑝(𝑡|𝑐𝑜𝑛𝑡𝑟𝑜𝑙) − 𝑝(𝑡|𝑡𝑟𝑒𝑎𝑡𝑒𝑑) is the difference in survival 

probabilities between the treated and control groups at time 𝑡. 

Relative risk 𝑅𝑅 =
𝑝(𝑡|𝑡𝑟𝑒𝑎𝑡𝑒𝑑)

𝑝(𝑡|𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
 is the ratio of the mortality probabilities between the 

treated and control groups at time 𝑡. 

Hazard ratio HR =
ℎ(𝑡|𝑡𝑟𝑒𝑎𝑡𝑒𝑑)

ℎ(𝑡|𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
 is the ratio of hazards between the treated and control 

groups at time 𝑡.  
 
Constant HR 
When the HR is constant, ℎ(𝑡) = 𝐻(𝑡).  

Thus, HR =
ℎ(𝑡|𝑡𝑟𝑒𝑎𝑡𝑒𝑑)

ℎ(𝑡|𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
 =

𝐻(𝑡|𝑡𝑟𝑒𝑎𝑡𝑒𝑑)

𝐻(𝑡|𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
=

− ln(𝑆(𝑡|𝑡𝑟𝑒𝑎𝑡𝑒𝑑))

− ln(𝑆(𝑡|𝑐𝑜𝑛𝑡𝑟𝑜𝑙))
=

ln(𝑆(𝑡|𝑡𝑟𝑒𝑎𝑡𝑒𝑑))

ln(𝑆(𝑡|𝑐𝑜𝑛𝑡𝑟𝑜𝑙))
=

ln(1−𝑝(𝑡|𝑡𝑟𝑒𝑎𝑡𝑒𝑑))

ln(1−𝑝(𝑡|𝑐𝑜𝑛𝑡𝑟𝑜𝑙))
 

Thus, 𝑝(𝑡|𝑡𝑟𝑒𝑎𝑡𝑒𝑑) = 1 − (1 − 𝑝(𝑡|𝑐𝑜𝑛𝑡𝑟𝑜𝑙))
𝐻𝑅

 

Therefore, 𝑅𝐷 = 𝑝(𝑡|𝑐𝑜𝑛𝑡𝑟𝑜𝑙) − 1 + (1 − 𝑝(𝑡|𝑐𝑜𝑛𝑡𝑟𝑜𝑙))
𝐻𝑅

  

And 𝑅𝑅 =
1−(1−𝑝(𝑡|𝑐𝑜𝑛𝑡𝑟𝑜𝑙))

𝐻𝑅

𝑝(𝑡|𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
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Supplemental Table 1. Detailed description of the randomized clinical trials 
and performance metrics of their internally developed risk model. 

 SOLVD Prevention SOLVD Intervention 

Year1 19921 19911 
Patient 
population 

Congestive heart failure Congestive heart failure 

Treatment Enalapril versus placebo Enalapril versus placebo 
N2 Prevention: 4,228 Intervention: 2,569 
Outcome Death or hospitalization due to 

heart failure 
 

All-cause mortality 

Follow-up3 3.1 [2.2; 4.0] 3.5 [2.9; 4.0] 
90th percentile4 4.6 4.3 
KM5 69.5 [67.4; 71.6] 54.5 [51.7; 57.4] 
RD 0.03 [-0.01; 0.07] 0.03 [-0.02; 0.09] 
p-value6 0.001 0.009 
ΔRMST 0.16 [0.08; 0.25] 0.18 [0.06; 0.29] 
Predictors Age, blood urea nitrogen, NYHA 

heart failure class, diuretic 
therapy, sex, race, history of 
CABG or other cardiac surgery, 
history of chronic obstructive 
pulmonary disease, history of 
atrial fibrillation, SBP, DBP, heart 
rate, ACE inhibitor therapy, beta 
blocker therapy, creatinine, 
potassium, white blood cell 
count2-4 

Age, sex, body weight, heart 
rate, current smoking status, 
history of diabetes, history of MI, 
history of oedema, history of 
chronic obstructive pulmonary 
disease, NYHA heart failure 
class, left ventricular ejection 
fraction, history of atrial 
fibrillation ACE inhibitor therapy, 
beta blocker therapy, creatinine, 
SBP, DBP, sodium, blood urea 
nitrogen5-8 

C-index 0.65 0.67 
1Year of publication with references; 2Sample size for patients with an outcome 
recorded; 3Median [IQR] follow-up time calculated using reverse Kaplan-Meier 
estimates; 490th percentile of follow-up time using reverse Kaplan-Meier estimates. 
5KM is the Kaplan-Meier estimate at the 90th percentile of follow-up time with a 95% 
confidence interval; 6p-value of the log-rank test to test if the treatment-stratified 
Kaplan-Meier curves truncated at 90th percentile of follow-up time were significantly 
different. Abbreviations: ACE = angiotensin-converting-enzyme; CABG = coronary 
artery bypass graft; DBP = diastolic blood pressure; NYHA = New York Heart 
Association; MI = myocardial infarction; SBP = systolic blood pressure, ΔRMST = 
difference in restricted mean survival time.  
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Supplemental Figure 1. Illustration using artificial data: the difference in 
restricted mean survival time (ΔRMST) and risk difference (RD) give a similar 
pattern of absolute treatment effect across risk strata. Simulated the event times 
of 1,000,000 individuals in four risk strata using an increasing failure rate, a constant 
overall proportional HR for treatment of 0.5, an average overall event rate of 10%, 
30%, and 50% among the control group, and a discriminative ability of the risk-
stratified model of 0.60, 0.75, and 0.90. The red highlighted panels indicate where 
RD and ΔRMST provide discordant treatment targeting. 
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Supplemental Figure 2. Illustration using artificial data: the difference in 
restricted mean survival time (ΔRMST) and risk difference (RD) give a similar 
pattern of absolute treatment effect across risk strata. Simulated the event times 
of 1,000,000 individuals in four risk strata using a constant failure rate, a constant 
overall proportional HR for treatment of 0.8, an average overall event rate of 10%, 
30%, and 50% among the control group, and a discriminative ability of the risk-
stratified model of 0.60, 0.75, and 0.90. The red highlighted panels indicate where 
RD and ΔRMST provide discordant treatment targeting. 
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Supplemental Figure 3. Illustration using artificial data: the difference in 
restricted mean survival time (ΔRMST) and risk difference (RD) give a similar 
pattern of absolute treatment effect across risk strata. Simulated the event times 
of 1,000,000 individuals in four risk strata using a constant failure rate, a constant 
overall proportional HR for treatment of 0.5, an average overall event rate of 10%, 
30%, and 50% among the control group, and a discriminative ability of the risk-
stratified model of 0.60, 0.75, and 0.90. The red highlighted panels indicate where 
RD and ΔRMST provide discordant treatment targeting. 
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